• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2019-2022 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 //     http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17 
18 /**
19  * @brief 4x32-bit vectors, implemented using SSE.
20  *
21  * This module implements 4-wide 32-bit float, int, and mask vectors for x86
22  * SSE. The implementation requires at least SSE2, but higher levels of SSE can
23  * be selected at compile time to improve performance.
24  *
25  * There is a baseline level of functionality provided by all vector widths and
26  * implementations. This is implemented using identical function signatures,
27  * modulo data type, so we can use them as substitutable implementations in VLA
28  * code.
29  *
30  * The 4-wide vectors are also used as a fixed-width type, and significantly
31  * extend the functionality above that available to VLA code.
32  */
33 
34 #ifndef ASTC_VECMATHLIB_SSE_4_H_INCLUDED
35 #define ASTC_VECMATHLIB_SSE_4_H_INCLUDED
36 
37 #ifndef ASTCENC_SIMD_INLINE
38 	#error "Include astcenc_vecmathlib.h, do not include directly"
39 #endif
40 
41 #include <cstdio>
42 
43 // ============================================================================
44 // vfloat4 data type
45 // ============================================================================
46 
47 /**
48  * @brief Data type for 4-wide floats.
49  */
50 struct vfloat4
51 {
52 	/**
53 	 * @brief Construct from zero-initialized value.
54 	 */
55 	ASTCENC_SIMD_INLINE vfloat4() = default;
56 
57 	/**
58 	 * @brief Construct from 4 values loaded from an unaligned address.
59 	 *
60 	 * Consider using loada() which is better with vectors if data is aligned
61 	 * to vector length.
62 	 */
vfloat4vfloat463 	ASTCENC_SIMD_INLINE explicit vfloat4(const float *p)
64 	{
65 		m = _mm_loadu_ps(p);
66 	}
67 
68 	/**
69 	 * @brief Construct from 1 scalar value replicated across all lanes.
70 	 *
71 	 * Consider using zero() for constexpr zeros.
72 	 */
vfloat4vfloat473 	ASTCENC_SIMD_INLINE explicit vfloat4(float a)
74 	{
75 		m = _mm_set1_ps(a);
76 	}
77 
78 	/**
79 	 * @brief Construct from 4 scalar values.
80 	 *
81 	 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
82 	 */
vfloat4vfloat483 	ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d)
84 	{
85 		m = _mm_set_ps(d, c, b, a);
86 	}
87 
88 	/**
89 	 * @brief Construct from an existing SIMD register.
90 	 */
vfloat4vfloat491 	ASTCENC_SIMD_INLINE explicit vfloat4(__m128 a)
92 	{
93 		m = a;
94 	}
95 
96 	/**
97 	 * @brief Get the scalar value of a single lane.
98 	 */
lanevfloat499 	template <int l> ASTCENC_SIMD_INLINE float lane() const
100 	{
101 		return _mm_cvtss_f32(_mm_shuffle_ps(m, m, l));
102 	}
103 
104 	/**
105 	 * @brief Set the scalar value of a single lane.
106 	 */
set_lanevfloat4107 	template <int l> ASTCENC_SIMD_INLINE void set_lane(float a)
108 	{
109 #if ASTCENC_SSE >= 41
110 		__m128 v = _mm_set1_ps(a);
111 		m = _mm_insert_ps(m, v, l << 6 | l << 4);
112 #else
113 		alignas(16) float idx[4];
114 		_mm_store_ps(idx, m);
115 		idx[l] = a;
116 		m = _mm_load_ps(idx);
117 #endif
118 	}
119 
120 	/**
121 	 * @brief Factory that returns a vector of zeros.
122 	 */
zerovfloat4123 	static ASTCENC_SIMD_INLINE vfloat4 zero()
124 	{
125 		return vfloat4(_mm_setzero_ps());
126 	}
127 
128 	/**
129 	 * @brief Factory that returns a replicated scalar loaded from memory.
130 	 */
load1vfloat4131 	static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p)
132 	{
133 		return vfloat4(_mm_load_ps1(p));
134 	}
135 
136 	/**
137 	 * @brief Factory that returns a vector loaded from 16B aligned memory.
