1 /*
2 * Copyright 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include <DisplayHardware/Hal.h>
17 #include <android-base/stringprintf.h>
18 #include <compositionengine/DisplayColorProfile.h>
19 #include <compositionengine/LayerFECompositionState.h>
20 #include <compositionengine/Output.h>
21 #include <compositionengine/impl/HwcBufferCache.h>
22 #include <compositionengine/impl/OutputCompositionState.h>
23 #include <compositionengine/impl/OutputLayer.h>
24 #include <compositionengine/impl/OutputLayerCompositionState.h>
25 #include <cstdint>
26 #include "system/graphics-base-v1.0.h"
27
28 #include <ui/HdrRenderTypeUtils.h>
29
30 // TODO(b/129481165): remove the #pragma below and fix conversion issues
31 #pragma clang diagnostic push
32 #pragma clang diagnostic ignored "-Wconversion"
33
34 #include "DisplayHardware/HWComposer.h"
35
36 // TODO(b/129481165): remove the #pragma below and fix conversion issues
37 #pragma clang diagnostic pop // ignored "-Wconversion"
38
39 using aidl::android::hardware::graphics::composer3::Composition;
40
41 namespace android::compositionengine {
42
43 OutputLayer::~OutputLayer() = default;
44
45 namespace impl {
46
47 namespace {
48
reduce(const FloatRect & win,const Region & exclude)49 FloatRect reduce(const FloatRect& win, const Region& exclude) {
50 if (CC_LIKELY(exclude.isEmpty())) {
51 return win;
52 }
53 // Convert through Rect (by rounding) for lack of FloatRegion
54 return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect();
55 }
56
57 } // namespace
58
createOutputLayer(const compositionengine::Output & output,const sp<compositionengine::LayerFE> & layerFE)59 std::unique_ptr<OutputLayer> createOutputLayer(const compositionengine::Output& output,
60 const sp<compositionengine::LayerFE>& layerFE) {
61 return createOutputLayerTemplated<OutputLayer>(output, layerFE);
62 }
63
64 OutputLayer::~OutputLayer() = default;
65
setHwcLayer(std::shared_ptr<HWC2::Layer> hwcLayer)66 void OutputLayer::setHwcLayer(std::shared_ptr<HWC2::Layer> hwcLayer) {
67 auto& state = editState();
68 if (hwcLayer) {
69 state.hwc.emplace(std::move(hwcLayer));
70 } else {
71 state.hwc.reset();
72 }
73 }
74
calculateInitialCrop() const75 Rect OutputLayer::calculateInitialCrop() const {
76 const auto& layerState = *getLayerFE().getCompositionState();
77
78 // apply the projection's clipping to the window crop in
79 // layerstack space, and convert-back to layer space.
80 // if there are no window scaling involved, this operation will map to full
81 // pixels in the buffer.
82
83 FloatRect activeCropFloat =
84 reduce(layerState.geomLayerBounds, layerState.transparentRegionHint);
85
86 const Rect& viewport = getOutput().getState().layerStackSpace.getContent();
87 const ui::Transform& layerTransform = layerState.geomLayerTransform;
88 const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform;
89 // Transform to screen space.
90 activeCropFloat = layerTransform.transform(activeCropFloat);
91 activeCropFloat = activeCropFloat.intersect(viewport.toFloatRect());
92 // Back to layer space to work with the content crop.
93 activeCropFloat = inverseLayerTransform.transform(activeCropFloat);
94
95 // This needs to be here as transform.transform(Rect) computes the
96 // transformed rect and then takes the bounding box of the result before
97 // returning. This means
98 // transform.inverse().transform(transform.transform(Rect)) != Rect
99 // in which case we need to make sure the final rect is clipped to the
100 // display bounds.
101 Rect activeCrop{activeCropFloat};
102 if (!activeCrop.intersect(layerState.geomBufferSize, &activeCrop)) {
103 activeCrop.clear();
104 }
105 return activeCrop;
106 }
107
calculateOutputSourceCrop(uint32_t internalDisplayRotationFlags) const108 FloatRect OutputLayer::calculateOutputSourceCrop(uint32_t internalDisplayRotationFlags) const {
109 const auto& layerState = *getLayerFE().getCompositionState();
110
111 if (!layerState.geomUsesSourceCrop) {
112 return {};
113 }
114
115 // the content crop is the area of the content that gets scaled to the
116 // layer's size. This is in buffer space.
117 FloatRect crop = layerState.geomContentCrop.toFloatRect();
118
119 // In addition there is a WM-specified crop we pull from our drawing state.
120 Rect activeCrop = calculateInitialCrop();
121 const Rect& bufferSize = layerState.geomBufferSize;
122
123 int winWidth = bufferSize.getWidth();
124 int winHeight = bufferSize.getHeight();
125
126 // The bufferSize for buffer state layers can be unbounded ([0, 0, -1, -1])
127 // if display frame hasn't been set and the parent is an unbounded layer.
128 if (winWidth < 0 && winHeight < 0) {
129 return crop;
130 }
131
132 // Transform the window crop to match the buffer coordinate system,
133 // which means using the inverse of the current transform set on the
134 // SurfaceFlingerConsumer.
