1 /*
2 * Copyright 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // TODO(b/129481165): remove the #pragma below and fix conversion issues
18 #pragma clang diagnostic push
19 #pragma clang diagnostic ignored "-Wextra"
20
21 #undef LOG_TAG
22 #define LOG_TAG "VSyncPredictor"
23
24 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
25
26 #include <algorithm>
27 #include <chrono>
28 #include <sstream>
29
30 #include <android-base/logging.h>
31 #include <android-base/stringprintf.h>
32 #include <common/FlagManager.h>
33 #include <cutils/compiler.h>
34 #include <cutils/properties.h>
35 #include <ftl/concat.h>
36 #include <gui/TraceUtils.h>
37 #include <utils/Log.h>
38
39 #include "RefreshRateSelector.h"
40 #include "VSyncPredictor.h"
41
42 namespace android::scheduler {
43
44 using base::StringAppendF;
45
46 static auto constexpr kMaxPercent = 100u;
47
48 namespace {
numVsyncsPerFrame(const ftl::NonNull<DisplayModePtr> & displayModePtr)49 int numVsyncsPerFrame(const ftl::NonNull<DisplayModePtr>& displayModePtr) {
50 const auto idealPeakRefreshPeriod = displayModePtr->getPeakFps().getPeriodNsecs();
51 const auto idealRefreshPeriod = displayModePtr->getVsyncRate().getPeriodNsecs();
52 return static_cast<int>(std::round(static_cast<float>(idealPeakRefreshPeriod) /
53 static_cast<float>(idealRefreshPeriod)));
54 }
55 } // namespace
56
57 VSyncPredictor::~VSyncPredictor() = default;
58
VSyncPredictor(std::unique_ptr<Clock> clock,ftl::NonNull<DisplayModePtr> modePtr,size_t historySize,size_t minimumSamplesForPrediction,uint32_t outlierTolerancePercent)59 VSyncPredictor::VSyncPredictor(std::unique_ptr<Clock> clock, ftl::NonNull<DisplayModePtr> modePtr,
60 size_t historySize, size_t minimumSamplesForPrediction,
61 uint32_t outlierTolerancePercent)
62 : mClock(std::move(clock)),
63 mId(modePtr->getPhysicalDisplayId()),
64 mTraceOn(property_get_bool("debug.sf.vsp_trace", false)),
65 kHistorySize(historySize),
66 kMinimumSamplesForPrediction(minimumSamplesForPrediction),
67 kOutlierTolerancePercent(std::min(outlierTolerancePercent, kMaxPercent)),
68 mDisplayModePtr(modePtr),
69 mNumVsyncsForFrame(numVsyncsPerFrame(mDisplayModePtr)) {
70 resetModel();
71 }
72
traceInt64If(const char * name,int64_t value) const73 inline void VSyncPredictor::traceInt64If(const char* name, int64_t value) const {
74 if (CC_UNLIKELY(mTraceOn)) {
75 traceInt64(name, value);
76 }
77 }
78
traceInt64(const char * name,int64_t value) const79 inline void VSyncPredictor::traceInt64(const char* name, int64_t value) const {
80 ATRACE_INT64(ftl::Concat(ftl::truncated<14>(name), " ", mId.value).c_str(), value);
81 }
82
next(size_t i) const83 inline size_t VSyncPredictor::next(size_t i) const {
84 return (i + 1) % mTimestamps.size();
85 }
86
idealPeriod() const87 nsecs_t VSyncPredictor::idealPeriod() const {
88 return mDisplayModePtr->getVsyncRate().getPeriodNsecs();
89 }
90
validate(nsecs_t timestamp) const91 bool VSyncPredictor::validate(nsecs_t timestamp) const {
92 if (mLastTimestampIndex < 0 || mTimestamps.empty()) {
93 return true;
94 }
95
96 const auto aValidTimestamp = mTimestamps[mLastTimestampIndex];
97 const auto percent =
98 (timestamp - aValidTimestamp) % idealPeriod() * kMaxPercent / idealPeriod();
99 if (percent >= kOutlierTolerancePercent &&
100 percent <= (kMaxPercent - kOutlierTolerancePercent)) {
101 ATRACE_FORMAT_INSTANT("timestamp is not aligned with model");
102 return false;
103 }
104
105 const auto iter = std::min_element(mTimestamps.begin(), mTimestamps.end(),
106 [timestamp](nsecs_t a, nsecs_t b) {
107 return std::abs(timestamp - a) < std::abs(timestamp - b);
