• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2015-2023 The Khronos Group Inc.
2//
3// SPDX-License-Identifier: Apache-2.0
4
5= Math Test
6
7This file (vkmath.adoc) contains all the latexmath blocks and inlines in the
8Vulkan spec and style guide, so we can see how they are rendered with
9different methods and output formats.
10
11== File chapters/fundamentals.adoc
12
13=== latexmath block 1
14
15[latexmath]
16++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
17f = { c \over { 2^b - 1 } }
18++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
19
20=== latexmath block 2
21
22[latexmath]
23++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24f = \max\left( {c \over {2^{b-1} - 1}}, -1.0 \right)
25++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
26
27== File chapters/interfaces.adoc
28
29=== latexmath inline 1
30
31latexmath:[(x,y,z,\frac{1}{w})]
32
33=== latexmath inline 2
34
35latexmath:[\frac{1}{w}]
36
37== File chapters/primsrast.adoc
38
39=== latexmath block 3
40
41[latexmath]
42++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
43s = {1 \over 2} + { \left( x_p - x_f \right) \over \text{size} }
44++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
45
46[latexmath]
47++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
48t = {1 \over 2} + { \left( y_p - y_f \right) \over \text{size} }
49++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
50
51=== latexmath block 4
52
53[latexmath]
54++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
55t = {{( \mathbf{p}_r - \mathbf{p}_a ) \cdot ( \mathbf{p}_b - \mathbf{p}_a )}
56    \over {\| \mathbf{p}_b - \mathbf{p}_a \|^2 }}
57++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
58
59=== latexmath block 5
60
61[latexmath]
62++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
63f = {{ (1-t) {f_a / w_a} + t { f_b / w_b} } \over
64    {(1-t) / w_a + t / w_b }}
65++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
66
67=== latexmath block 6
68
69[latexmath]
70++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
71a = -{1 \over 2}\sum_{i=0}^{n-1}
72      x_f^i y_f^{i \oplus 1} -
73      x_f^{i \oplus 1} y_f^i
74++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
75
76=== latexmath inline 3
77
78latexmath:[x_f^i] and latexmath:[y_f^i]
79
80=== latexmath block 7
81
82[latexmath]
83++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
84a = {{\mathrm{A}(p p_b p_c)} \over {\mathrm{A}(p_a p_b p_c)}}, \quad
85b = {{\mathrm{A}(p p_a p_c)} \over {\mathrm{A}(p_a p_b p_c)}}, \quad
86c = {{\mathrm{A}(p p_a p_b)} \over {\mathrm{A}(p_a p_b p_c)}},
87++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
88
89=== latexmath block 8
90
91[latexmath]
92++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
93f = { a {f_a / w_a} + b {f_b / w_b} + c {f_c / w_c} } \over
94    { {a / w_a} + {b / w_b} + {c / w_c} }
95++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
96
97== File chapters/fundamentals.adoc
98
99=== latexmath block 9
100
101[latexmath]
102++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
103f = { c \over { 2^b - 1 } }
104++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
105
106=== latexmath block 10
107
108[latexmath]
109++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
110f = \max\left( {c \over {2^{b-1} - 1}}, -1.0 \right)
111++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
112
113== File chapters/interfaces.adoc
114
115=== latexmath inline 4
116
117latexmath:[(x,y,z,\frac{1}{w})]
118
119=== latexmath inline 5
120
121latexmath:[\frac{1}{w}].
