1 /*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "libtimeinstate"
18
19 #include "cputimeinstate.h"
20 #include <bpf_timeinstate.h>
21
22 #include <dirent.h>
23 #include <errno.h>
24 #include <inttypes.h>
25 #include <sys/sysinfo.h>
26
27 #include <mutex>
28 #include <numeric>
29 #include <optional>
30 #include <set>
31 #include <string>
32 #include <unordered_map>
33 #include <vector>
34
35 #include <android-base/file.h>
36 #include <android-base/parseint.h>
37 #include <android-base/stringprintf.h>
38 #include <android-base/strings.h>
39 #include <android-base/unique_fd.h>
40 #include <bpf/BpfMap.h>
41 #include <libbpf.h>
42 #include <log/log.h>
43
44 using android::base::StringPrintf;
45 using android::base::unique_fd;
46
47 namespace android {
48 namespace bpf {
49
50 static std::mutex gInitializedMutex;
51 static bool gInitialized = false;
52 static std::mutex gTrackingMutex;
53 static bool gTracking = false;
54 static uint32_t gNPolicies = 0;
55 static uint32_t gNCpus = 0;
56 static std::vector<std::vector<uint32_t>> gPolicyFreqs;
57 static std::vector<std::vector<uint32_t>> gPolicyCpus;
58 static std::vector<uint32_t> gCpuIndexMap;
59 static std::set<uint32_t> gAllFreqs;
60 static unique_fd gTisTotalMapFd;
61 static unique_fd gTisMapFd;
62 static unique_fd gConcurrentMapFd;
63 static unique_fd gUidLastUpdateMapFd;
64 static unique_fd gPidTisMapFd;
65
readNumbersFromFile(const std::string & path)66 static std::optional<std::vector<uint32_t>> readNumbersFromFile(const std::string &path) {
67 std::string data;
68
69 if (!android::base::ReadFileToString(path, &data)) return {};
70
71 auto strings = android::base::Split(data, " \n");
72 std::vector<uint32_t> ret;
73 for (const auto &s : strings) {
74 if (s.empty()) continue;
75 uint32_t n;
76 if (!android::base::ParseUint(s, &n)) return {};
77 ret.emplace_back(n);
78 }
79 return ret;
80 }
81
isPolicyFile(const struct dirent * d)82 static int isPolicyFile(const struct dirent *d) {
83 return android::base::StartsWith(d->d_name, "policy");
84 }
85
comparePolicyFiles(const struct dirent ** d1,const struct dirent ** d2)86 static int comparePolicyFiles(const struct dirent **d1, const struct dirent **d2) {
87 uint32_t policyN1, policyN2;
88 if (sscanf((*d1)->d_name, "policy%" SCNu32 "", &policyN1) != 1 ||
89 sscanf((*d2)->d_name, "policy%" SCNu32 "", &policyN2) != 1)
90 return 0;
91 return policyN1 - policyN2;
92 }
93
initGlobals()94 static bool initGlobals() {
95 std::lock_guard<std::mutex> guard(gInitializedMutex);
96 if (gInitialized) return true;
97
98 gNCpus = get_nprocs_conf();
99
100 struct dirent **dirlist;
101 const char basepath[] = "/sys/devices/system/cpu/cpufreq";
102 int ret = scandir(basepath, &dirlist, isPolicyFile, comparePolicyFiles);
103 if (ret == -1 || ret == 0) return false;
104 gNPolicies = ret;
105
106 std::vector<std::string> policyFileNames;
107 for (uint32_t i = 0; i < gNPolicies; ++i) {
108 policyFileNames.emplace_back(dirlist[i]->d_name);
109 free(dirlist[i]);
110 }
111 free(dirlist);
112 uint32_t max_cpu_number = 0;
113 for (const auto &policy : policyFileNames) {
114 std::vector<uint32_t> freqs;
115 for (const auto &name : {"available", "boost"}) {
116 std::string path =
117 StringPrintf("%s/%s/scaling_%s_frequencies", basepath, policy.c_str(), name);
118 auto nums = readNumbersFromFile(path);
119 if (!nums) continue;
120 freqs.insert(freqs.end(), nums->begin(), nums->end());
121 }
122 if (freqs.empty()) return false;
123 std::sort(freqs.begin(), freqs.end());
124 gPolicyFreqs.emplace_back(freqs);
125