138 	 */
loadavfloat4139 	static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p)
140 	{
141 		return vfloat4(_mm_load_ps(p));
142 	}
143 
144 	/**
145 	 * @brief Factory that returns a vector containing the lane IDs.
146 	 */
lane_idvfloat4147 	static ASTCENC_SIMD_INLINE vfloat4 lane_id()
148 	{
149 		return vfloat4(_mm_set_ps(3, 2, 1, 0));
150 	}
151 
152 	/**
153 	 * @brief Return a swizzled float 2.
154 	 */
swzvfloat4155 	template <int l0, int l1> ASTCENC_SIMD_INLINE vfloat4 swz() const
156 	{
157 		vfloat4 result(_mm_shuffle_ps(m, m, l0 | l1 << 2));
158 		result.set_lane<2>(0.0f);
159 		result.set_lane<3>(0.0f);
160 		return result;
161 	}
162 
163 	/**
164 	 * @brief Return a swizzled float 3.
165 	 */
swzvfloat4166 	template <int l0, int l1, int l2> ASTCENC_SIMD_INLINE vfloat4 swz() const
167 	{
168 		vfloat4 result(_mm_shuffle_ps(m, m, l0 | l1 << 2 | l2 << 4));
169 		result.set_lane<3>(0.0f);
170 		return result;
171 	}
172 
173 	/**
174 	 * @brief Return a swizzled float 4.
175 	 */
swzvfloat4176 	template <int l0, int l1, int l2, int l3> ASTCENC_SIMD_INLINE vfloat4 swz() const
177 	{
178 		return vfloat4(_mm_shuffle_ps(m, m, l0 | l1 << 2 | l2 << 4 | l3 << 6));
179 	}
180 
181 	/**
182 	 * @brief The vector ...
183 	 */
184 	__m128 m;
185 };
186 
187 // ============================================================================
188 // vint4 data type
189 // ============================================================================
190 
191 /**
192  * @brief Data type for 4-wide ints.
193  */
194 struct vint4
195 {
196 	/**
197 	 * @brief Construct from zero-initialized value.
198 	 */
199 	ASTCENC_SIMD_INLINE vint4() = default;
200 
201 	/**
202 	 * @brief Construct from 4 values loaded from an unaligned address.
203 	 *
204 	 * Consider using loada() which is better with vectors if data is aligned
205 	 * to vector length.
206 	 */
vint4vint4207 	ASTCENC_SIMD_INLINE explicit vint4(const int *p)
208 	{
209 		m = _mm_loadu_si128(reinterpret_cast<const __m128i*>(p));
210 	}
211 
212 	/**
213 	 * @brief Construct from 4 uint8_t loaded from an unaligned address.
214 	 */
vint4vint4215 	ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p)
216 	{
217 		// _mm_loadu_si32 would be nicer syntax, but missing on older GCC
218 		__m128i t = _mm_cvtsi32_si128(*reinterpret_cast<const int*>(p));
219 
220 #if ASTCENC_SSE >= 41
221 		m = _mm_cvtepu8_epi32(t);
222 #else
223 		t = _mm_unpacklo_epi8(t, _mm_setzero_si128());
224 		m = _mm_unpacklo_epi16(t, _mm_setzero_si128());
225 #endif
226 	}
227 
228 	/**
229 	 * @brief Construct from 1 scalar value replicated across all lanes.
230 	 *
231 	 * Consider using vfloat4::zero() for constexpr zeros.
232 	 */
vint4vint4233 	ASTCENC_SIMD_INLINE explicit vint4(int a)
234 	{
235 		m = _mm_set1_epi32(a);
236 	}
237 
238 	/**
239 	 * @brief Construct from 4 scalar values.
240 	 *
241 	 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
242 	 */
vint4vint4243 	ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d)
244 	{
245 		m = _mm_set_epi32(d, c, b, a);
246 	}
247 
248 	/**
249 	 * @brief Construct from an existing SIMD register.
250 	 */
vint4vint4251 	ASTCENC_SIMD_INLINE explicit vint4(__m128i a)
252 	{
253 		m = a;
254 	}
255 
256 	/**
257 	 * @brief Get the scalar from a single lane.