122
123== File chapters/primsrast.adoc
124
125=== latexmath block 11
126
127[latexmath]
128++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
129s = {1 \over 2} + { \left( x_p - x_f \right) \over \text{size} }
130++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
131[latexmath]
132++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
133t = {1 \over 2} + { \left( y_p - y_f \right) \over \text{size} }
134++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
135
136=== latexmath block 12
137
138[latexmath]
139++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
140t = {{( \mathbf{p}_r - \mathbf{p}_a ) \cdot ( \mathbf{p}_b - \mathbf{p}_a )}
141    \over {\| \mathbf{p}_b - \mathbf{p}_a \|^2 }}
142++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
143
144=== latexmath block 13
145
146[latexmath]
147++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
148f = {{ (1-t) {f_a / w_a} + t { f_b / w_b} } \over
149    {(1-t) / w_a + t / w_b }}
150++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
151
152=== latexmath block 14
153
154[latexmath]
155++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
156a = -{1 \over 2}\sum_{i=0}^{n-1}
157      x_f^i y_f^{i \oplus 1} -
158      x_f^{i \oplus 1} y_f^i
159++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
160
161=== latexmath inline 6
162
163latexmath:[x_f^i] and latexmath:[y_f^i]
164
165=== latexmath block 15
166
167[latexmath]
168++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
169a = {{\mathrm{A}(p p_b p_c)} \over {\mathrm{A}(p_a p_b p_c)}}, \quad
170b = {{\mathrm{A}(p p_a p_c)} \over {\mathrm{A}(p_a p_b p_c)}}, \quad
171c = {{\mathrm{A}(p p_a p_b)} \over {\mathrm{A}(p_a p_b p_c)}},
172++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
173
174=== latexmath block 16
175
176[latexmath]
177++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
178f = { a {f_a / w_a} + b {f_b / w_b} + c {f_c / w_c} } \over
179    { {a / w_a} + {b / w_b} + {c / w_c} }
180++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
181
182=== latexmath block 17
183
184[latexmath]
185++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
186f = \sum_{i=1}^{n} a_i f_i
187++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
188
189=== latexmath inline 7
190
191latexmath:[\sum_{i=1}^{n}a_i = 1].
192
193=== latexmath block 18
194
195[latexmath]
196++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
197m = \sqrt{ \left({{\partial z_f} \over {\partial x_f}}\right)^2
198        +  \left({{\partial z_f} \over {\partial y_f}}\right)^2}
199++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
200
201=== latexmath block 19
202
203[latexmath]
204++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
205m = \max\left( \left| {{\partial z_f} \over {\partial x_f}} \right|,
206               \left| {{\partial z_f} \over {\partial y_f}} \right| \right)
207++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
208
209=== latexmath block 20
210
211[latexmath]
212++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
213o =
214\begin{cases}
215    m \times depthBiasSlopeFactor +
216         r \times depthBiasConstantFactor  & depthBiasClamp = 0\ or\ NaN \\
217    \min(m \times depthBiasSlopeFactor +
218         r \times depthBiasConstantFactor,
219         depthBiasClamp)                   & depthBiasClamp > 0  \\
220    \max(m \times depthBiasSlopeFactor +
221         r \times depthBiasConstantFactor,
222         depthBiasClamp)                   & depthBiasClamp < 0  \\
223\end{cases}