126 for (auto freq : freqs) gAllFreqs.insert(freq);
127
128 std::string path = StringPrintf("%s/%s/%s", basepath, policy.c_str(), "related_cpus");
129 auto cpus = readNumbersFromFile(path);
130 if (!cpus) return false;
131 for (auto cpu : *cpus) {
132 if(cpu > max_cpu_number)
133 max_cpu_number = cpu;
134 }
135 gPolicyCpus.emplace_back(*cpus);
136 }
137 gCpuIndexMap = std::vector<uint32_t>(max_cpu_number+1, -1);
138 uint32_t cpuorder = 0;
139 for (const auto &cpuList : gPolicyCpus) {
140 for (auto cpu : cpuList) {
141 gCpuIndexMap[cpu] = cpuorder++;
142 }
143 }
144
145 gTisTotalMapFd =
146 unique_fd{bpf_obj_get(BPF_FS_PATH "map_timeInState_total_time_in_state_map")};
147 if (gTisTotalMapFd < 0) return false;
148
149 gTisMapFd = unique_fd{bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_time_in_state_map")};
150 if (gTisMapFd < 0) return false;
151
152 gConcurrentMapFd =
153 unique_fd{bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_concurrent_times_map")};
154 if (gConcurrentMapFd < 0) return false;
155
156 gUidLastUpdateMapFd =
157 unique_fd{bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_last_update_map")};
158 if (gUidLastUpdateMapFd < 0) return false;
159
160 gPidTisMapFd = unique_fd{mapRetrieveRO(BPF_FS_PATH "map_timeInState_pid_time_in_state_map")};
161 if (gPidTisMapFd < 0) return false;
162
163 unique_fd trackedPidMapFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_pid_tracked_map"));
164 if (trackedPidMapFd < 0) return false;
165
166 gInitialized = true;
167 return true;
168 }
169
retrieveProgramFd(const std::string & eventType,const std::string & eventName)170 static int retrieveProgramFd(const std::string &eventType, const std::string &eventName) {
171 std::string path = StringPrintf(BPF_FS_PATH "prog_timeInState_tracepoint_%s_%s",
172 eventType.c_str(), eventName.c_str());
173 return retrieveProgram(path.c_str());
174 }
175
attachTracepointProgram(const std::string & eventType,const std::string & eventName)176 static bool attachTracepointProgram(const std::string &eventType, const std::string &eventName) {
177 int prog_fd = retrieveProgramFd(eventType, eventName);
178 if (prog_fd < 0) return false;
179 return bpf_attach_tracepoint(prog_fd, eventType.c_str(), eventName.c_str()) >= 0;
180 }
181
getPolicyFreqIdx(uint32_t policy)182 static std::optional<uint32_t> getPolicyFreqIdx(uint32_t policy) {
183 auto path = StringPrintf("/sys/devices/system/cpu/cpufreq/policy%u/scaling_cur_freq",
184 gPolicyCpus[policy][0]);
185 auto freqVec = readNumbersFromFile(path);
186 if (!freqVec.has_value() || freqVec->size() != 1) return {};
187 for (uint32_t idx = 0; idx < gPolicyFreqs[policy].size(); ++idx) {
188 if ((*freqVec)[0] == gPolicyFreqs[policy][idx]) return idx + 1;
189 }
190 return {};
191 }
192
193 // Check if tracking is expected to work without activating it.
isTrackingUidTimesSupported()194 bool isTrackingUidTimesSupported() {
195 auto freqs = getCpuFreqs();
196 if (!freqs || freqs->empty()) return false;
197 if (gTracking) return true;
198 if (retrieveProgramFd("sched", "sched_switch") < 0) return false;
199 if (retrieveProgramFd("power", "cpu_frequency") < 0) return false;
200 if (retrieveProgramFd("sched", "sched_process_free") < 0) return false;
201 return true;
202 }
203
204 // Start tracking and aggregating data to be reported by getUidCpuFreqTimes and getUidsCpuFreqTimes.
205 // Returns true on success, false otherwise.
206 // Tracking is active only once a live process has successfully called this function; if the calling
207 // process dies then it must be called again to resume tracking.