135 uint32_t invTransform = layerState.geomBufferTransform;
136 if (layerState.geomBufferUsesDisplayInverseTransform) {
137 /*
138 * the code below applies the primary display's inverse transform to the
139 * buffer
140 */
141 uint32_t invTransformOrient = internalDisplayRotationFlags;
142 // calculate the inverse transform
143 if (invTransformOrient & HAL_TRANSFORM_ROT_90) {
144 invTransformOrient ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
145 }
146 // and apply to the current transform
147 invTransform =
148 (ui::Transform(invTransformOrient) * ui::Transform(invTransform)).getOrientation();
149 }
150
151 if (invTransform & HAL_TRANSFORM_ROT_90) {
152 // If the activeCrop has been rotate the ends are rotated but not
153 // the space itself so when transforming ends back we can't rely on
154 // a modification of the axes of rotation. To account for this we
155 // need to reorient the inverse rotation in terms of the current
156 // axes of rotation.
157 bool isHFlipped = (invTransform & HAL_TRANSFORM_FLIP_H) != 0;
158 bool isVFlipped = (invTransform & HAL_TRANSFORM_FLIP_V) != 0;
159 if (isHFlipped == isVFlipped) {
160 invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
161 }
162 std::swap(winWidth, winHeight);
163 }
164 const Rect winCrop =
165 activeCrop.transform(invTransform, bufferSize.getWidth(), bufferSize.getHeight());
166
167 // below, crop is intersected with winCrop expressed in crop's coordinate space
168 const float xScale = crop.getWidth() / float(winWidth);
169 const float yScale = crop.getHeight() / float(winHeight);
170
171 const float insetLeft = winCrop.left * xScale;
172 const float insetTop = winCrop.top * yScale;
173 const float insetRight = (winWidth - winCrop.right) * xScale;
174 const float insetBottom = (winHeight - winCrop.bottom) * yScale;
175
176 crop.left += insetLeft;
177 crop.top += insetTop;
178 crop.right -= insetRight;
179 crop.bottom -= insetBottom;
180
181 return crop;
182 }
183
calculateOutputDisplayFrame() const184 Rect OutputLayer::calculateOutputDisplayFrame() const {
185 const auto& layerState = *getLayerFE().getCompositionState();
186 const auto& outputState = getOutput().getState();
187
188 // apply the layer's transform, followed by the display's global transform
189 // here we're guaranteed that the layer's transform preserves rects
190 Region activeTransparentRegion = layerState.transparentRegionHint;
191 const ui::Transform& layerTransform = layerState.geomLayerTransform;
192 const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform;
193 const Rect& bufferSize = layerState.geomBufferSize;
194 Rect activeCrop = layerState.geomCrop;
195 if (!activeCrop.isEmpty() && bufferSize.isValid()) {
196 activeCrop = layerTransform.transform(activeCrop);
197 if (!activeCrop.intersect(outputState.layerStackSpace.getContent(), &activeCrop)) {
198 activeCrop.clear();
199 }
200 activeCrop = inverseLayerTransform.transform(activeCrop, true);
201 // This needs to be here as transform.transform(Rect) computes the
202 // transformed rect and then takes the bounding box of the result before
203 // returning. This means
204 // transform.inverse().transform(transform.transform(Rect)) != Rect
205 // in which case we need to make sure the final rect is clipped to the
206 // display bounds.
207 if (!activeCrop.intersect(bufferSize, &activeCrop)) {
208 activeCrop.clear();
209 }
210 // mark regions outside the crop as transparent
211 activeTransparentRegion.orSelf(Rect(0, 0, bufferSize.getWidth(), activeCrop.top));
212 activeTransparentRegion.orSelf(
213 Rect(0, activeCrop.bottom, bufferSize.getWidth(), bufferSize.getHeight()));
214 activeTransparentRegion.orSelf(Rect(0, activeCrop.top, activeCrop.left, activeCrop.bottom));
215 activeTransparentRegion.orSelf(
216 Rect(activeCrop.right, activeCrop.top, bufferSize.getWidth(), activeCrop.bottom));
217 }
218
219 // reduce uses a FloatRect to provide more accuracy during the
220 // transformation. We then round upon constructing 'frame'.
221 FloatRect geomLayerBounds = layerState.geomLayerBounds;
222
223 // Some HWCs may clip client composited input to its displayFrame. Make sure
224 // that this does not cut off the shadow.
225 if (layerState.forceClientComposition && layerState.shadowSettings.length > 0.0f) {
226 const auto outset = layerState.shadowSettings.length;
227 geomLayerBounds.left -= outset;
228 geomLayerBounds.top -= outset;
229 geomLayerBounds.right += outset;
230 geomLayerBounds.bottom += outset;
231 }
232 Rect frame{layerTransform.transform(reduce(geomLayerBounds, activeTransparentRegion))};
233 if (!frame.intersect(outputState.layerStackSpace.getContent(), &frame)) {
234 frame.clear();
235 }
236 const ui::Transform displayTransform{outputState.transform};
237
238 return displayTransform.transform(frame);
239 }
240
calculateOutputRelativeBufferTransform(uint32_t internalDisplayRotationFlags) const241 uint32_t OutputLayer::calculateOutputRelativeBufferTransform(
242 uint32_t internalDisplayRotationFlags) const {
243 const auto& layerState = *getLayerFE().getCompositionState();
244 const auto& outputState = getOutput().getState();
245
246 /*
247 * Transformations are applied in this order:
248 * 1) buffer orientation/flip/mirror
249 * 2) state transformation (window manager)
250 * 3) layer orientation (screen orientation)
251 * (NOTE: the matrices are multiplied in reverse order)
252 */
253 const ui::Transform& layerTransform = layerState.geomLayerTransform;
254 const ui::Transform displayTransform{outputState.transform};
255 const ui::Transform bufferTransform{layerState.geomBufferTransform};
256 ui::Transform transform(displayTransform * layerTransform * bufferTransform);
257
258 if (layerState.geomBufferUsesDisplayInverseTransform) {
259 /*
260 * We must apply the internal display's inverse transform to the buffer
261 * transform, and not the one for the output this layer is on.