224++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
225
226== File chapters/tessellation.adoc
227
228=== latexmath inline 8
229
230latexmath:[\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}]
231
232== File chapters/textures.adoc
233
234=== latexmath block 21
235
236[latexmath]
237+++++++++++++++++++
238\begin{aligned}
239N               & = 9  & \text{number of mantissa bits per component} \\
240B               & = 15 & \text{exponent bias} \\
241E_{max}         & = 31 & \text{maximum possible biased exponent value} \\
242sharedexp_{max} & = \frac{(2^N-1)}{2^N} \times 2^{(E_{max}-B)}
243\end{aligned}
244+++++++++++++++++++
245
246=== latexmath block 22
247
248[latexmath]
249+++++++++++++++++++
250\begin{aligned}
251exp' =
252  \begin{cases}
253    \left \lfloor \log_2(max_{clamped}) \right \rfloor + (B+1)
254      & \text{for}\  max_{clamped} > 2^{-(B+1)} \\
255    0
256      & \text{for}\  max_{clamped} \leq 2^{-(B+1)}
257  \end{cases}
258\end{aligned}
259+++++++++++++++++++
260
261=== latexmath block 23
262
263[latexmath]
264+++++++++++++++++++
265\begin{aligned}
266max_{shared} =
267\left \lfloor
268\frac{max_{clamped}}{2^{(exp'-B-N)}}+\frac{1}{2}
269\right \rfloor
270\end{aligned}
271+++++++++++++++++++
272
273=== latexmath block 24
274
275[latexmath]
276+++++++++++++++++++
277\begin{aligned}
278exp_{shared} =
279  \begin{cases}
280    exp'   & \text{for}\  0 \leq max_{shared} < 2^N \\
281    exp'+1 & \text{for}\  max_{shared} = 2^N
282  \end{cases}
283\end{aligned}
284+++++++++++++++++++
285
286=== latexmath block 25
287
288[latexmath]
289+++++++++++++++++++
290\begin{aligned}
291red_{shared} & =
292    \left \lfloor
293    \frac{red_{clamped}}{2^{(exp_{shared}-B-N)}}+ \frac{1}{2}
294    \right \rfloor \\
295green_{shared} & =
296    \left \lfloor
297    \frac{green_{clamped}}{2^{(exp_{shared}-B-N)}}+ \frac{1}{2}
298    \right \rfloor \\
299blue_{shared} & =
300    \left \lfloor
301    \frac{blue_{clamped}}{2^{(exp_{shared}-B-N)}}+ \frac{1}{2}
302    \right \rfloor
303\end{aligned}
304+++++++++++++++++++
305
306=== latexmath block 26
307
308[latexmath]
309+++++++++++++++++++
310\begin{aligned}
311D & = 1.0 &
312  \begin{cases}
313    D_{ref} \leq D & \text{for LEQUAL}   \\
314    D_{ref} \geq D & \text{for GEQUAL}   \\
315    D_{ref} < D    & \text{for LESS}     \\
316    D_{ref} > D    & \text{for GREATER}  \\
317    D_{ref} = D    & \text{for EQUAL}    \\
318    D_{ref} \neq D & \text{for NOTEQUAL} \\
319    true           & \text{for ALWAYS}   \\
320    false          & \text{for NEVER}
321  \end{cases} \\
322D & = 0.0 & \text{otherwise}
323\end{aligned}
324+++++++++++++++++++
325
326=== latexmath block 27
327
328[latexmath]
329+++++++++++++++++++
330\begin{aligned}
331C'_{rgba}[R] & =
332  \begin{cases}
333    C_{rgba}[R] & \text{for RED swizzle}   \\
334    C_{rgba}[G] & \text{for GREEN swizzle} \\
335    C_{rgba}[B] & \text{for BLUE swizzle}  \\
336    C_{rgba}[A] & \text{for ALPHA swizzle} \\
337    0           & \text{for ZERO swizzle}  \\
338    one         & \text{for ONE swizzle} \\
339    C_{rgba}[R] & \text{for IDENTITY swizzle}
340  \end{cases}
341\end{aligned}
342+++++++++++++++++++
343
344=== latexmath block 28
345
346[latexmath]
347+++++++++++++++++++
348\begin{aligned}
349C_{rgba}[R] & \text{is the RED component} \\
350C_{rgba}[G] & \text{is the GREEN component} \\
351C_{rgba}[B] & \text{is the BLUE component} \\
352C_{rgba}[A] & \text{is the ALPHA component} \\
353one         & = 1.0\text{f}  & \text{for floating point components} \\