208 // This function should *not* be called while tracking is already active; doing so is unnecessary
209 // and can lead to accounting errors.
startTrackingUidTimes()210 bool startTrackingUidTimes() {
211 std::lock_guard<std::mutex> guard(gTrackingMutex);
212 if (!initGlobals()) return false;
213 if (gTracking) return true;
214
215 unique_fd cpuPolicyFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_cpu_policy_map"));
216 if (cpuPolicyFd < 0) return false;
217
218 for (uint32_t i = 0; i < gPolicyCpus.size(); ++i) {
219 for (auto &cpu : gPolicyCpus[i]) {
220 if (writeToMapEntry(cpuPolicyFd, &cpu, &i, BPF_ANY)) return false;
221 }
222 }
223
224 unique_fd freqToIdxFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_freq_to_idx_map"));
225 if (freqToIdxFd < 0) return false;
226 freq_idx_key_t key;
227 for (uint32_t i = 0; i < gNPolicies; ++i) {
228 key.policy = i;
229 for (uint32_t j = 0; j < gPolicyFreqs[i].size(); ++j) {
230 key.freq = gPolicyFreqs[i][j];
231 // Start indexes at 1 so that uninitialized state is distinguishable from lowest freq.
232 // The uid_times map still uses 0-based indexes, and the sched_switch program handles
233 // conversion between them, so this does not affect our map reading code.
234 uint32_t idx = j + 1;
235 if (writeToMapEntry(freqToIdxFd, &key, &idx, BPF_ANY)) return false;
236 }
237 }
238
239 unique_fd cpuLastUpdateFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_cpu_last_update_map"));
240 if (cpuLastUpdateFd < 0) return false;
241 std::vector<uint64_t> zeros(get_nprocs_conf(), 0);
242 uint32_t zero = 0;
243 if (writeToMapEntry(cpuLastUpdateFd, &zero, zeros.data(), BPF_ANY)) return false;
244
245 unique_fd nrActiveFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_nr_active_map"));
246 if (nrActiveFd < 0) return false;
247 if (writeToMapEntry(nrActiveFd, &zero, &zero, BPF_ANY)) return false;
248
249 unique_fd policyNrActiveFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_policy_nr_active_map"));
250 if (policyNrActiveFd < 0) return false;
251 for (uint32_t i = 0; i < gNPolicies; ++i) {
252 if (writeToMapEntry(policyNrActiveFd, &i, &zero, BPF_ANY)) return false;
253 }
254
255 unique_fd policyFreqIdxFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_policy_freq_idx_map"));
256 if (policyFreqIdxFd < 0) return false;
257 for (uint32_t i = 0; i < gNPolicies; ++i) {
258 auto freqIdx = getPolicyFreqIdx(i);
259 if (!freqIdx.has_value()) return false;
260 if (writeToMapEntry(policyFreqIdxFd, &i, &(*freqIdx), BPF_ANY)) return false;
261 }
262
263 gTracking = attachTracepointProgram("sched", "sched_switch") &&
264 attachTracepointProgram("power", "cpu_frequency") &&
265 attachTracepointProgram("sched", "sched_process_free");
266 return gTracking;
267 }
268
getCpuFreqs()269 std::optional<std::vector<std::vector<uint32_t>>> getCpuFreqs() {
270 if (!gInitialized && !initGlobals()) return {};
271 return gPolicyFreqs;
272 }
273
getTotalCpuFreqTimes()274 std::optional<std::vector<std::vector<uint64_t>>> getTotalCpuFreqTimes() {
275 if (!gInitialized && !initGlobals()) return {};
276
277 std::vector<std::vector<uint64_t>> out;
278 uint32_t maxFreqCount = 0;
279 for (const auto &freqList : gPolicyFreqs) {
280 if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size();
281 out.emplace_back(freqList.size(), 0);
282 }
283
284 std::vector<uint64_t> vals(gNCpus);
285 const uint32_t freqCount = maxFreqCount <= MAX_FREQS_FOR_TOTAL ? maxFreqCount :
286 MAX_FREQS_FOR_TOTAL;
287 for (uint32_t freqIdx = 0; freqIdx < freqCount; ++freqIdx) {
288 if (findMapEntry(gTisTotalMapFd, &freqIdx, vals.data())) return {};
289 for (uint32_t policyIdx = 0; policyIdx < gNPolicies; ++policyIdx) {
290 if (freqIdx >= gPolicyFreqs[policyIdx].size()) continue;
291 for (const auto &cpu : gPolicyCpus[policyIdx]) {
292 out[policyIdx][freqIdx] += vals[gCpuIndexMap[cpu]];
293 }
294 }
295 }
296
297 return out;
298 }
299 // Retrieve the times in ns that uid spent running at each CPU frequency.