108 });
109 const auto distancePercent = std::abs(*iter - timestamp) * kMaxPercent / idealPeriod();
110 if (distancePercent < kOutlierTolerancePercent) {
111 // duplicate timestamp
112 ATRACE_FORMAT_INSTANT("duplicate timestamp");
113 return false;
114 }
115 return true;
116 }
117
currentPeriod() const118 nsecs_t VSyncPredictor::currentPeriod() const {
119 std::lock_guard lock(mMutex);
120 return mRateMap.find(idealPeriod())->second.slope;
121 }
122
minFramePeriod() const123 Period VSyncPredictor::minFramePeriod() const {
124 if (!FlagManager::getInstance().vrr_config()) {
125 return Period::fromNs(currentPeriod());
126 }
127
128 std::lock_guard lock(mMutex);
129 return minFramePeriodLocked();
130 }
131
minFramePeriodLocked() const132 Period VSyncPredictor::minFramePeriodLocked() const {
133 const auto slope = mRateMap.find(idealPeriod())->second.slope;
134 return Period::fromNs(slope * mNumVsyncsForFrame);
135 }
136
addVsyncTimestamp(nsecs_t timestamp)137 bool VSyncPredictor::addVsyncTimestamp(nsecs_t timestamp) {
138 ATRACE_CALL();
139
140 std::lock_guard lock(mMutex);
141
142 if (!validate(timestamp)) {
143 // VSR could elect to ignore the incongruent timestamp or resetModel(). If ts is ignored,
144 // don't insert this ts into mTimestamps ringbuffer. If we are still
145 // in the learning phase we should just clear all timestamps and start
146 // over.
147 if (mTimestamps.size() < kMinimumSamplesForPrediction) {
148 // Add the timestamp to mTimestamps before clearing it so we could
149 // update mKnownTimestamp based on the new timestamp.
150 mTimestamps.push_back(timestamp);
151 clearTimestamps();
152 } else if (!mTimestamps.empty()) {
153 mKnownTimestamp =
154 std::max(timestamp, *std::max_element(mTimestamps.begin(), mTimestamps.end()));
155 } else {
156 mKnownTimestamp = timestamp;
157 }
158 ATRACE_FORMAT_INSTANT("timestamp rejected. mKnownTimestamp was %.2fms ago",
159 (mClock->now() - *mKnownTimestamp) / 1e6f);
160 return false;
161 }
162
163 if (mTimestamps.size() != kHistorySize) {
164 mTimestamps.push_back(timestamp);
165 mLastTimestampIndex = next(mLastTimestampIndex);
166 } else {
167 mLastTimestampIndex = next(mLastTimestampIndex);
168 mTimestamps[mLastTimestampIndex] = timestamp;
169 }
170
171 traceInt64If("VSP-ts", timestamp);
172
173 const size_t numSamples = mTimestamps.size();
174 if (numSamples < kMinimumSamplesForPrediction) {
175 mRateMap[idealPeriod()] = {idealPeriod(), 0};
176 return true;
177 }
178
179 // This is a 'simple linear regression' calculation of Y over X, with Y being the
180 // vsync timestamps, and X being the ordinal of vsync count.
181 // The calculated slope is the vsync period.
182 // Formula for reference:
183 // Sigma_i: means sum over all timestamps.
184 // mean(variable): statistical mean of variable.
185 // X: snapped ordinal of the timestamp
186 // Y: vsync timestamp
187 //
188 // Sigma_i( (X_i - mean(X)) * (Y_i - mean(Y) )
189 // slope = -------------------------------------------
190 // Sigma_i ( X_i - mean(X) ) ^ 2
191 //
192 // intercept = mean(Y) - slope * mean(X)
193 //
194 std::vector<nsecs_t> vsyncTS(numSamples);
195 std::vector<nsecs_t> ordinals(numSamples);
196
197 // Normalizing to the oldest timestamp cuts down on error in calculating the intercept.
198 const auto oldestTS = *std::min_element(mTimestamps.begin(), mTimestamps.end());
199 auto it = mRateMap.find(idealPeriod());
200 auto const currentPeriod = it->second.slope;
201
202 // The mean of the ordinals must be precise for the intercept calculation, so scale them up for
203 // fixed-point arithmetic.