258 	 */
lanevint4259 	template <int l> ASTCENC_SIMD_INLINE int lane() const
260 	{
261 		return _mm_cvtsi128_si32(_mm_shuffle_epi32(m, l));
262 	}
263 
264 	/**
265 	 * @brief Set the scalar value of a single lane.
266 	 */
set_lanevint4267 	template <int l> ASTCENC_SIMD_INLINE void set_lane(int a)
268 	{
269 #if ASTCENC_SSE >= 41
270 		m = _mm_insert_epi32(m, a, l);
271 #else
272 		alignas(16) int idx[4];
273 		_mm_store_si128(reinterpret_cast<__m128i*>(idx), m);
274 		idx[l] = a;
275 		m = _mm_load_si128(reinterpret_cast<const __m128i*>(idx));
276 #endif
277 	}
278 
279 	/**
280 	 * @brief Factory that returns a vector of zeros.
281 	 */
zerovint4282 	static ASTCENC_SIMD_INLINE vint4 zero()
283 	{
284 		return vint4(_mm_setzero_si128());
285 	}
286 
287 	/**
288 	 * @brief Factory that returns a replicated scalar loaded from memory.
289 	 */
load1vint4290 	static ASTCENC_SIMD_INLINE vint4 load1(const int* p)
291 	{
292 		return vint4(*p);
293 	}
294 
295 	/**
296 	 * @brief Factory that returns a vector loaded from 16B aligned memory.
297 	 */
loadavint4298 	static ASTCENC_SIMD_INLINE vint4 loada(const int* p)
299 	{
300 		return vint4(_mm_load_si128(reinterpret_cast<const __m128i*>(p)));
301 	}
302 
303 	/**
304 	 * @brief Factory that returns a vector containing the lane IDs.
305 	 */
lane_idvint4306 	static ASTCENC_SIMD_INLINE vint4 lane_id()
307 	{
308 		return vint4(_mm_set_epi32(3, 2, 1, 0));
309 	}
310 
311 	/**
312 	 * @brief The vector ...
313 	 */
314 	__m128i m;
315 };
316 
317 // ============================================================================
318 // vmask4 data type
319 // ============================================================================
320 
321 /**
322  * @brief Data type for 4-wide control plane masks.
323  */
324 struct vmask4
325 {
326 	/**
327 	 * @brief Construct from an existing SIMD register.
328 	 */
vmask4vmask4329 	ASTCENC_SIMD_INLINE explicit vmask4(__m128 a)
330 	{
331 		m = a;
332 	}
333 
334 	/**
335 	 * @brief Construct from an existing SIMD register.
336 	 */
vmask4vmask4337 	ASTCENC_SIMD_INLINE explicit vmask4(__m128i a)
338 	{
339 		m = _mm_castsi128_ps(a);
340 	}
341 
342 	/**
343 	 * @brief Construct from 1 scalar value.
344 	 */
vmask4vmask4345 	ASTCENC_SIMD_INLINE explicit vmask4(bool a)
346 	{
347 		vint4 mask(a == false ? 0 : -1);
348 		m = _mm_castsi128_ps(mask.m);
349 	}
350 
351 	/**
352 	 * @brief Construct from 4 scalar values.
353 	 *
354 	 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
355 	 */
vmask4vmask4356 	ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d)
357 	{
358 		vint4 mask(a == false ? 0 : -1,
359 		           b == false ? 0 : -1,
360 		           c == false ? 0 : -1,
361 		           d == false ? 0 : -1);
362 
363 		m = _mm_castsi128_ps(mask.m);
364 	}
365 
366 	/**
367 	 * @brief Get the scalar value of a single lane.
368 	 */
lanevmask4369 	template <int l> ASTCENC_SIMD_INLINE float lane() const
370 	{
371 		return _mm_cvtss_f32(_mm_shuffle_ps(m, m, l));
372 	}
373 
374 	/**
375 	 * @brief The vector ...
376 	 */
377 	__m128 m;
378 };
379 
380 // ============================================================================
381 // vmask4 operators and functions
382 // ============================================================================
383 
384 /**
385  * @brief Overload: mask union (or).