300 // Return contains no value on error, otherwise it contains a vector of vectors using the format:
301 // [[t0_0, t0_1, ...],
302 // [t1_0, t1_1, ...], ...]
303 // where ti_j is the ns that uid spent running on the ith cluster at that cluster's jth lowest freq.
getUidCpuFreqTimes(uint32_t uid)304 std::optional<std::vector<std::vector<uint64_t>>> getUidCpuFreqTimes(uint32_t uid) {
305 if (!gInitialized && !initGlobals()) return {};
306
307 std::vector<std::vector<uint64_t>> out;
308 uint32_t maxFreqCount = 0;
309 for (const auto &freqList : gPolicyFreqs) {
310 if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size();
311 out.emplace_back(freqList.size(), 0);
312 }
313
314 std::vector<tis_val_t> vals(gNCpus);
315 for (uint32_t i = 0; i <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++i) {
316 const time_key_t key = {.uid = uid, .bucket = i};
317 if (findMapEntry(gTisMapFd, &key, vals.data())) {
318 time_key_t tmpKey;
319 if (errno != ENOENT || getFirstMapKey(gTisMapFd, &tmpKey)) return {};
320 continue;
321 }
322
323 auto offset = i * FREQS_PER_ENTRY;
324 auto nextOffset = (i + 1) * FREQS_PER_ENTRY;
325 for (uint32_t j = 0; j < gNPolicies; ++j) {
326 if (offset >= gPolicyFreqs[j].size()) continue;
327 auto begin = out[j].begin() + offset;
328 auto end = nextOffset < gPolicyFreqs[j].size() ? begin + FREQS_PER_ENTRY : out[j].end();
329
330 for (const auto &cpu : gPolicyCpus[j]) {
331 std::transform(begin, end, std::begin(vals[gCpuIndexMap[cpu]].ar), begin,
332 std::plus<uint64_t>());
333 }
334 }
335 }
336
337 return out;
338 }
339
uidUpdatedSince(uint32_t uid,uint64_t lastUpdate,uint64_t * newLastUpdate)340 static std::optional<bool> uidUpdatedSince(uint32_t uid, uint64_t lastUpdate,
341 uint64_t *newLastUpdate) {
342 uint64_t uidLastUpdate;
343 if (findMapEntry(gUidLastUpdateMapFd, &uid, &uidLastUpdate)) return {};
344 // Updates that occurred during the previous read may have been missed. To mitigate
345 // this, don't ignore entries updated up to 1s before *lastUpdate
346 constexpr uint64_t NSEC_PER_SEC = 1000000000;
347 if (uidLastUpdate + NSEC_PER_SEC < lastUpdate) return false;
348 if (uidLastUpdate > *newLastUpdate) *newLastUpdate = uidLastUpdate;
349 return true;
350 }
351
352 // Retrieve the times in ns that each uid spent running at each CPU freq.
353 // Return contains no value on error, otherwise it contains a map from uids to vectors of vectors
354 // using the format:
355 // { uid0 -> [[t0_0_0, t0_0_1, ...], [t0_1_0, t0_1_1, ...], ...],
356 // uid1 -> [[t1_0_0, t1_0_1, ...], [t1_1_0, t1_1_1, ...], ...], ... }
357 // where ti_j_k is the ns uid i spent running on the jth cluster at the cluster's kth lowest freq.
358 std::optional<std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>>>
getUidsCpuFreqTimes()359 getUidsCpuFreqTimes() {
360 return getUidsUpdatedCpuFreqTimes(nullptr);
361 }
362
363 // Retrieve the times in ns that each uid spent running at each CPU freq, excluding UIDs that have
364 // not run since before lastUpdate.