262 */
263 uint32_t invTransform = internalDisplayRotationFlags;
264
265 // calculate the inverse transform
266 if (invTransform & HAL_TRANSFORM_ROT_90) {
267 invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
268 }
269
270 /*
271 * Here we cancel out the orientation component of the WM transform.
272 * The scaling and translate components are already included in our bounds
273 * computation so it's enough to just omit it in the composition.
274 * See comment in BufferLayer::prepareClientLayer with ref to b/36727915 for why.
275 */
276 transform = ui::Transform(invTransform) * displayTransform * bufferTransform;
277 }
278
279 // this gives us only the "orientation" component of the transform
280 return transform.getOrientation();
281 }
282
updateCompositionState(bool includeGeometry,bool forceClientComposition,ui::Transform::RotationFlags internalDisplayRotationFlags)283 void OutputLayer::updateCompositionState(
284 bool includeGeometry, bool forceClientComposition,
285 ui::Transform::RotationFlags internalDisplayRotationFlags) {
286 const auto* layerFEState = getLayerFE().getCompositionState();
287 if (!layerFEState) {
288 return;
289 }
290
291 const auto& outputState = getOutput().getState();
292 const auto& profile = *getOutput().getDisplayColorProfile();
293 auto& state = editState();
294
295 if (includeGeometry) {
296 // Clear the forceClientComposition flag before it is set for any
297 // reason. Note that since it can be set by some checks below when
298 // updating the geometry state, we only clear it when updating the
299 // geometry since those conditions for forcing client composition won't
300 // go away otherwise.
301 state.forceClientComposition = false;
302
303 state.displayFrame = calculateOutputDisplayFrame();
304 state.sourceCrop = calculateOutputSourceCrop(internalDisplayRotationFlags);
305 state.bufferTransform = static_cast<Hwc2::Transform>(
306 calculateOutputRelativeBufferTransform(internalDisplayRotationFlags));
307
308 if ((layerFEState->isSecure && !outputState.isSecure) ||
309 (state.bufferTransform & ui::Transform::ROT_INVALID)) {
310 state.forceClientComposition = true;
311 }
312 }
313
314 auto pixelFormat = layerFEState->buffer ? std::make_optional(static_cast<ui::PixelFormat>(
315 layerFEState->buffer->getPixelFormat()))
316 : std::nullopt;
317
318 auto hdrRenderType =
319 getHdrRenderType(outputState.dataspace, pixelFormat, layerFEState->desiredHdrSdrRatio);
320
321 // Determine the output dependent dataspace for this layer. If it is
322 // colorspace agnostic, it just uses the dataspace chosen for the output to
323 // avoid the need for color conversion.
324 // For now, also respect the colorspace agnostic flag if we're drawing to HDR, to avoid drastic
325 // luminance shift. TODO(b/292162273): we should check if that's true though.
326 state.dataspace = layerFEState->isColorspaceAgnostic && hdrRenderType == HdrRenderType::SDR
327 ? outputState.dataspace
328 : layerFEState->dataspace;
329
330 // Override the dataspace transfer from 170M to sRGB if the device configuration requests this.
331 // We do this here instead of in buffer info so that dumpsys can still report layers that are
332 // using the 170M transfer. Also we only do this if the colorspace is not agnostic for the
333 // layer, in case the color profile uses a 170M transfer function.
334 if (outputState.treat170mAsSrgb && !layerFEState->isColorspaceAgnostic &&
335 (state.dataspace & HAL_DATASPACE_TRANSFER_MASK) == HAL_DATASPACE_TRANSFER_SMPTE_170M) {
336 state.dataspace = static_cast<ui::Dataspace>(
337 (state.dataspace & HAL_DATASPACE_STANDARD_MASK) |
338 (state.dataspace & HAL_DATASPACE_RANGE_MASK) | HAL_DATASPACE_TRANSFER_SRGB);
339 }
340
341 // re-get HdrRenderType after the dataspace gets changed.
342 hdrRenderType =
343 getHdrRenderType(state.dataspace, pixelFormat, layerFEState->desiredHdrSdrRatio);
344
345 // For hdr content, treat the white point as the display brightness - HDR content should not be
346 // boosted or dimmed.
347 // If the layer explicitly requests to disable dimming, then don't dim either.