354one         & = 1              & \text{for integer components}
355\end{aligned}
356+++++++++++++++++++
357
358=== latexmath block 29
359
360[latexmath]
361+++++++++++++++++++
362\begin{aligned}
363dPdx_{i_1,j_0} & = dPdx_{i_0,j_0} & = P_{i_1,j_0} - P_{i_0,j_0}  \\
364dPdx_{i_1,j_1} & = dPdx_{i_0,j_1} & = P_{i_1,j_1} - P_{i_0,j_1}  \\
365\\
366dPdy_{i_0,j_1} & = dPdy_{i_0,j_0} & = P_{i_0,j_1} - P_{i_0,j_0}  \\
367dPdy_{i_1,j_1} & = dPdy_{i_1,j_0} & = P_{i_1,j_1} - P_{i_1,j_0}
368\end{aligned}
369+++++++++++++++++++
370
371=== latexmath block 30
372
373[latexmath]
374+++++++++++++++++++
375\begin{aligned}
376dPdx & =
377  \begin{cases}
378    dPdx_{i_0,j_0} & \text{preferred}\\
379    dPdx_{i_0,j_1}
380  \end{cases} \\
381dPdy & =
382  \begin{cases}
383    dPdy_{i_0,j_0} & \text{preferred}\\
384    dPdy_{i_1,j_0}
385  \end{cases}
386\end{aligned}
387+++++++++++++++++++
388
389=== latexmath block 31
390
391[latexmath]
392+++++++++++++++++++
393\begin{aligned}
394s       & = \frac{s}{q},       & \text{for 1D, 2D, or 3D image} \\
395\\
396t       & = \frac{t}{q},       & \text{for 2D or 3D image} \\
397\\
398r       & = \frac{r}{q},       & \text{for 3D image} \\
399\\
400D_{ref} & = \frac{D_{ref}}{q}, & \text{if provided}
401\end{aligned}
402+++++++++++++++++++
403
404
405=== latexmath block 32
406
407[latexmath]
408+++++++++++++++++++
409\begin{aligned}
410\partial{s}/\partial{x} & = dPdx(s), & \partial{s}/\partial{y} & = dPdy(s), & \text{for 1D, 2D, Cube, or 3D image} \\
411\partial{t}/\partial{x} & = dPdx(t), & \partial{t}/\partial{y} & = dPdy(t), & \text{for 2D, Cube, or 3D image} \\
412\partial{u}/\partial{x} & = dPdx(u), & \partial{u}/\partial{y} & = dPdy(u), & \text{for Cube or 3D image}
413\end{aligned}
414+++++++++++++++++++
415
416=== latexmath block 33
417
418[latexmath]
419++++++++++++++++++++++++
420\begin{aligned}
421s_{face} & =
422    \frac{1}{2} \times \frac{s_c}{|r_c|} + \frac{1}{2} \\
423t_{face} & =
424    \frac{1}{2} \times \frac{t_c}{|r_c|} + \frac{1}{2} \\
425\end{aligned}
426++++++++++++++++++++++++
427
428=== latexmath block 34
429
430[latexmath]
431++++++++++++++++++++++++
432\begin{aligned}
433\frac{\partial{s_{face}}}{\partial{x}} &=
434    \frac{\partial}{\partial{x}} \left ( \frac{1}{2} \times \frac{s_{c}}{|r_{c}|}
435    + \frac{1}{2}\right ) \\
436\frac{\partial{s_{face}}}{\partial{x}} &=
437    \frac{1}{2} \times \frac{\partial}{\partial{x}}
438    \left ( \frac{s_{c}}{|r_{c}|}  \right ) \\
439\frac{\partial{s_{face}}}{\partial{x}} &=
440    \frac{1}{2} \times
441    \left (
442    \frac{
443      |r_{c}| \times \partial{s_c}/\partial{x}
444      -s_c \times {\partial{r_{c}}}/{\partial{x}}}
445    {\left ( r_{c} \right )^2}
446    \right )
447\end{aligned}
448++++++++++++++++++++++++
449
450=== latexmath block 35
451
452[latexmath]
453++++++++++++++++++++++++
454\begin{aligned}
455\frac{\partial{s_{face}}}{\partial{y}} &=
456    \frac{1}{2} \times
457    \left (
458    \frac{
459      |r_{c}| \times \partial{s_c}/\partial{y}
460      -s_c \times {\partial{r_{c}}}/{\partial{y}}}
461    {\left ( r_{c} \right )^2}
462    \right )\\
463\frac{\partial{t_{face}}}{\partial{x}} &=
464    \frac{1}{2} \times
465    \left (
466    \frac{
467      |r_{c}| \times \partial{t_c}/\partial{x}
468      -t_c \times {\partial{r_{c}}}/{\partial{x}}}
469    {\left ( r_{c} \right )^2}
470    \right ) \\
471\frac{\partial{t_{face}}}{\partial{y}} &=
472    \frac{1}{2} \times
473    \left (
474    \frac{
475       |r_{c}| \times \partial{t_c}/\partial{y}