204 constexpr int64_t kScalingFactor = 1000;
205
206 nsecs_t meanTS = 0;
207 nsecs_t meanOrdinal = 0;
208
209 for (size_t i = 0; i < numSamples; i++) {
210 const auto timestamp = mTimestamps[i] - oldestTS;
211 vsyncTS[i] = timestamp;
212 meanTS += timestamp;
213
214 const auto ordinal = currentPeriod == 0
215 ? 0
216 : (vsyncTS[i] + currentPeriod / 2) / currentPeriod * kScalingFactor;
217 ordinals[i] = ordinal;
218 meanOrdinal += ordinal;
219 }
220
221 meanTS /= numSamples;
222 meanOrdinal /= numSamples;
223
224 for (size_t i = 0; i < numSamples; i++) {
225 vsyncTS[i] -= meanTS;
226 ordinals[i] -= meanOrdinal;
227 }
228
229 nsecs_t top = 0;
230 nsecs_t bottom = 0;
231 for (size_t i = 0; i < numSamples; i++) {
232 top += vsyncTS[i] * ordinals[i];
233 bottom += ordinals[i] * ordinals[i];
234 }
235
236 if (CC_UNLIKELY(bottom == 0)) {
237 it->second = {idealPeriod(), 0};
238 clearTimestamps();
239 return false;
240 }
241
242 nsecs_t const anticipatedPeriod = top * kScalingFactor / bottom;
243 nsecs_t const intercept = meanTS - (anticipatedPeriod * meanOrdinal / kScalingFactor);
244
245 auto const percent = std::abs(anticipatedPeriod - idealPeriod()) * kMaxPercent / idealPeriod();
246 if (percent >= kOutlierTolerancePercent) {
247 it->second = {idealPeriod(), 0};
248 clearTimestamps();
249 return false;
250 }
251
252 traceInt64If("VSP-period", anticipatedPeriod);
253 traceInt64If("VSP-intercept", intercept);
254
255 it->second = {anticipatedPeriod, intercept};
256
257 ALOGV("model update ts %" PRIu64 ": %" PRId64 " slope: %" PRId64 " intercept: %" PRId64,
258 mId.value, timestamp, anticipatedPeriod, intercept);
259 return true;
260 }
261
snapToVsync(nsecs_t timePoint) const262 nsecs_t VSyncPredictor::snapToVsync(nsecs_t timePoint) const {
263 auto const [slope, intercept] = getVSyncPredictionModelLocked();
264
265 if (mTimestamps.empty()) {
266 traceInt64("VSP-mode", 1);
267 auto const knownTimestamp = mKnownTimestamp ? *mKnownTimestamp : timePoint;
268 auto const numPeriodsOut = ((timePoint - knownTimestamp) / idealPeriod()) + 1;
269 return knownTimestamp + numPeriodsOut * idealPeriod();
270 }
271
272 auto const oldest = *std::min_element(mTimestamps.begin(), mTimestamps.end());
273
274 // See b/145667109, the ordinal calculation must take into account the intercept.
275 auto const zeroPoint = oldest + intercept;
276 auto const ordinalRequest = (timePoint - zeroPoint + slope) / slope;
277 auto const prediction = (ordinalRequest * slope) + intercept + oldest;
278
279 traceInt64("VSP-mode", 0);
280 traceInt64If("VSP-timePoint", timePoint);
281 traceInt64If("VSP-prediction", prediction);
282
283 auto const printer = [&, slope = slope, intercept = intercept] {
284 std::stringstream str;
285 str << "prediction made from: " << timePoint << "prediction: " << prediction << " (+"
286 << prediction - timePoint << ") slope: " << slope << " intercept: " << intercept
287 << "oldestTS: " << oldest << " ordinal: " << ordinalRequest;
288 return str.str();
289 };
290
291 ALOGV("%s", printer().c_str());
292 LOG_ALWAYS_FATAL_IF(prediction < timePoint, "VSyncPredictor: model miscalculation: %s",
293 printer().c_str());
294
295 return prediction;
296 }
297
nextAnticipatedVSyncTimeFrom(nsecs_t timePoint,std::optional<nsecs_t> lastVsyncOpt)298 nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFrom(nsecs_t timePoint,
299 std::optional<nsecs_t> lastVsyncOpt) {
300 ATRACE_CALL();
301 std::lock_guard lock(mMutex);
302
303 const auto now = TimePoint::fromNs(mClock->now());
304 purgeTimelines(now);
305
306 if (lastVsyncOpt && *lastVsyncOpt > timePoint) {
307 timePoint = *lastVsyncOpt;
308 }
309
310 const auto model = getVSyncPredictionModelLocked();
311 const auto threshold = model.slope / 2;
312 std::optional<Period> minFramePeriodOpt;
313
314 if (mNumVsyncsForFrame > 1) {
315 minFramePeriodOpt = minFramePeriodLocked();
316 }
317
318 std::optional<TimePoint> vsyncOpt;
319 for (auto& timeline : mTimelines) {
320 vsyncOpt = timeline.nextAnticipatedVSyncTimeFrom(model, minFramePeriodOpt,
321 snapToVsync(timePoint), mMissedVsync,
322 lastVsyncOpt ? snapToVsync(*lastVsyncOpt -
323 threshold)
324 : lastVsyncOpt);
325 if (vsyncOpt) {
326 break;
327 }
328 }
329 LOG_ALWAYS_FATAL_IF(!vsyncOpt);
330
331 if (*vsyncOpt > mLastCommittedVsync) {
332 mLastCommittedVsync = *vsyncOpt;
333 ATRACE_FORMAT_INSTANT("mLastCommittedVsync in %.2fms",
334 float(mLastCommittedVsync.ns() - mClock->now()) / 1e6f);
335 }
336
337 return vsyncOpt->ns();
338 }
339
340 /*
341 * Returns whether a given vsync timestamp is in phase with a frame rate.