348 if (hdrRenderType == HdrRenderType::GENERIC_HDR ||
349 getOutput().getState().displayBrightnessNits == getOutput().getState().sdrWhitePointNits ||
350 getOutput().getState().displayBrightnessNits == 0.f || !layerFEState->dimmingEnabled) {
351 state.dimmingRatio = 1.f;
352 state.whitePointNits = getOutput().getState().displayBrightnessNits;
353 } else {
354 float layerBrightnessNits = getOutput().getState().sdrWhitePointNits;
355 // RANGE_EXTENDED can "self-promote" to HDR, but is still rendered for a particular
356 // range that we may need to re-adjust to the current display conditions
357 if (hdrRenderType == HdrRenderType::DISPLAY_HDR) {
358 layerBrightnessNits *= layerFEState->currentHdrSdrRatio;
359 }
360 state.dimmingRatio =
361 std::clamp(layerBrightnessNits / getOutput().getState().displayBrightnessNits, 0.f,
362 1.f);
363 state.whitePointNits = layerBrightnessNits;
364 }
365
366 // These are evaluated every frame as they can potentially change at any
367 // time.
368 if (layerFEState->forceClientComposition || !profile.isDataspaceSupported(state.dataspace) ||
369 forceClientComposition) {
370 state.forceClientComposition = true;
371 }
372 }
373
writeStateToHWC(bool includeGeometry,bool skipLayer,uint32_t z,bool zIsOverridden,bool isPeekingThrough)374 void OutputLayer::writeStateToHWC(bool includeGeometry, bool skipLayer, uint32_t z,
375 bool zIsOverridden, bool isPeekingThrough) {
376 const auto& state = getState();
377 // Skip doing this if there is no HWC interface
378 if (!state.hwc) {
379 return;
380 }
381
382 auto& hwcLayer = (*state.hwc).hwcLayer;
383 if (!hwcLayer) {
384 ALOGE("[%s] failed to write composition state to HWC -- no hwcLayer for output %s",
385 getLayerFE().getDebugName(), getOutput().getName().c_str());
386 return;
387 }
388
389 const auto* outputIndependentState = getLayerFE().getCompositionState();
390 if (!outputIndependentState) {
391 return;
392 }
393
394 auto requestedCompositionType = outputIndependentState->compositionType;
395
396 if (requestedCompositionType == Composition::SOLID_COLOR && state.overrideInfo.buffer) {
397 requestedCompositionType = Composition::DEVICE;
398 }
399
400 // TODO(b/181172795): We now update geometry for all flattened layers. We should update it
401 // only when the geometry actually changes
402 const bool isOverridden =
403 state.overrideInfo.buffer != nullptr || isPeekingThrough || zIsOverridden;
404 const bool prevOverridden = state.hwc->stateOverridden;
405 if (isOverridden || prevOverridden || skipLayer || includeGeometry) {
406 writeOutputDependentGeometryStateToHWC(hwcLayer.get(), requestedCompositionType, z);
407 writeOutputIndependentGeometryStateToHWC(hwcLayer.get(), *outputIndependentState,
408 skipLayer);
409 }
410
411 writeOutputDependentPerFrameStateToHWC(hwcLayer.get());
412 writeOutputIndependentPerFrameStateToHWC(hwcLayer.get(), *outputIndependentState,
413 requestedCompositionType, skipLayer);
414
415 writeCompositionTypeToHWC(hwcLayer.get(), requestedCompositionType, isPeekingThrough,
416 skipLayer);
417
418 if (requestedCompositionType == Composition::SOLID_COLOR) {
419 writeSolidColorStateToHWC(hwcLayer.get(), *outputIndependentState);
420 }
421
422 editState().hwc->stateOverridden = isOverridden;
423 editState().hwc->layerSkipped = skipLayer;
424 }
425
writeOutputDependentGeometryStateToHWC(HWC2::Layer * hwcLayer,Composition requestedCompositionType,uint32_t z)426 void OutputLayer::writeOutputDependentGeometryStateToHWC(HWC2::Layer* hwcLayer,
427 Composition requestedCompositionType,
428 uint32_t z) {
429 const auto& outputDependentState = getState();
430
431 Rect displayFrame = outputDependentState.displayFrame;
432 FloatRect sourceCrop = outputDependentState.sourceCrop;
433
434 if (outputDependentState.overrideInfo.buffer != nullptr) {
435 displayFrame = outputDependentState.overrideInfo.displayFrame;
436 sourceCrop =
437 FloatRect(0.f, 0.f,
438 static_cast<float>(outputDependentState.overrideInfo.buffer->getBuffer()
439 ->getWidth()),
440 static_cast<float>(outputDependentState.overrideInfo.buffer->getBuffer()
441 ->getHeight()));
442 }
443
444 ALOGV("Writing display frame [%d, %d, %d, %d]", displayFrame.left, displayFrame.top,
445 displayFrame.right, displayFrame.bottom);
446
447 if (auto error = hwcLayer->setDisplayFrame(displayFrame); error != hal::Error::NONE) {
448 ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)",
449 getLayerFE().getDebugName(), displayFrame.left, displayFrame.top, displayFrame.right,
450 displayFrame.bottom, to_string(error).c_str(), static_cast<int32_t>(error));
451 }
452
453 if (auto error = hwcLayer->setSourceCrop(sourceCrop); error != hal::Error::NONE) {
454 ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: "
455 "%s (%d)",
456 getLayerFE().getDebugName(), sourceCrop.left, sourceCrop.top, sourceCrop.right,
457 sourceCrop.bottom, to_string(error).c_str(), static_cast<int32_t>(error));
458 }
459
460 if (auto error = hwcLayer->setZOrder(z); error != hal::Error::NONE) {
461 ALOGE("[%s] Failed to set Z %u: %s (%d)", getLayerFE().getDebugName(), z,
462 to_string(error).c_str(), static_cast<int32_t>(error));
463 }
464
465 // Solid-color layers and overridden buffers should always use an identity transform.