365 // Return format is the same as getUidsCpuFreqTimes()
366 std::optional<std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>>>
getUidsUpdatedCpuFreqTimes(uint64_t * lastUpdate)367 getUidsUpdatedCpuFreqTimes(uint64_t *lastUpdate) {
368 if (!gInitialized && !initGlobals()) return {};
369 time_key_t key, prevKey;
370 std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>> map;
371 if (getFirstMapKey(gTisMapFd, &key)) {
372 if (errno == ENOENT) return map;
373 return std::nullopt;
374 }
375
376 std::vector<std::vector<uint64_t>> mapFormat;
377 for (const auto &freqList : gPolicyFreqs) mapFormat.emplace_back(freqList.size(), 0);
378
379 uint64_t newLastUpdate = lastUpdate ? *lastUpdate : 0;
380 std::vector<tis_val_t> vals(gNCpus);
381 do {
382 if (lastUpdate) {
383 auto uidUpdated = uidUpdatedSince(key.uid, *lastUpdate, &newLastUpdate);
384 if (!uidUpdated.has_value()) return {};
385 if (!*uidUpdated) continue;
386 }
387 if (findMapEntry(gTisMapFd, &key, vals.data())) return {};
388 if (map.find(key.uid) == map.end()) map.emplace(key.uid, mapFormat);
389
390 auto offset = key.bucket * FREQS_PER_ENTRY;
391 auto nextOffset = (key.bucket + 1) * FREQS_PER_ENTRY;
392 for (uint32_t i = 0; i < gNPolicies; ++i) {
393 if (offset >= gPolicyFreqs[i].size()) continue;
394 auto begin = map[key.uid][i].begin() + offset;
395 auto end = nextOffset < gPolicyFreqs[i].size() ? begin + FREQS_PER_ENTRY :
396 map[key.uid][i].end();
397 for (const auto &cpu : gPolicyCpus[i]) {
398 std::transform(begin, end, std::begin(vals[gCpuIndexMap[cpu]].ar), begin,
399 std::plus<uint64_t>());
400 }
401 }
402 prevKey = key;
403 } while (prevKey = key, !getNextMapKey(gTisMapFd, &prevKey, &key));
404 if (errno != ENOENT) return {};
405 if (lastUpdate && newLastUpdate > *lastUpdate) *lastUpdate = newLastUpdate;
406 return map;
407 }
408
verifyConcurrentTimes(const concurrent_time_t & ct)409 static bool verifyConcurrentTimes(const concurrent_time_t &ct) {
410 uint64_t activeSum = std::accumulate(ct.active.begin(), ct.active.end(), (uint64_t)0);
411 uint64_t policySum = 0;
412 for (const auto &vec : ct.policy) {
413 policySum += std::accumulate(vec.begin(), vec.end(), (uint64_t)0);
414 }
415 return activeSum == policySum;
416 }
417
418 // Retrieve the times in ns that uid spent running concurrently with each possible number of other
419 // tasks on each cluster (policy times) and overall (active times).
420 // Return contains no value on error, otherwise it contains a concurrent_time_t with the format:
421 // {.active = [a0, a1, ...], .policy = [[p0_0, p0_1, ...], [p1_0, p1_1, ...], ...]}
422 // where ai is the ns spent running concurrently with tasks on i other cpus and pi_j is the ns spent
423 // running on the ith cluster, concurrently with tasks on j other cpus in the same cluster
getUidConcurrentTimes(uint32_t uid,bool retry)424 std::optional<concurrent_time_t> getUidConcurrentTimes(uint32_t uid, bool retry) {
425 if (!gInitialized && !initGlobals()) return {};
426 concurrent_time_t ret = {.active = std::vector<uint64_t>(gNCpus, 0)};
427 for (const auto &cpuList : gPolicyCpus) ret.policy.emplace_back(cpuList.size(), 0);
428 std::vector<concurrent_val_t> vals(gNCpus);
429 for (uint32_t i = 0; i <= (gNCpus - 1) / CPUS_PER_ENTRY; ++i) {
430 const time_key_t key = {.uid = uid, .bucket = i};
431 if (findMapEntry(gConcurrentMapFd, &key, vals.data())) {
432 time_key_t tmpKey;
433 if (errno != ENOENT || getFirstMapKey(gConcurrentMapFd, &tmpKey)) return {};
434 continue;
435 }
436 auto offset = key.bucket * CPUS_PER_ENTRY;
437 auto nextOffset = (key.bucket + 1) * CPUS_PER_ENTRY;
438