342 * If the frame rate is not a divisor of the refresh rate, it is always considered in phase.
343 * For example, if the vsync timestamps are (16.6,33.3,50.0,66.6):
344 * isVSyncInPhase(16.6, 30) = true
345 * isVSyncInPhase(33.3, 30) = false
346 * isVSyncInPhase(50.0, 30) = true
347 */
isVSyncInPhase(nsecs_t timePoint,Fps frameRate)348 bool VSyncPredictor::isVSyncInPhase(nsecs_t timePoint, Fps frameRate) {
349 if (timePoint == 0) {
350 return true;
351 }
352
353 std::lock_guard lock(mMutex);
354 const auto model = getVSyncPredictionModelLocked();
355 const nsecs_t period = model.slope;
356 const nsecs_t justBeforeTimePoint = timePoint - period / 2;
357 const auto now = TimePoint::fromNs(mClock->now());
358 const auto vsync = snapToVsync(justBeforeTimePoint);
359
360 purgeTimelines(now);
361
362 for (auto& timeline : mTimelines) {
363 if (timeline.validUntil() && timeline.validUntil()->ns() > vsync) {
364 return timeline.isVSyncInPhase(model, vsync, frameRate);
365 }
366 }
367
368 // The last timeline should always be valid
369 return mTimelines.back().isVSyncInPhase(model, vsync, frameRate);
370 }
371
setRenderRate(Fps renderRate,bool applyImmediately)372 void VSyncPredictor::setRenderRate(Fps renderRate, bool applyImmediately) {
373 ATRACE_FORMAT("%s %s", __func__, to_string(renderRate).c_str());
374 ALOGV("%s %s: RenderRate %s ", __func__, to_string(mId).c_str(), to_string(renderRate).c_str());
375 std::lock_guard lock(mMutex);
376 const auto prevRenderRate = mRenderRateOpt;
377 mRenderRateOpt = renderRate;
378 const auto renderPeriodDelta =
379 prevRenderRate ? prevRenderRate->getPeriodNsecs() - renderRate.getPeriodNsecs() : 0;
380 if (applyImmediately) {
381 ATRACE_FORMAT_INSTANT("applyImmediately");
382 while (mTimelines.size() > 1) {
383 mTimelines.pop_front();
384 }
385
386 mTimelines.front().setRenderRate(renderRate);
387 return;
388 }
389
390 const bool newRenderRateIsHigher = renderPeriodDelta > renderRate.getPeriodNsecs() &&
391 mLastCommittedVsync.ns() - mClock->now() > 2 * renderRate.getPeriodNsecs();
392 if (newRenderRateIsHigher) {
393 ATRACE_FORMAT_INSTANT("newRenderRateIsHigher");
394 mTimelines.clear();
395 mLastCommittedVsync = TimePoint::fromNs(0);
396
397 } else {
398 mTimelines.back().freeze(
399 TimePoint::fromNs(mLastCommittedVsync.ns() + mIdealPeriod.ns() / 2));
400 }
401 mTimelines.emplace_back(mLastCommittedVsync, mIdealPeriod, renderRate);
402 purgeTimelines(TimePoint::fromNs(mClock->now()));
403 }
404
setDisplayModePtr(ftl::NonNull<DisplayModePtr> modePtr)405 void VSyncPredictor::setDisplayModePtr(ftl::NonNull<DisplayModePtr> modePtr) {
406 LOG_ALWAYS_FATAL_IF(mId != modePtr->getPhysicalDisplayId(),
407 "mode does not belong to the display");
408 ATRACE_FORMAT("%s %s", __func__, to_string(*modePtr).c_str());
409 const auto timeout = modePtr->getVrrConfig()
410 ? modePtr->getVrrConfig()->notifyExpectedPresentConfig
411 : std::nullopt;
412 ALOGV("%s %s: DisplayMode %s notifyExpectedPresentTimeout %s", __func__, to_string(mId).c_str(),
413 to_string(*modePtr).c_str(),
414 timeout ? std::to_string(timeout->timeoutNs).c_str() : "N/A");
415 std::lock_guard lock(mMutex);
416
417 mDisplayModePtr = modePtr;
418 mNumVsyncsForFrame = numVsyncsPerFrame(mDisplayModePtr);