466 const auto bufferTransform = (requestedCompositionType != Composition::SOLID_COLOR &&
467 getState().overrideInfo.buffer == nullptr)
468 ? outputDependentState.bufferTransform
469 : static_cast<hal::Transform>(0);
470 if (auto error = hwcLayer->setTransform(static_cast<hal::Transform>(bufferTransform));
471 error != hal::Error::NONE) {
472 ALOGE("[%s] Failed to set transform %s: %s (%d)", getLayerFE().getDebugName(),
473 toString(outputDependentState.bufferTransform).c_str(), to_string(error).c_str(),
474 static_cast<int32_t>(error));
475 }
476 }
477
writeOutputIndependentGeometryStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState,bool skipLayer)478 void OutputLayer::writeOutputIndependentGeometryStateToHWC(
479 HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState,
480 bool skipLayer) {
481 // If there is a peekThroughLayer, then this layer has a hole in it. We need to use
482 // PREMULTIPLIED so it will peek through.
483 const auto& overrideInfo = getState().overrideInfo;
484 const auto blendMode = overrideInfo.buffer || overrideInfo.peekThroughLayer
485 ? hardware::graphics::composer::hal::BlendMode::PREMULTIPLIED
486 : outputIndependentState.blendMode;
487 if (auto error = hwcLayer->setBlendMode(blendMode); error != hal::Error::NONE) {
488 ALOGE("[%s] Failed to set blend mode %s: %s (%d)", getLayerFE().getDebugName(),
489 toString(blendMode).c_str(), to_string(error).c_str(), static_cast<int32_t>(error));
490 }
491
492 const float alpha = skipLayer
493 ? 0.0f
494 : (getState().overrideInfo.buffer ? 1.0f : outputIndependentState.alpha);
495 ALOGV("Writing alpha %f", alpha);
496
497 if (auto error = hwcLayer->setPlaneAlpha(alpha); error != hal::Error::NONE) {
498 ALOGE("[%s] Failed to set plane alpha %.3f: %s (%d)", getLayerFE().getDebugName(), alpha,
499 to_string(error).c_str(), static_cast<int32_t>(error));
500 }
501
502 for (const auto& [name, entry] : outputIndependentState.metadata) {
503 if (auto error = hwcLayer->setLayerGenericMetadata(name, entry.mandatory, entry.value);
504 error != hal::Error::NONE) {
505 ALOGE("[%s] Failed to set generic metadata %s %s (%d)", getLayerFE().getDebugName(),
506 name.c_str(), to_string(error).c_str(), static_cast<int32_t>(error));
507 }
508 }
509 }
510
writeOutputDependentPerFrameStateToHWC(HWC2::Layer * hwcLayer)511 void OutputLayer::writeOutputDependentPerFrameStateToHWC(HWC2::Layer* hwcLayer) {
512 const auto& outputDependentState = getState();
513
514 // TODO(lpique): b/121291683 outputSpaceVisibleRegion is output-dependent geometry
515 // state and should not change every frame.
516 Region visibleRegion = outputDependentState.overrideInfo.buffer
517 ? Region(outputDependentState.overrideInfo.visibleRegion)
518 : outputDependentState.outputSpaceVisibleRegion;
519 if (auto error = hwcLayer->setVisibleRegion(visibleRegion); error != hal::Error::NONE) {
520 ALOGE("[%s] Failed to set visible region: %s (%d)", getLayerFE().getDebugName(),
521 to_string(error).c_str(), static_cast<int32_t>(error));
522 visibleRegion.dump(LOG_TAG);
523 }
524
525 if (auto error =
526 hwcLayer->setBlockingRegion(outputDependentState.outputSpaceBlockingRegionHint);
527 error != hal::Error::NONE) {
528 ALOGE("[%s] Failed to set blocking region: %s (%d)", getLayerFE().getDebugName(),
529 to_string(error).c_str(), static_cast<int32_t>(error));
530 outputDependentState.outputSpaceBlockingRegionHint.dump(LOG_TAG);
531 }
532
533 const auto dataspace = outputDependentState.overrideInfo.buffer
534 ? outputDependentState.overrideInfo.dataspace
535 : outputDependentState.dataspace;
536
537 if (auto error = hwcLayer->setDataspace(dataspace); error != hal::Error::NONE) {
538 ALOGE("[%s] Failed to set dataspace %d: %s (%d)", getLayerFE().getDebugName(), dataspace,
539 to_string(error).c_str(), static_cast<int32_t>(error));
540 }
541
542 // Cached layers are not dimmed, which means that composer should attempt to dim.
543 // Note that if the dimming ratio is large, then this may cause the cached layer
544 // to kick back into GPU composition :(
545 // Also note that this assumes that there are no HDR layers that are able to be cached.
546 // Otherwise, this could cause HDR layers to be dimmed twice.