476      -t_c \times {\partial{r_{c}}}/{\partial{y}}}
477    {\left ( r_{c} \right )^2}
478    \right )
479\end{aligned}
480++++++++++++++++++++++++
481
482=== latexmath block 36
483
484[latexmath]
485++++++++++++++++++++++++
486\begin{aligned}
487\rho_{x} & = \sqrt{ m_{ux} ^{2} + m_{vx} ^{2} + m_{wx} ^{2} } \\
488\rho_{y} & = \sqrt{ m_{uy} ^{2} + m_{vy} ^{2} + m_{wy} ^{2} }
489\end{aligned}
490++++++++++++++++++++++++
491
492=== latexmath block 37
493
494  {empty}:: [eq]#f~x~# is continuous and monotonically increasing in each of
495     [eq]#m~ux~#, [eq]#m~vx~#, and [eq]#m~wx~#
496  {empty}:: [eq]#f~y~# is continuous and monotonically increasing in each of
497     [eq]#m~uy~#, [eq]#m~vy~#, and [eq]#m~wy~#
498  {empty}:: [eq]#max({vert}m~ux~{vert}, {vert}m~vx~{vert},
499     {vert}m~wx~{vert}) {leq} f~x~ {leq} {vert}m~ux~{vert} {plus}
500     {vert}m~vx~{vert} {plus} {vert}m~wx~{vert}#
501  {empty}:: [eq]#max({vert}m~uy~{vert}, {vert}m~vy~{vert},
502     {vert}m~wy~{vert}) {leq} f~y~ {leq} {vert}m~uy~{vert} {plus}
503     {vert}m~vy~{vert} {plus} {vert}m~wy~{vert}#
504
505=== latexmath block 38
506
507[latexmath]
508++++++++++++++++++++++++
509\begin{aligned}
510N & = \min \left (\left \lceil \frac{\rho_{max}}{\rho_{min}}  \right \rceil ,max_{Aniso} \right )
511\end{aligned}
512++++++++++++++++++++++++
513
514=== latexmath block 39
515
516[latexmath]
517++++++++++++++++++++++++
518\begin{aligned}
519\lambda_{base}(x,y) & =
520  \begin{cases}
521    shaderOp.Lod                                 & \text{(from optional SPIR-V operand)} \\
522    \log_2 \left ( \frac{\rho_{max}}{N} \right ) & \text{otherwise}
523  \end{cases} \\
524\lambda'(x,y)       & = \lambda_{base} + \mathbin{clamp}(sampler.bias + shaderOp.bias,-maxSamplerLodBias,maxSamplerLodBias) \\
525\lambda             & =
526  \begin{cases}
527    lod_{max}, & \lambda' > lod_{max} \\
528    \lambda',  & lod_{min} \leq \lambda' \leq lod_{max} \\
529    lod_{min}, & \lambda' < lod_{min} \\
530    undefined, & lod_{min} > lod_{max} \\
531  \end{cases}
532\end{aligned}
533++++++++++++++++++++++++
534
535=== latexmath block 40
536
537[latexmath]
538++++++++++++++++++++++++
539\begin{aligned}
540sampler.bias       & = mipLodBias & \text{(from sampler descriptor)} \\
541shaderOp.bias      & =
542  \begin{cases}
543    Bias & \text{(from optional SPIR-V operand)} \\
544    0    & \text{otherwise}
545  \end{cases} \\
546sampler.lod_{min}  & = minLod & \text{(from sampler descriptor)} \\
547shaderOp.lod_{min} & =
548  \begin{cases}
549    MinLod & \text{(from optional SPIR-V operand)} \\
550    0      & \text{otherwise}
551  \end{cases} \\
552\\
553lod_{min}          & = \max(sampler.lod_{min}, shaderOp.lod_{min}) \\
554lod_{max}          & = maxLod & \text{(from sampler descriptor)}
555\end{aligned}
556++++++++++++++++++++++++
557
558=== latexmath block 41
559
560[latexmath]
561++++++++++++++++++++++++
562\begin{aligned}
563d =
564  \begin{cases}
565    level_{base},     & \lambda \leq \frac{1}{2} \\[.5em]
566    nearest(\lambda), & \lambda > \frac{1}{2},
567                        level_{base} + \lambda \leq
568                        q + \frac{1}{2} \\[.5em]
569    q,                & \lambda > \frac{1}{2},
570                        level_{base} + \lambda > q + \frac{1}{2}
571  \end{cases}
572\end{aligned}
573++++++++++++++++++++++++
574
575=== latexmath block 42
576
577[latexmath]
578++++++++++++++++++++++++
579\begin{aligned}
580nearest(\lambda) & =
581  \begin{cases}