419 traceInt64("VSP-setPeriod", modePtr->getVsyncRate().getPeriodNsecs());
420
421 static constexpr size_t kSizeLimit = 30;
422 if (CC_UNLIKELY(mRateMap.size() == kSizeLimit)) {
423 mRateMap.erase(mRateMap.begin());
424 }
425
426 if (mRateMap.find(idealPeriod()) == mRateMap.end()) {
427 mRateMap[idealPeriod()] = {idealPeriod(), 0};
428 }
429
430 mTimelines.clear();
431 clearTimestamps();
432 }
433
ensureMinFrameDurationIsKept(TimePoint expectedPresentTime,TimePoint lastConfirmedPresentTime)434 Duration VSyncPredictor::ensureMinFrameDurationIsKept(TimePoint expectedPresentTime,
435 TimePoint lastConfirmedPresentTime) {
436 ATRACE_CALL();
437
438 if (mNumVsyncsForFrame <= 1) {
439 return 0ns;
440 }
441
442 const auto currentPeriod = mRateMap.find(idealPeriod())->second.slope;
443 const auto threshold = currentPeriod / 2;
444 const auto minFramePeriod = minFramePeriodLocked().ns();
445
446 auto prev = lastConfirmedPresentTime.ns();
447 for (auto& current : mPastExpectedPresentTimes) {
448 if (CC_UNLIKELY(mTraceOn)) {
449 ATRACE_FORMAT_INSTANT("current %.2f past last signaled fence",
450 static_cast<float>(current.ns() - lastConfirmedPresentTime.ns()) /
451 1e6f);
452 }
453
454 const auto minPeriodViolation = current.ns() - prev + threshold < minFramePeriod;
455 if (minPeriodViolation) {
456 ATRACE_NAME("minPeriodViolation");
457 current = TimePoint::fromNs(prev + minFramePeriod);
458 prev = current.ns();
459 } else {
460 break;
461 }
462 }
463
464 if (!mPastExpectedPresentTimes.empty()) {
465 const auto phase = Duration(mPastExpectedPresentTimes.back() - expectedPresentTime);
466 if (phase > 0ns) {
467 for (auto& timeline : mTimelines) {
468 timeline.shiftVsyncSequence(phase);
469 }
470 mPastExpectedPresentTimes.clear();
471 return phase;
472 }
473 }
474
475 return 0ns;
476 }
477
onFrameBegin(TimePoint expectedPresentTime,TimePoint lastConfirmedPresentTime)478 void VSyncPredictor::onFrameBegin(TimePoint expectedPresentTime,
479 TimePoint lastConfirmedPresentTime) {
480 ATRACE_NAME("VSyncPredictor::onFrameBegin");
481 std::lock_guard lock(mMutex);
482
483 if (!mDisplayModePtr->getVrrConfig()) return;
484
485 if (CC_UNLIKELY(mTraceOn)) {
486 ATRACE_FORMAT_INSTANT("vsync is %.2f past last signaled fence",
487 static_cast<float>(expectedPresentTime.ns() -
488 lastConfirmedPresentTime.ns()) /
489 1e6f);
490 }
491 const auto currentPeriod = mRateMap.find(idealPeriod())->second.slope;
492 const auto threshold = currentPeriod / 2;
493 mPastExpectedPresentTimes.push_back(expectedPresentTime);
494
495 while (!mPastExpectedPresentTimes.empty()) {
496 const auto front = mPastExpectedPresentTimes.front().ns();
497 const bool frontIsBeforeConfirmed = front < lastConfirmedPresentTime.ns() + threshold;
498 if (frontIsBeforeConfirmed) {
499 if (CC_UNLIKELY(mTraceOn)) {
500 ATRACE_FORMAT_INSTANT("Discarding old vsync - %.2f before last signaled fence",
501 static_cast<float>(lastConfirmedPresentTime.ns() - front) /
502 1e6f);
503 }
504 mPastExpectedPresentTimes.pop_front();
505 } else {
506 break;
507 }
508 }
509
510 const auto phase = ensureMinFrameDurationIsKept(expectedPresentTime, lastConfirmedPresentTime);
511 if (phase > 0ns) {
512 mMissedVsync = {expectedPresentTime, minFramePeriodLocked()};
513 }
514 }
515