547 const auto dimmingRatio = outputDependentState.overrideInfo.buffer
548 ? (getOutput().getState().displayBrightnessNits != 0.f
549 ? std::clamp(getOutput().getState().sdrWhitePointNits /
550 getOutput().getState().displayBrightnessNits,
551 0.f, 1.f)
552 : 1.f)
553 : outputDependentState.dimmingRatio;
554
555 if (auto error = hwcLayer->setBrightness(dimmingRatio); error != hal::Error::NONE) {
556 ALOGE("[%s] Failed to set brightness %f: %s (%d)", getLayerFE().getDebugName(),
557 dimmingRatio, to_string(error).c_str(), static_cast<int32_t>(error));
558 }
559 }
560
writeOutputIndependentPerFrameStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState,Composition compositionType,bool skipLayer)561 void OutputLayer::writeOutputIndependentPerFrameStateToHWC(
562 HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState,
563 Composition compositionType, bool skipLayer) {
564 switch (auto error = hwcLayer->setColorTransform(outputIndependentState.colorTransform)) {
565 case hal::Error::NONE:
566 break;
567 case hal::Error::UNSUPPORTED:
568 editState().forceClientComposition = true;
569 break;
570 default:
571 ALOGE("[%s] Failed to set color transform: %s (%d)", getLayerFE().getDebugName(),
572 to_string(error).c_str(), static_cast<int32_t>(error));
573 }
574
575 const Region& surfaceDamage = getState().overrideInfo.buffer
576 ? getState().overrideInfo.damageRegion
577 : (getState().hwc->stateOverridden ? Region::INVALID_REGION
578 : outputIndependentState.surfaceDamage);
579
580 if (auto error = hwcLayer->setSurfaceDamage(surfaceDamage); error != hal::Error::NONE) {
581 ALOGE("[%s] Failed to set surface damage: %s (%d)", getLayerFE().getDebugName(),
582 to_string(error).c_str(), static_cast<int32_t>(error));
583 outputIndependentState.surfaceDamage.dump(LOG_TAG);
584 }
585
586 // Content-specific per-frame state
587 switch (compositionType) {
588 case Composition::SOLID_COLOR:
589 // For compatibility, should be written AFTER the composition type.
590 break;
591 case Composition::SIDEBAND:
592 writeSidebandStateToHWC(hwcLayer, outputIndependentState);
593 break;
594 case Composition::CURSOR:
595 case Composition::DEVICE:
596 case Composition::DISPLAY_DECORATION:
597 case Composition::REFRESH_RATE_INDICATOR:
598 writeBufferStateToHWC(hwcLayer, outputIndependentState, skipLayer);
599 break;
600 case Composition::INVALID:
601 case Composition::CLIENT:
602 // Ignored
603 break;
604 }
605 }
606
writeSolidColorStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState)607 void OutputLayer::writeSolidColorStateToHWC(HWC2::Layer* hwcLayer,
608 const LayerFECompositionState& outputIndependentState) {
609 aidl::android::hardware::graphics::composer3::Color color = {outputIndependentState.color.r,
610 outputIndependentState.color.g,
611 outputIndependentState.color.b,
612 1.0f};
613
614 if (auto error = hwcLayer->setColor(color); error != hal::Error::NONE) {
615 ALOGE("[%s] Failed to set color: %s (%d)", getLayerFE().getDebugName(),
616 to_string(error).c_str(), static_cast<int32_t>(error));
617 }
618 }
619
writeSidebandStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState)620 void OutputLayer::writeSidebandStateToHWC(HWC2::Layer* hwcLayer,
621 const LayerFECompositionState& outputIndependentState) {
622 if (auto error = hwcLayer->setSidebandStream(outputIndependentState.sidebandStream->handle());
623 error != hal::Error::NONE) {
624 ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", getLayerFE().getDebugName(),
625 outputIndependentState.sidebandStream->handle(), to_string(error).c_str(),
626 static_cast<int32_t>(error));
627 }
628 }
629
uncacheBuffers(const std::vector<uint64_t> & bufferIdsToUncache)630 void OutputLayer::uncacheBuffers(const std::vector<uint64_t>& bufferIdsToUncache) {
631 auto& state = editState();
632 // Skip doing this if there is no HWC interface
633 if (!state.hwc) {
634 return;
635 }
636
637 // Uncache the active buffer last so that it's the first buffer to be purged from the cache
638 // next time a buffer is sent to this layer.
639 bool uncacheActiveBuffer = false;
640
641 std::vector<uint32_t> slotsToClear;
642 for (uint64_t bufferId : bufferIdsToUncache) {
643 if (bufferId == state.hwc->activeBufferId) {
644 uncacheActiveBuffer = true;
645 } else {
646 uint32_t slot = state.hwc->hwcBufferCache.uncache(bufferId);
647 if (slot != UINT32_MAX) {
648 slotsToClear.push_back(slot);
649 }
650 }
651 }
652 if (uncacheActiveBuffer) {
653 slotsToClear.push_back(state.hwc->hwcBufferCache.uncache(state.hwc->activeBufferId));
654 }
655
656 hal::Error error =
657 state.hwc->hwcLayer->setBufferSlotsToClear(slotsToClear, state.hwc->activeBufferSlot);
658 if (error != hal::Error::NONE) {
659 ALOGE("[%s] Failed to clear buffer slots: %s (%d)", getLayerFE().getDebugName(),
660 to_string(error).c_str(), static_cast<int32_t>(error));
661 }
662 }
663
writeBufferStateToHWC(HWC2::Layer * hwcLayer,const LayerFECompositionState & outputIndependentState,bool skipLayer)664 void OutputLayer::writeBufferStateToHWC(HWC2::Layer* hwcLayer,
665 const LayerFECompositionState& outputIndependentState,
666 bool skipLayer) {
667 if (skipLayer && outputIndependentState.buffer == nullptr) {
668 return;
669 }
670 auto supportedPerFrameMetadata =
671 getOutput().getDisplayColorProfile()->getSupportedPerFrameMetadata();
672 if (auto error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata,
673 outputIndependentState.hdrMetadata);
674 error != hal::Error::NONE && error != hal::Error::UNSUPPORTED) {
675 ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", getLayerFE().getDebugName(),
676 to_string(error).c_str(), static_cast<int32_t>(error));
677 }
678
679 HwcSlotAndBuffer hwcSlotAndBuffer;
680 sp<Fence> hwcFence;
681 {
682 // Editing the state only because we update the HWC buffer cache and active buffer.