439 auto activeBegin = ret.active.begin() + offset;
440 auto activeEnd = nextOffset < gNCpus ? activeBegin + CPUS_PER_ENTRY : ret.active.end();
441
442 for (uint32_t cpu = 0; cpu < gNCpus; ++cpu) {
443 std::transform(activeBegin, activeEnd, std::begin(vals[cpu].active), activeBegin,
444 std::plus<uint64_t>());
445 }
446
447 for (uint32_t policy = 0; policy < gNPolicies; ++policy) {
448 if (offset >= gPolicyCpus[policy].size()) continue;
449 auto policyBegin = ret.policy[policy].begin() + offset;
450 auto policyEnd = nextOffset < gPolicyCpus[policy].size() ? policyBegin + CPUS_PER_ENTRY
451 : ret.policy[policy].end();
452
453 for (const auto &cpu : gPolicyCpus[policy]) {
454 std::transform(policyBegin, policyEnd, std::begin(vals[gCpuIndexMap[cpu]].policy),
455 policyBegin, std::plus<uint64_t>());
456 }
457 }
458 }
459 if (!verifyConcurrentTimes(ret) && retry) return getUidConcurrentTimes(uid, false);
460 return ret;
461 }
462
463 // Retrieve the times in ns that each uid spent running concurrently with each possible number of
464 // other tasks on each cluster (policy times) and overall (active times).
465 // Return contains no value on error, otherwise it contains a map from uids to concurrent_time_t's
466 // using the format:
467 // { uid0 -> {.active = [a0, a1, ...], .policy = [[p0_0, p0_1, ...], [p1_0, p1_1, ...], ...] }, ...}
468 // where ai is the ns spent running concurrently with tasks on i other cpus and pi_j is the ns spent
469 // running on the ith cluster, concurrently with tasks on j other cpus in the same cluster.
getUidsConcurrentTimes()470 std::optional<std::unordered_map<uint32_t, concurrent_time_t>> getUidsConcurrentTimes() {
471 return getUidsUpdatedConcurrentTimes(nullptr);
472 }
473
474 // Retrieve the times in ns that each uid spent running concurrently with each possible number of
475 // other tasks on each cluster (policy times) and overall (active times), excluding UIDs that have
476 // not run since before lastUpdate.
477 // Return format is the same as getUidsConcurrentTimes()
getUidsUpdatedConcurrentTimes(uint64_t * lastUpdate)478 std::optional<std::unordered_map<uint32_t, concurrent_time_t>> getUidsUpdatedConcurrentTimes(
479 uint64_t *lastUpdate) {
480 if (!gInitialized && !initGlobals()) return {};
481 time_key_t key, prevKey;
482 std::unordered_map<uint32_t, concurrent_time_t> ret;
483 if (getFirstMapKey(gConcurrentMapFd, &key)) {
484 if (errno == ENOENT) return ret;
485 return {};
486 }
487
488 concurrent_time_t retFormat = {.active = std::vector<uint64_t>(gNCpus, 0)};
489 for (const auto &cpuList : gPolicyCpus) retFormat.policy.emplace_back(cpuList.size(), 0);
490
491 std::vector<concurrent_val_t> vals(gNCpus);
492 std::vector<uint64_t>::iterator activeBegin, activeEnd, policyBegin, policyEnd;
493
494 uint64_t newLastUpdate = lastUpdate ? *lastUpdate : 0;
495 do {
496 if (key.bucket > (gNCpus - 1) / CPUS_PER_ENTRY) return {};
497 if (lastUpdate) {
498 auto uidUpdated = uidUpdatedSince(key.uid, *lastUpdate, &newLastUpdate);
499 if (!uidUpdated.has_value()) return {};
500 if (!*uidUpdated) continue;
501 }
502 if (findMapEntry(gConcurrentMapFd, &key, vals.data())) return {};
503 if (ret.find(key.uid) == ret.end()) ret.emplace(key.uid, retFormat);
504
505 auto offset = key.bucket * CPUS_PER_ENTRY;
506 auto nextOffset = (key.bucket + 1) * CPUS_PER_ENTRY;
507
508 activeBegin = ret[key.uid].active.begin();
509 activeEnd = nextOffset < gNCpus ? activeBegin + CPUS_PER_ENTRY : ret[key.uid].active.end();
510
511 for (uint32_t cpu = 0; cpu < gNCpus; ++cpu) {
512 std::transform(activeBegin, activeEnd, std::begin(vals[cpu].active), activeBegin,
513 std::plus<uint64_t>());
514 }