onFrameMissed(TimePoint expectedPresentTime)516 void VSyncPredictor::onFrameMissed(TimePoint expectedPresentTime) {
517 ATRACE_NAME("VSyncPredictor::onFrameMissed");
518
519 std::lock_guard lock(mMutex);
520 if (!mDisplayModePtr->getVrrConfig()) return;
521
522 // We don't know when the frame is going to be presented, so we assume it missed one vsync
523 const auto currentPeriod = mRateMap.find(idealPeriod())->second.slope;
524 const auto lastConfirmedPresentTime =
525 TimePoint::fromNs(expectedPresentTime.ns() + currentPeriod);
526
527 const auto phase = ensureMinFrameDurationIsKept(expectedPresentTime, lastConfirmedPresentTime);
528 if (phase > 0ns) {
529 mMissedVsync = {expectedPresentTime, Duration::fromNs(0)};
530 }
531 }
532
getVSyncPredictionModel() const533 VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModel() const {
534 std::lock_guard lock(mMutex);
535 return VSyncPredictor::getVSyncPredictionModelLocked();
536 }
537
getVSyncPredictionModelLocked() const538 VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModelLocked() const {
539 return mRateMap.find(idealPeriod())->second;
540 }
541
clearTimestamps()542 void VSyncPredictor::clearTimestamps() {
543 ATRACE_CALL();
544
545 if (!mTimestamps.empty()) {
546 auto const maxRb = *std::max_element(mTimestamps.begin(), mTimestamps.end());
547 if (mKnownTimestamp) {
548 mKnownTimestamp = std::max(*mKnownTimestamp, maxRb);
549 } else {
550 mKnownTimestamp = maxRb;
551 }
552
553 mTimestamps.clear();
554 mLastTimestampIndex = 0;
555 }
556
557 mIdealPeriod = Period::fromNs(idealPeriod());
558 if (mTimelines.empty()) {
559 mLastCommittedVsync = TimePoint::fromNs(0);
560 mTimelines.emplace_back(mLastCommittedVsync, mIdealPeriod, mRenderRateOpt);
561 } else {
562 while (mTimelines.size() > 1) {
563 mTimelines.pop_front();
564 }
565 mTimelines.front().setRenderRate(mRenderRateOpt);
566 // set mLastCommittedVsync to a valid vsync but don't commit too much in the future
567 const auto vsyncOpt = mTimelines.front().nextAnticipatedVSyncTimeFrom(
568 getVSyncPredictionModelLocked(),
569 /* minFramePeriodOpt */ std::nullopt,
570 snapToVsync(mClock->now()), MissedVsync{},
571 /* lastVsyncOpt */ std::nullopt);
572 mLastCommittedVsync = *vsyncOpt;
573 }
574 }
575
needsMoreSamples() const576 bool VSyncPredictor::needsMoreSamples() const {
577 std::lock_guard lock(mMutex);
578 return mTimestamps.size() < kMinimumSamplesForPrediction;
579 }
580
resetModel()581 void VSyncPredictor::resetModel() {
582 std::lock_guard lock(mMutex);
583 mRateMap[idealPeriod()] = {idealPeriod(), 0};
584 clearTimestamps();
585 }
586
dump(std::string & result) const587 void VSyncPredictor::dump(std::string& result) const {
588 std::lock_guard lock(mMutex);
589 StringAppendF(&result, "\tmDisplayModePtr=%s\n", to_string(*mDisplayModePtr).c_str());
590 StringAppendF(&result, "\tRefresh Rate Map:\n");
591 for (const auto& [period, periodInterceptTuple] : mRateMap) {
592 StringAppendF(&result,
593 "\t\tFor ideal period %.2fms: period = %.2fms, intercept = %" PRId64 "\n",
594 period / 1e6f, periodInterceptTuple.slope / 1e6f,
595 periodInterceptTuple.intercept);
596 }
597 StringAppendF(&result, "\tmTimelines.size()=%zu\n", mTimelines.size());
598 }
599
purgeTimelines(android::TimePoint now)600 void VSyncPredictor::purgeTimelines(android::TimePoint now) {