683 auto& state = editState();
684 // Override buffers use a special cache slot so that they don't evict client buffers.
685 if (state.overrideInfo.buffer != nullptr && !skipLayer) {
686 hwcSlotAndBuffer = state.hwc->hwcBufferCache.getOverrideHwcSlotAndBuffer(
687 state.overrideInfo.buffer->getBuffer());
688 hwcFence = state.overrideInfo.acquireFence;
689 // Keep track of the active buffer ID so when it's discarded we uncache it last so its
690 // slot will be used first, allowing the memory to be freed as soon as possible.
691 state.hwc->activeBufferId = state.overrideInfo.buffer->getBuffer()->getId();
692 } else {
693 hwcSlotAndBuffer =
694 state.hwc->hwcBufferCache.getHwcSlotAndBuffer(outputIndependentState.buffer);
695 hwcFence = outputIndependentState.acquireFence;
696 // Keep track of the active buffer ID so when it's discarded we uncache it last so its
697 // slot will be used first, allowing the memory to be freed as soon as possible.
698 state.hwc->activeBufferId = outputIndependentState.buffer->getId();
699 }
700 // Keep track of the active buffer slot, so we can restore it after clearing other buffer
701 // slots.
702 state.hwc->activeBufferSlot = hwcSlotAndBuffer.slot;
703 }
704
705 if (auto error = hwcLayer->setBuffer(hwcSlotAndBuffer.slot, hwcSlotAndBuffer.buffer, hwcFence);
706 error != hal::Error::NONE) {
707 ALOGE("[%s] Failed to set buffer %p: %s (%d)", getLayerFE().getDebugName(),
708 hwcSlotAndBuffer.buffer->handle, to_string(error).c_str(),
709 static_cast<int32_t>(error));
710 }
711 }
712
writeCompositionTypeToHWC(HWC2::Layer * hwcLayer,Composition requestedCompositionType,bool isPeekingThrough,bool skipLayer)713 void OutputLayer::writeCompositionTypeToHWC(HWC2::Layer* hwcLayer,
714 Composition requestedCompositionType,
715 bool isPeekingThrough, bool skipLayer) {
716 auto& outputDependentState = editState();
717
718 if (isClientCompositionForced(isPeekingThrough)) {
719 // If we are forcing client composition, we need to tell the HWC
720 requestedCompositionType = Composition::CLIENT;
721 }
722
723 // Set the requested composition type with the HWC whenever it changes
724 // We also resend the composition type when this layer was previously skipped, to ensure that
725 // the composition type is up-to-date.
726 if (outputDependentState.hwc->hwcCompositionType != requestedCompositionType ||
727 (outputDependentState.hwc->layerSkipped && !skipLayer)) {
728 outputDependentState.hwc->hwcCompositionType = requestedCompositionType;
729
730 if (auto error = hwcLayer->setCompositionType(requestedCompositionType);
731 error != hal::Error::NONE) {
732 ALOGE("[%s] Failed to set composition type %s: %s (%d)", getLayerFE().getDebugName(),
733 to_string(requestedCompositionType).c_str(), to_string(error).c_str(),
734 static_cast<int32_t>(error));
735 }
736 }
737 }
738
writeCursorPositionToHWC() const739 void OutputLayer::writeCursorPositionToHWC() const {
740 // Skip doing this if there is no HWC interface
741 auto hwcLayer = getHwcLayer();
742 if (!hwcLayer) {
743 return;
744 }
745
746 const auto* layerFEState = getLayerFE().getCompositionState();
747 if (!layerFEState) {
748 return;
749 }
750
751 const auto& outputState = getOutput().getState();
752
753 Rect frame = layerFEState->cursorFrame;
754 frame.intersect(outputState.layerStackSpace.getContent(), &frame);
755 Rect position = outputState.transform.transform(frame);
756
757 if (auto error = hwcLayer->setCursorPosition(position.left, position.top);
758 error != hal::Error::NONE) {
759 ALOGE("[%s] Failed to set cursor position to (%d, %d): %s (%d)",
760 getLayerFE().getDebugName(), position.left, position.top, to_string(error).c_str(),
761 static_cast<int32_t>(error));
762 }
763 }
764
getHwcLayer() const765 HWC2::Layer* OutputLayer::getHwcLayer() const {
766 const auto& state = getState();
767 return state.hwc ? state.hwc->hwcLayer.get() : nullptr;
768 }
769
requiresClientComposition() const770 bool OutputLayer::requiresClientComposition() const {
771 const auto& state = getState();
772 return !state.hwc || state.hwc->hwcCompositionType == Composition::CLIENT;
773 }
774
isHardwareCursor() const775 bool OutputLayer::isHardwareCursor() const {
776 const auto& state = getState();
777 return state.hwc && state.hwc->hwcCompositionType == Composition::CURSOR;
778 }
779
detectDisallowedCompositionTypeChange(Composition from,Composition to) const780 void OutputLayer::detectDisallowedCompositionTypeChange(Composition from, Composition to) const {
781 bool result = false;
782 switch (from) {
783 case Composition::INVALID:
784 case Composition::CLIENT:
785 result = false;
786 break;
787
788 case Composition::DEVICE:
789 case Composition::SOLID_COLOR:
790 result = (to == Composition::CLIENT);
791 break;
792
793 case Composition::CURSOR:
794 case Composition::SIDEBAND:
795 case Composition::DISPLAY_DECORATION:
796 case Composition::REFRESH_RATE_INDICATOR:
797 result = (to == Composition::CLIENT || to == Composition::DEVICE);
798 break;
799 }
800
801 if (!result) {
802 ALOGE("[%s] Invalid device requested composition type change: %s (%d) --> %s (%d)",
803 getLayerFE().getDebugName(), to_string(from).c_str(), static_cast<int>(from),
804 to_string(to).c_str(), static_cast<int>(to));
805 }
806 }
807
isClientCompositionForced(bool isPeekingThrough) const808 bool OutputLayer::isClientCompositionForced(bool isPeekingThrough) const {
809 return getState().forceClientComposition ||
810 (!isPeekingThrough && getLayerFE().hasRoundedCorners());
811 }
812
applyDeviceCompositionTypeChange(Composition compositionType)813 void OutputLayer::applyDeviceCompositionTypeChange(Composition compositionType) {
814 auto& state = editState();
815 LOG_FATAL_IF(!state.hwc);
816 auto& hwcState = *state.hwc;
817
818 // Only detected disallowed changes if this was not a skip layer, because the
819 // validated composition type may be arbitrary (usually DEVICE, to reflect that there were
820 // fewer GPU layers)
821 if (!hwcState.layerSkipped) {
822 detectDisallowedCompositionTypeChange(hwcState.hwcCompositionType, compositionType);
823 }
824
825 hwcState.hwcCompositionType = compositionType;
826 }
827
prepareForDeviceLayerRequests()828 void OutputLayer::prepareForDeviceLayerRequests() {
829 auto& state = editState();
830 state.clearClientTarget = false;
831 }
832
applyDeviceLayerRequest(hal::LayerRequest request)833 void OutputLayer::applyDeviceLayerRequest(hal::LayerRequest request) {
834 auto& state = editState();
835 switch (request) {
836 case hal::LayerRequest::CLEAR_CLIENT_TARGET:
837 state.clearClientTarget = true;
838 break;
839
840 default:
841 ALOGE("[%s] Unknown device layer request %s (%d)", getLayerFE().getDebugName(),
842 toString(request).c_str(), static_cast<int>(request));
843 break;
844 }
845 }
846
needsFiltering() const847 bool OutputLayer::needsFiltering() const {
848 const auto& state = getState();
849 const auto& sourceCrop = state.sourceCrop;
850 auto displayFrameWidth = static_cast<float>(state.displayFrame.getWidth());
851 auto displayFrameHeight = static_cast<float>(state.displayFrame.getHeight());
852
853 if (state.bufferTransform & HAL_TRANSFORM_ROT_90) {
854 std::swap(displayFrameWidth, displayFrameHeight);
855 }
856
857 return sourceCrop.getHeight() != displayFrameHeight ||
858 sourceCrop.getWidth() != displayFrameWidth;
859 }
860
getOverrideCompositionSettings() const861 std::optional<LayerFE::LayerSettings> OutputLayer::getOverrideCompositionSettings() const {
862 if (getState().overrideInfo.buffer == nullptr) {
863 return {};
864 }
865
866 // Compute the geometry boundaries in layer stack space: we need to transform from the
867 // framebuffer space of the override buffer to layer space.
868 const ProjectionSpace& layerSpace = getOutput().getState().layerStackSpace;
869 const ui::Transform transform = getState().overrideInfo.displaySpace.getTransform(layerSpace);
870 const Rect boundaries = transform.transform(getState().overrideInfo.displayFrame);
871
872 LayerFE::LayerSettings settings;
873 settings.geometry = renderengine::Geometry{
874 .boundaries = boundaries.toFloatRect(),
875 };
876 settings.bufferId = getState().overrideInfo.buffer->getBuffer()->getId();
877 settings.source = renderengine::PixelSource{
878 .buffer = renderengine::Buffer{
879 .buffer = getState().overrideInfo.buffer,
880 .fence = getState().overrideInfo.acquireFence,
881 // If the transform from layer space to display space contains a rotation, we
882 // need to undo the rotation in the texture transform
883 .textureTransform =
884 ui::Transform(transform.inverse().getOrientation(), 1, 1).asMatrix4(),
885 }};
886 settings.sourceDataspace = getState().overrideInfo.dataspace;
887 settings.alpha = 1.0f;
888 settings.whitePointNits = getOutput().getState().sdrWhitePointNits;
889
890 return settings;
891 }
892
dump(std::string & out) const893 void OutputLayer::dump(std::string& out) const {
894 using android::base::StringAppendF;
895
896 StringAppendF(&out, " - Output Layer %p(%s)\n", this, getLayerFE().getDebugName());
897 dumpState(out);
898 }
899
900 } // namespace impl
901 } // namespace android::compositionengine
902