582    \left \lceil level_{base}+\lambda + \frac{1}{2}\right \rceil - 1, &
583        \text{preferred} \\
584    \left \lfloor level_{base}+\lambda + \frac{1}{2}\right \rfloor,   &
585        \text{alternative}
586  \end{cases}
587\end{aligned}
588++++++++++++++++++++++++
589
590=== latexmath block 43
591
592[latexmath]
593++++++++++++++++++++++++
594\begin{aligned}
595d_{hi} & =
596  \begin{cases}
597    q,                                                 & level_{base} + \lambda \geq q \\
598    \left \lfloor level_{base}+\lambda \right \rfloor, & \text{otherwise}
599  \end{cases} \\
600d_{lo} & =
601  \begin{cases}
602    q,        & level_{base} + \lambda \geq q \\
603    d_{hi}+1, & \text{otherwise}
604  \end{cases}
605\end{aligned}
606++++++++++++++++++++++++
607
608=== latexmath block 44
609
610[latexmath]
611++++++++++++++++++++++++
612\begin{aligned}
613u(x,y) & = s(x,y) \times width_{level} \\
614v(x,y) & =
615  \begin{cases}
616    0                         & \text{for 1D images} \\
617    t(x,y) \times height_{level} & \text{otherwise}
618  \end{cases} \\
619w(x,y) & =
620  \begin{cases}
621    0                         & \text{for 2D or Cube images} \\
622    r(x,y) \times depth_{level}  & \text{otherwise}
623  \end{cases} \\
624\\
625a(x,y) & =
626  \begin{cases}
627    a(x,y)                    & \text{for array images} \\
628    0                         & \text{otherwise}
629  \end{cases}
630\end{aligned}
631++++++++++++++++++++++++
632
633=== latexmath block 45
634
635[latexmath]
636++++++++++++++++++++++++
637\begin{aligned}
638\mathbin{RNE}(a) & =
639  \begin{cases}
640    \mathbin{roundTiesToEven}(a)                  & \text{preferred, from IEEE Std 754-2008 Floating-Point Arithmetic} \\
641    \left \lfloor a + \frac{1}{2} \right \rfloor & \text{alternative}
642  \end{cases}
643\end{aligned}
644++++++++++++++++++++++++
645
646=== latexmath block 46
647
648[latexmath]
649++++++++++++++++++++++++
650\begin{aligned}
651i &=
652  \begin{cases}
653    i \bmod size                                & \text{for repeat} \\
654    (size-1) - \mathbin{mirror}
655        ((i \bmod (2 \times size)) - size)      & \text{for mirrored repeat} \\
656    \mathbin{clamp}(i,0,size-1)                  & \text{for clamp to edge} \\
657    \mathbin{clamp}(i,-1,size)                   & \text{for clamp to border} \\
658    \mathbin{clamp}(\mathbin{mirror}(i),0,size-1) & \text{for mirror clamp to edge}
659  \end{cases}
660\end{aligned}
661++++++++++++++++++++++++
662
663
664=== latexmath block 47
665
666[latexmath]
667++++++++++++++++++++++++
668\begin{aligned}
669& \mathbin{mirror}(n) =
670  \begin{cases}
671    n      & \text{for}\  n \geq 0 \\
672    -(1+n) & \text{otherwise}
673  \end{cases}
674\end{aligned}
675++++++++++++++++++++++++
676
677=== latexmath block 48
678
679[latexmath]
680++++++++++++++++++++++++
681\begin{aligned}
682\tau[R] &= \tau_{i0j1}[level_{base}][comp] \\
683\tau[G] &= \tau_{i1j1}[level_{base}][comp] \\
684\tau[B] &= \tau_{i1j0}[level_{base}][comp] \\
685\tau[A] &= \tau_{i0j0}[level_{base}][comp]
686\end{aligned}
687++++++++++++++++++++++++
688
689=== latexmath block 49
690
691[latexmath]
692++++++++++++++++++++++++
693\begin{aligned}
694\tau[level_{base}][comp] &=
695  \begin{cases}
696    \tau[level_{base}][R], & \text{for}\  comp = 0 \\
697    \tau[level_{base}][G], & \text{for}\  comp = 1 \\
698    \tau[level_{base}][B], & \text{for}\  comp = 2 \\
699    \tau[level_{base}][A], & \text{for}\  comp = 3
700  \end{cases}\\
701comp & \,\text{from SPIR-V operand Component}