386  */
387 ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b)
388 {
389 	return vmask4(_mm_or_ps(a.m, b.m));
390 }
391 
392 /**
393  * @brief Overload: mask intersect (and).
394  */
395 ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b)
396 {
397 	return vmask4(_mm_and_ps(a.m, b.m));
398 }
399 
400 /**
401  * @brief Overload: mask difference (xor).
402  */
403 ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b)
404 {
405 	return vmask4(_mm_xor_ps(a.m, b.m));
406 }
407 
408 /**
409  * @brief Overload: mask invert (not).
410  */
411 ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a)
412 {
413 	return vmask4(_mm_xor_si128(_mm_castps_si128(a.m), _mm_set1_epi32(-1)));
414 }
415 
416 /**
417  * @brief Return a 4-bit mask code indicating mask status.
418  *
419  * bit0 = lane 0
420  */
mask(vmask4 a)421 ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a)
422 {
423 	return static_cast<unsigned int>(_mm_movemask_ps(a.m));
424 }
425 
426 // ============================================================================
427 // vint4 operators and functions
428 // ============================================================================
429 
430 /**
431  * @brief Overload: vector by vector addition.
432  */
433 ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b)
434 {
435 	return vint4(_mm_add_epi32(a.m, b.m));
436 }
437 
438 /**
439  * @brief Overload: vector by vector subtraction.
440  */
441 ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b)
442 {
443 	return vint4(_mm_sub_epi32(a.m, b.m));
444 }
445 
446 /**
447  * @brief Overload: vector by vector multiplication.
448  */
449 ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b)
450 {
451 #if ASTCENC_SSE >= 41
452 	return vint4(_mm_mullo_epi32 (a.m, b.m));
453 #else
454 	__m128i t1 = _mm_mul_epu32(a.m, b.m);
455 	__m128i t2 = _mm_mul_epu32(
456 	                 _mm_srli_si128(a.m, 4),
457 	                 _mm_srli_si128(b.m, 4));
458 	__m128i r =  _mm_unpacklo_epi32(
459 	                 _mm_shuffle_epi32(t1, _MM_SHUFFLE (0, 0, 2, 0)),
460 	                 _mm_shuffle_epi32(t2, _MM_SHUFFLE (0, 0, 2, 0)));
461 	return vint4(r);
462 #endif
463 }
464 
465 /**
466  * @brief Overload: vector bit invert.
467  */
468 ASTCENC_SIMD_INLINE vint4 operator~(vint4 a)
469 {
470 	return vint4(_mm_xor_si128(a.m, _mm_set1_epi32(-1)));
471 }
472 
473 /**
474  * @brief Overload: vector by vector bitwise or.
475  */
476 ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b)
477 {
478 	return vint4(_mm_or_si128(a.m, b.m));
479 }
480 
481 /**
482  * @brief Overload: vector by vector bitwise and.
483  */
484 ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b)
485 {
486 	return vint4(_mm_and_si128(a.m, b.m));
487 }
488 
489 /**
490  * @brief Overload: vector by vector bitwise xor.
491  */
492 ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b)
493 {
494 	return vint4(_mm_xor_si128(a.m, b.m));
495 }
496 
497 /**
498  * @brief Overload: vector by vector equality.
499  */
500 ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b)
501 {
502 	return vmask4(_mm_cmpeq_epi32(a.m, b.m));
503 }
504 
505 /**
506  * @brief Overload: vector by vector inequality.
507  */
508 ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b)
509 {
510 	return ~vmask4(_mm_cmpeq_epi32(a.m, b.m));
511 }
512 
513 /**
514  * @brief Overload: vector by vector less than.
515  */
516 ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b)
517 {
518 	return vmask4(_mm_cmplt_epi32(a.m, b.m));
519 }
520 
521 /**
522  * @brief Overload: vector by vector greater than.
523  */
524 ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b)
525 {
526 	return vmask4(_mm_cmpgt_epi32(a.m, b.m));
527 }
528 
529 /**
530  * @brief Logical shift left.