515
516 for (uint32_t policy = 0; policy < gNPolicies; ++policy) {
517 if (offset >= gPolicyCpus[policy].size()) continue;
518 policyBegin = ret[key.uid].policy[policy].begin() + offset;
519 policyEnd = nextOffset < gPolicyCpus[policy].size() ? policyBegin + CPUS_PER_ENTRY
520 : ret[key.uid].policy[policy].end();
521
522 for (const auto &cpu : gPolicyCpus[policy]) {
523 std::transform(policyBegin, policyEnd, std::begin(vals[gCpuIndexMap[cpu]].policy),
524 policyBegin, std::plus<uint64_t>());
525 }
526 }
527 } while (prevKey = key, !getNextMapKey(gConcurrentMapFd, &prevKey, &key));
528 if (errno != ENOENT) return {};
529 for (const auto &[key, value] : ret) {
530 if (!verifyConcurrentTimes(value)) {
531 auto val = getUidConcurrentTimes(key, false);
532 if (val.has_value()) ret[key] = val.value();
533 }
534 }
535 if (lastUpdate && newLastUpdate > *lastUpdate) *lastUpdate = newLastUpdate;
536 return ret;
537 }
538
539 // Clear all time in state data for a given uid. Returns false on error, true otherwise.
540 // This is only suitable for clearing data when an app is uninstalled; if called on a UID with
541 // running tasks it will cause time in state vs. concurrent time totals to be inconsistent for that
542 // UID.
clearUidTimes(uint32_t uid)543 bool clearUidTimes(uint32_t uid) {
544 if (!gInitialized && !initGlobals()) return false;
545
546 time_key_t key = {.uid = uid};
547
548 uint32_t maxFreqCount = 0;
549 for (const auto &freqList : gPolicyFreqs) {
550 if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size();
551 }
552
553 tis_val_t zeros = {0};
554 std::vector<tis_val_t> vals(gNCpus, zeros);
555 for (key.bucket = 0; key.bucket <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++key.bucket) {
556 if (writeToMapEntry(gTisMapFd, &key, vals.data(), BPF_EXIST) && errno != ENOENT)
557 return false;
558 if (deleteMapEntry(gTisMapFd, &key) && errno != ENOENT) return false;
559 }
560
561 concurrent_val_t czeros = { .active = {0}, .policy = {0}, };
562 std::vector<concurrent_val_t> cvals(gNCpus, czeros);
563 for (key.bucket = 0; key.bucket <= (gNCpus - 1) / CPUS_PER_ENTRY; ++key.bucket) {
564 if (writeToMapEntry(gConcurrentMapFd, &key, cvals.data(), BPF_EXIST) && errno != ENOENT)
565 return false;
566 if (deleteMapEntry(gConcurrentMapFd, &key) && errno != ENOENT) return false;
567 }
568
569 if (deleteMapEntry(gUidLastUpdateMapFd, &uid) && errno != ENOENT) return false;
570 return true;
571 }
572
startTrackingProcessCpuTimes(pid_t pid)573 bool startTrackingProcessCpuTimes(pid_t pid) {
574 if (!gInitialized && !initGlobals()) return false;
575
576 unique_fd trackedPidHashMapFd(
577 mapRetrieveWO(BPF_FS_PATH "map_timeInState_pid_tracked_hash_map"));
578 if (trackedPidHashMapFd < 0) return false;
579
580 unique_fd trackedPidMapFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_pid_tracked_map"));
581 if (trackedPidMapFd < 0) return false;
582
583 for (uint32_t index = 0; index < MAX_TRACKED_PIDS; index++) {
584 // Find first available [index, pid] entry in the pid_tracked_hash_map map
585 if (writeToMapEntry(trackedPidHashMapFd, &index, &pid, BPF_NOEXIST) != 0) {
586 if (errno != EEXIST) {
587 return false;
588 }
589 continue; // This index is already taken
590 }
591
592 tracked_pid_t tracked_pid = {.pid = pid, .state = TRACKED_PID_STATE_ACTIVE};
593 if (writeToMapEntry(trackedPidMapFd, &index, &tracked_pid, BPF_ANY) != 0) {
594 return false;
595 }
596 return true;
597 }
598 return false;
599 }
600
601 // Marks the specified task identified by its PID (aka TID) for CPU time-in-state tracking
602 // aggregated with other tasks sharing the same TGID and aggregation key.