702\end{aligned}
703++++++++++++++++++++++++
704
705=== latexmath block 50
706
707[latexmath]
708++++++++++++++++++++++++
709\begin{aligned}
710\tau[level] &=
711  \begin{cases}
712     \tau_{ijk}[level], & \text{for 3D image} \\
713     \tau_{ij}[level],  & \text{for 2D or Cube image} \\
714     \tau_{i}[level],   & \text{for 1D image}
715   \end{cases}
716\end{aligned}
717++++++++++++++++++++++++
718
719=== latexmath block 51
720
721[latexmath]
722++++++++++++++++++++++++
723\begin{aligned}
724\tau_{3D}[level] & = (1-\alpha)(1-\beta)(1-\gamma)\tau_{i0j0k0}[level] \\
725          & \, + (\alpha)(1-\beta)(1-\gamma)\tau_{i1j0k0}[level] \\
726          & \, + (1-\alpha)(\beta)(1-\gamma)\tau_{i0j1k0}[level] \\
727          & \, + (\alpha)(\beta)(1-\gamma)\tau_{i1j1k0}[level]   \\
728          & \, + (1-\alpha)(1-\beta)(\gamma)\tau_{i0j0k1}[level] \\
729          & \, + (\alpha)(1-\beta)(\gamma)\tau_{i1j0k1}[level]   \\
730          & \, + (1-\alpha)(\beta)(\gamma)\tau_{i0j1k1}[level]   \\
731          & \, + (\alpha)(\beta)(\gamma)\tau_{i1j1k1}[level]
732\end{aligned}
733++++++++++++++++++++++++
734
735=== latexmath block 52
736
737[latexmath]
738++++++++++++++++++++++++
739\begin{aligned}
740\tau_{2D}[level] & = (1-\alpha)(1-\beta)\tau_{i0j0}[level] \\
741          & \, + (\alpha)(1-\beta)\tau_{i1j0}[level] \\
742          & \, + (1-\alpha)(\beta)\tau_{i0j1}[level] \\
743          & \, + (\alpha)(\beta)\tau_{i1j1}[level]
744\end{aligned}
745++++++++++++++++++++++++
746
747=== latexmath block 53
748
749[latexmath]
750++++++++++++++++++++++++
751\begin{aligned}
752\tau_{1D}[level] & = (1-\alpha)\tau_{i0}[level] \\
753          & \, + (\alpha)\tau_{i1}[level]
754\end{aligned}
755++++++++++++++++++++++++
756
757=== latexmath block 54
758
759[latexmath]
760++++++++++++++++++++++++
761\begin{aligned}
762\tau[level] &=
763  \begin{cases}
764     \tau_{3D}[level], & \text{for 3D image} \\
765     \tau_{2D}[level], & \text{for 2D or Cube image} \\
766     \tau_{1D}[level], & \text{for 1D image}
767   \end{cases}
768\end{aligned}
769++++++++++++++++++++++++
770
771=== latexmath block 55
772
773[latexmath]
774++++++++++++++++++++++++
775\begin{aligned}
776\tau &=
777  \begin{cases}
778    \tau[d], & \text{for mip mode BASE or NEAREST} \\
779    (1-\delta)\tau[d_{hi}]+\delta\tau[d_{lo}], & \text{for mip mode LINEAR}
780  \end{cases}
781\end{aligned}
782++++++++++++++++++++++++
783
784=== latexmath block 56
785
786[latexmath]
787++++++++++++++++++++++++
788\begin{aligned}
789\tau_{2Daniso} & =
790     \frac{1}{N}\sum_{i=1}^{N}
791     {\tau_{2D}\left (
792       u \left ( x - \frac{1}{2} + \frac{i}{N+1} , y \right ),
793         \left ( v \left (x-\frac{1}{2}+\frac{i}{N+1} \right ), y
794\right )
795     \right )},
796     & \text{when}\  \rho_{x} > \rho_{y} \\
797\tau_{2Daniso} &=
798     \frac{1}{N}\sum_{i=1}^{N}
799     {\tau_{2D}\left (
800        u \left  ( x, y - \frac{1}{2} + \frac{i}{N+1} \right ),
801          \left ( v \left (x,y-\frac{1}{2}+\frac{i}{N+1} \right )
802\right )
803     \right )},
804     & \text{when}\  \rho_{y} \geq \rho_{x}
805\end{aligned}
806++++++++++++++++++++++++
807
808== File chapters/vertexpostproc.adoc
809
810=== latexmath block 57
811
812[latexmath]
813++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
814\begin{array}{c}
815-w_c \leq x_c \leq w_c \\
816-w_c \leq y_c \leq w_c \\
8170 \leq z_c \leq w_c
818\end{array}
819++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
820
821=== latexmath block 58
822
823[latexmath]