601 const auto kEnoughFramesToBreakPhase = 5;
602 if (mRenderRateOpt &&
603 mLastCommittedVsync.ns() + mRenderRateOpt->getPeriodNsecs() * kEnoughFramesToBreakPhase <
604 mClock->now()) {
605 ATRACE_FORMAT_INSTANT("kEnoughFramesToBreakPhase");
606 mTimelines.clear();
607 mLastCommittedVsync = TimePoint::fromNs(0);
608 mTimelines.emplace_back(mLastCommittedVsync, mIdealPeriod, mRenderRateOpt);
609 return;
610 }
611
612 while (mTimelines.size() > 1) {
613 const auto validUntilOpt = mTimelines.front().validUntil();
614 if (validUntilOpt && *validUntilOpt < now) {
615 mTimelines.pop_front();
616 } else {
617 break;
618 }
619 }
620 LOG_ALWAYS_FATAL_IF(mTimelines.empty());
621 LOG_ALWAYS_FATAL_IF(mTimelines.back().validUntil().has_value());
622 }
623
makeVsyncSequence(TimePoint knownVsync)624 auto VSyncPredictor::VsyncTimeline::makeVsyncSequence(TimePoint knownVsync)
625 -> std::optional<VsyncSequence> {
626 if (knownVsync.ns() == 0) return std::nullopt;
627 return std::make_optional<VsyncSequence>({knownVsync.ns(), 0});
628 }
629
VsyncTimeline(TimePoint knownVsync,Period idealPeriod,std::optional<Fps> renderRateOpt)630 VSyncPredictor::VsyncTimeline::VsyncTimeline(TimePoint knownVsync, Period idealPeriod,
631 std::optional<Fps> renderRateOpt)
632 : mIdealPeriod(idealPeriod),
633 mRenderRateOpt(renderRateOpt),
634 mLastVsyncSequence(makeVsyncSequence(knownVsync)) {}
635
freeze(TimePoint lastVsync)636 void VSyncPredictor::VsyncTimeline::freeze(TimePoint lastVsync) {
637 LOG_ALWAYS_FATAL_IF(mValidUntil.has_value());
638 ATRACE_FORMAT_INSTANT("renderRate %s valid for %.2f",
639 mRenderRateOpt ? to_string(*mRenderRateOpt).c_str() : "NA",
640 float(lastVsync.ns() - TimePoint::now().ns()) / 1e6f);
641 mValidUntil = lastVsync;
642 }
643
nextAnticipatedVSyncTimeFrom(Model model,std::optional<Period> minFramePeriodOpt,nsecs_t vsync,MissedVsync missedVsync,std::optional<nsecs_t> lastVsyncOpt)644 std::optional<TimePoint> VSyncPredictor::VsyncTimeline::nextAnticipatedVSyncTimeFrom(
645 Model model, std::optional<Period> minFramePeriodOpt, nsecs_t vsync,
646 MissedVsync missedVsync, std::optional<nsecs_t> lastVsyncOpt) {
647 ATRACE_FORMAT("renderRate %s", mRenderRateOpt ? to_string(*mRenderRateOpt).c_str() : "NA");
648
649 nsecs_t vsyncTime = snapToVsyncAlignedWithRenderRate(model, vsync);
650 const auto threshold = model.slope / 2;
651 const auto lastFrameMissed =
652 lastVsyncOpt && std::abs(*lastVsyncOpt - missedVsync.vsync.ns()) < threshold;
653 const auto mightBackpressure = minFramePeriodOpt && mRenderRateOpt &&
654 mRenderRateOpt->getPeriod() < 2 * (*minFramePeriodOpt);
655 if (FlagManager::getInstance().vrr_config()) {
656 if (lastFrameMissed) {
657 // If the last frame missed is the last vsync, we already shifted the timeline. Depends
658 // on whether we skipped the frame (onFrameMissed) or not (onFrameBegin) we apply a
659 // different fixup. There is no need to to shift the vsync timeline again.
660 vsyncTime += missedVsync.fixup.ns();
661 ATRACE_FORMAT_INSTANT("lastFrameMissed");
662 } else if (mightBackpressure && lastVsyncOpt) {
663 // lastVsyncOpt is based on the old timeline before we shifted it. we should correct it
664 // first before trying to use it.