startAggregatingTaskCpuTimes(pid_t pid,uint16_t aggregationKey)603 bool startAggregatingTaskCpuTimes(pid_t pid, uint16_t aggregationKey) {
604 if (!gInitialized && !initGlobals()) return false;
605
606 unique_fd taskAggregationMapFd(
607 mapRetrieveWO(BPF_FS_PATH "map_timeInState_pid_task_aggregation_map"));
608 if (taskAggregationMapFd < 0) return false;
609
610 return writeToMapEntry(taskAggregationMapFd, &pid, &aggregationKey, BPF_ANY) == 0;
611 }
612
613 // Retrieves the times in ns that each thread spent running at each CPU freq, aggregated by
614 // aggregation key.
615 // Return contains no value on error, otherwise it contains a map from aggregation keys
616 // to vectors of vectors using the format:
617 // { aggKey0 -> [[t0_0_0, t0_0_1, ...], [t0_1_0, t0_1_1, ...], ...],
618 // aggKey1 -> [[t1_0_0, t1_0_1, ...], [t1_1_0, t1_1_1, ...], ...], ... }
619 // where ti_j_k is the ns tid i spent running on the jth cluster at the cluster's kth lowest freq.
620 std::optional<std::unordered_map<uint16_t, std::vector<std::vector<uint64_t>>>>
getAggregatedTaskCpuFreqTimes(pid_t tgid,const std::vector<uint16_t> & aggregationKeys)621 getAggregatedTaskCpuFreqTimes(pid_t tgid, const std::vector<uint16_t> &aggregationKeys) {
622 if (!gInitialized && !initGlobals()) return {};
623
624 uint32_t maxFreqCount = 0;
625 std::vector<std::vector<uint64_t>> mapFormat;
626 for (const auto &freqList : gPolicyFreqs) {
627 if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size();
628 mapFormat.emplace_back(freqList.size(), 0);
629 }
630
631 bool dataCollected = false;
632 std::unordered_map<uint16_t, std::vector<std::vector<uint64_t>>> map;
633 std::vector<tis_val_t> vals(gNCpus);
634 for (uint16_t aggregationKey : aggregationKeys) {
635 map.emplace(aggregationKey, mapFormat);
636
637 aggregated_task_tis_key_t key{.tgid = tgid, .aggregation_key = aggregationKey};
638 for (key.bucket = 0; key.bucket <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++key.bucket) {
639 if (findMapEntry(gPidTisMapFd, &key, vals.data()) != 0) {
640 if (errno != ENOENT) {
641 return {};
642 }
643 continue;
644 } else {
645 dataCollected = true;
646 }
647
648 // Combine data by aggregating time-in-state data grouped by CPU cluster aka policy.
649 uint32_t offset = key.bucket * FREQS_PER_ENTRY;
650 uint32_t nextOffset = offset + FREQS_PER_ENTRY;
651 for (uint32_t j = 0; j < gNPolicies; ++j) {
652 if (offset >= gPolicyFreqs[j].size()) continue;
653 auto begin = map[key.aggregation_key][j].begin() + offset;
654 auto end = nextOffset < gPolicyFreqs[j].size() ? begin + FREQS_PER_ENTRY
655 : map[key.aggregation_key][j].end();
656 for (const auto &cpu : gPolicyCpus[j]) {
657 std::transform(begin, end, std::begin(vals[gCpuIndexMap[cpu]].ar), begin,
658 std::plus<uint64_t>());
659 }
660 }
661 }
662 }
663
664 if (!dataCollected) {
665 // Check if eBPF is supported on this device. If it is, gTisMap should not be empty.
666 time_key_t key;
667 if (getFirstMapKey(gTisMapFd, &key) != 0) {
668 return {};
669 }
670 }
671 return map;
672 }
673
674 } // namespace bpf
675 } // namespace android
676