824++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
825\left(\begin{array}{c}
826x_c \\
827y_c \\
828z_c \\
829w_c
830\end{array}\right)
831++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
832
833=== latexmath block 59
834
835[latexmath]
836++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
837\left(
838        \begin{array}{c}
839                x_d \\
840                y_d \\
841                z_d
842        \end{array}
843\right) =
844\left(
845        \begin{array}{c}
846                \frac{x_c}{w_c} \\
847                \frac{y_c}{w_c} \\
848                \frac{z_c}{w_c}
849        \end{array}
850\right)
851++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
852
853=== latexmath inline 12
854
855latexmath:[\frac{k}{2^m - 1}]
856
857== File chapters/VK_IMG_filter_cubic/filter_cubic_texel_filtering.adoc
858
859=== latexmath block 60
860
861[latexmath]
862++++++++++++++++++++++++
863\begin{aligned}
864cinterp(\tau_0, \tau_1, \tau_2, \tau_3, \omega) =
865\frac{1}{2}
866\begin{bmatrix}1 & \omega & \omega^2 & \omega^3 \end{bmatrix}
867\times
868\begin{bmatrix}
869 0 &  2 &  0 &  0 \\
870-1 &  0 &  1 &  0 \\
871 2 & -5 &  4 &  1 \\
872-1 &  3 & -3 &  1
873\end{bmatrix}
874\times
875\begin{bmatrix}
876\tau_0 \\
877\tau_1 \\
878\tau_2 \\
879\tau_3
880\end{bmatrix}
881\end{aligned}
882++++++++++++++++++++++++
883
884=== latexmath block 61
885
886[latexmath]
887++++++++++++++++++++++++
888\begin{aligned}
889\tau[level] &=
890  \begin{cases}
891     \tau_{2D}[level], & \text{for 2D image} \\
892     \tau_{1D}[level], & \text{for 1D image}
893   \end{cases}
894\end{aligned}
895++++++++++++++++++++++++
896
897== File chapters/VK_IMG_filter_cubic/filter_cubic_texel_selection.adoc
898
899=== latexmath block 62
900
901[latexmath]
902++++++++++++++++++++++++
903\begin{aligned}
904i_{0}  & = \left \lfloor u - \frac{3}{2} \right \rfloor & i_{1} & = i_{0} + 1 & i_{2} & = i_{1} + 1 & i_{3} & = i_{2} + 1 \\[1em]
905j_{0}  & = \left \lfloor u - \frac{3}{2} \right \rfloor & j_{1} & = j_{0} + 1 & j_{2} & = j_{1} + 1 & j_{3} & = j_{2} + 1 \\
906\\
907\alpha & = \mathbin{frac} \left ( u - \frac{1}{2} \right ) \\[1em]
908\beta  & = \mathbin{frac} \left ( v - \frac{1}{2} \right )
909\end{aligned}
910++++++++++++++++++++++++
911
912== File style/writing.adoc
913
914=== latexmath inline 13
915
916latexmath:[[0,1\]]
917
918=== latexmath inline 14
919
920latexmath:[\frac{1 - \frac{x}{2}}{x - 1}]
921
922=== latexmath inline 15
923
924latexmath:[\mathbf{c} = t \mathbf{c}_1 + (1-t) \mathbf{c}_2.]
925
926=== latexmath block 63
927
928[latexmath]
929+++++++++++++++++++
930\begin{aligned}
931c_{RGB} & =
932  \begin{cases}
933    \frac{c_{sRGB}}{12.92}                              & \text{for}\  c_{sRGB} \leq 0.04045 \\
934    \left ( \frac{c_{sRGB}+0.055}{1.055} \right )^{2.4} & \text{for}\  c_{sRGB} > 0.04045
935  \end{cases}
936\end{aligned}
937+++++++++++++++++++
938
939=== latexmath block 64
940
941[latexmath]
942+++++++++++++++++++
943V =
944  \begin{cases}
945    (-1)^S \times 0.0,                      & E = 0, M = 0     \\
946    (-1)^S \times 2^{-14} \times { M \over 2^{10} },
947                                            & E = 0,  M \neq 0 \\
948    (-1)^S \times 2^{E-15} \times { \left( 1 + { M \over 2^{10} } \right) },
949                                            & 0 < E < 31       \\
950    (-1)^S \times Inf,             & E = 31, M = 0             \\
951    NaN,                           & E = 31, M \neq 0
952  \end{cases}
953+++++++++++++++++++
954