665 lastVsyncOpt = snapToVsyncAlignedWithRenderRate(model, *lastVsyncOpt);
666 const auto vsyncDiff = vsyncTime - *lastVsyncOpt;
667 if (vsyncDiff <= minFramePeriodOpt->ns() - threshold) {
668 // avoid a duplicate vsync
669 ATRACE_FORMAT_INSTANT("skipping a vsync to avoid duplicate frame. next in %.2f "
670 "which "
671 "is %.2f "
672 "from "
673 "prev. "
674 "adjust by %.2f",
675 static_cast<float>(vsyncTime - TimePoint::now().ns()) / 1e6f,
676 static_cast<float>(vsyncDiff) / 1e6f,
677 static_cast<float>(mRenderRateOpt->getPeriodNsecs()) / 1e6f);
678 vsyncTime += mRenderRateOpt->getPeriodNsecs();
679 }
680 }
681 }
682
683 ATRACE_FORMAT_INSTANT("vsync in %.2fms", float(vsyncTime - TimePoint::now().ns()) / 1e6f);
684 if (mValidUntil && vsyncTime > mValidUntil->ns()) {
685 ATRACE_FORMAT_INSTANT("no longer valid for vsync in %.2f",
686 static_cast<float>(vsyncTime - TimePoint::now().ns()) / 1e6f);
687 return std::nullopt;
688 }
689
690 return TimePoint::fromNs(vsyncTime);
691 }
692
getVsyncSequenceLocked(Model model,nsecs_t vsync)693 auto VSyncPredictor::VsyncTimeline::getVsyncSequenceLocked(Model model, nsecs_t vsync)
694 -> VsyncSequence {
695 if (!mLastVsyncSequence) return {vsync, 0};
696
697 const auto [lastVsyncTime, lastVsyncSequence] = *mLastVsyncSequence;
698 const auto vsyncSequence = lastVsyncSequence +
699 static_cast<int64_t>(std::round((vsync - lastVsyncTime) /
700 static_cast<float>(model.slope)));
701 return {vsync, vsyncSequence};
702 }
703
snapToVsyncAlignedWithRenderRate(Model model,nsecs_t vsync)704 nsecs_t VSyncPredictor::VsyncTimeline::snapToVsyncAlignedWithRenderRate(Model model,
705 nsecs_t vsync) {
706 // update the mLastVsyncSequence for reference point
707 mLastVsyncSequence = getVsyncSequenceLocked(model, vsync);
708
709 const auto renderRatePhase = [&]() -> int {
710 if (!mRenderRateOpt) return 0;
711 const auto divisor =
712 RefreshRateSelector::getFrameRateDivisor(Fps::fromPeriodNsecs(mIdealPeriod.ns()),
713 *mRenderRateOpt);
714 if (divisor <= 1) return 0;
715
716 int mod = mLastVsyncSequence->seq % divisor;
717 if (mod == 0) return 0;
718
719 // This is actually a bug fix, but guarded with vrr_config since we found it with this
720 // config
721 if (FlagManager::getInstance().vrr_config()) {
722 if (mod < 0) mod += divisor;
723 }
724
725 return divisor - mod;
726 }();
727
728 if (renderRatePhase == 0) {
729 return mLastVsyncSequence->vsyncTime;
730 }
731
732 return mLastVsyncSequence->vsyncTime + model.slope * renderRatePhase;
733 }
734
isVSyncInPhase(Model model,nsecs_t vsync,Fps frameRate)735 bool VSyncPredictor::VsyncTimeline::isVSyncInPhase(Model model, nsecs_t vsync, Fps frameRate) {
736 const auto getVsyncIn = [](TimePoint now, nsecs_t timePoint) -> float {
737 return ticks<std::milli, float>(TimePoint::fromNs(timePoint) - now);
738 };
739
740 Fps displayFps = Fps::fromPeriodNsecs(mIdealPeriod.ns());
741 const auto divisor = RefreshRateSelector::getFrameRateDivisor(displayFps, frameRate);
742 const auto now = TimePoint::now();
743
744 if (divisor <= 1) {
745 return true;
746 }
747 const auto vsyncSequence = getVsyncSequenceLocked(model, vsync);
748 ATRACE_FORMAT_INSTANT("vsync in: %.2f sequence: %" PRId64 " divisor: %zu",
749 getVsyncIn(now, vsyncSequence.vsyncTime), vsyncSequence.seq, divisor);
750 return vsyncSequence.seq % divisor == 0;
751 }
752
shiftVsyncSequence(Duration phase)753 void VSyncPredictor::VsyncTimeline::shiftVsyncSequence(Duration phase) {
754 if (mLastVsyncSequence) {
755 ATRACE_FORMAT_INSTANT("adjusting vsync by %.2f", static_cast<float>(phase.ns()) / 1e6f);
756 mLastVsyncSequence->vsyncTime += phase.ns();
757 }
758 }
759
760 } // namespace android::scheduler
761
762 // TODO(b/129481165): remove the #pragma below and fix conversion issues
763 #pragma clang diagnostic pop // ignored "-Wextra"
764