531  */
lsl(vint4 a)532 template <int s> ASTCENC_SIMD_INLINE vint4 lsl(vint4 a)
533 {
534 	return vint4(_mm_slli_epi32(a.m, s));
535 }
536 
537 /**
538  * @brief Logical shift right.
539  */
lsr(vint4 a)540 template <int s> ASTCENC_SIMD_INLINE vint4 lsr(vint4 a)
541 {
542 	return vint4(_mm_srli_epi32(a.m, s));
543 }
544 
545 /**
546  * @brief Arithmetic shift right.
547  */
asr(vint4 a)548 template <int s> ASTCENC_SIMD_INLINE vint4 asr(vint4 a)
549 {
550 	return vint4(_mm_srai_epi32(a.m, s));
551 }
552 
553 /**
554  * @brief Return the min vector of two vectors.
555  */
min(vint4 a,vint4 b)556 ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b)
557 {
558 #if ASTCENC_SSE >= 41
559 	return vint4(_mm_min_epi32(a.m, b.m));
560 #else
561 	vmask4 d = a < b;
562 	__m128i ap = _mm_and_si128(_mm_castps_si128(d.m), a.m);
563 	__m128i bp = _mm_andnot_si128(_mm_castps_si128(d.m), b.m);
564 	return vint4(_mm_or_si128(ap,bp));
565 #endif
566 }
567 
568 /**
569  * @brief Return the max vector of two vectors.
570  */
max(vint4 a,vint4 b)571 ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b)
572 {
573 #if ASTCENC_SSE >= 41
574 	return vint4(_mm_max_epi32(a.m, b.m));
575 #else
576 	vmask4 d = a > b;
577 	__m128i ap = _mm_and_si128(_mm_castps_si128(d.m), a.m);
578 	__m128i bp = _mm_andnot_si128(_mm_castps_si128(d.m), b.m);
579 	return vint4(_mm_or_si128(ap,bp));
580 #endif
581 }
582 
583 /**
584  * @brief Return the horizontal minimum of a vector.
585  */
hmin(vint4 a)586 ASTCENC_SIMD_INLINE vint4 hmin(vint4 a)
587 {
588 	a = min(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 3, 2))));
589 	a = min(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 1))));
590 	return vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 0)));
591 }
592 
593 /*
594  * @brief Return the horizontal maximum of a vector.
595  */
hmax(vint4 a)596 ASTCENC_SIMD_INLINE vint4 hmax(vint4 a)
597 {
598 	a = max(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 3, 2))));
599 	a = max(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 1))));
600 	return vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 0)));
601 }
602 
603 /**
604  * @brief Return the horizontal sum of a vector as a scalar.
605  */
hadd_s(vint4 a)606 ASTCENC_SIMD_INLINE int hadd_s(vint4 a)
607 {
608 	// Add top and bottom halves, lane 1/0
609 	__m128i fold = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(a.m),
610 	                                              _mm_castsi128_ps(a.m)));
611 	__m128i t = _mm_add_epi32(a.m, fold);
612 
613 	// Add top and bottom halves, lane 0 (_mm_hadd_ps exists but slow)
614 	t = _mm_add_epi32(t, _mm_shuffle_epi32(t, 0x55));
615 
616 	return _mm_cvtsi128_si32(t);
617 }
618 
619 /**
620  * @brief Store a vector to a 16B aligned memory address.
621  */
storea(vint4 a,int * p)622 ASTCENC_SIMD_INLINE void storea(vint4 a, int* p)
623 {
624 	_mm_store_si128(reinterpret_cast<__m128i*>(p), a.m);
625 }
626 
627 /**
628  * @brief Store a vector to an unaligned memory address.
629  */
store(vint4 a,int * p)630 ASTCENC_SIMD_INLINE void store(vint4 a, int* p)
631 {
632 	// Cast due to missing intrinsics
633 	_mm_storeu_ps(reinterpret_cast<float*>(p), _mm_castsi128_ps(a.m));
634 }
635 
636 /**
637  * @brief Store lowest N (vector width) bytes into an unaligned address.
638  */
store_nbytes(vint4 a,uint8_t * p)639 ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p)
640 {
641 	// Cast due to missing intrinsics
642 	_mm_store_ss(reinterpret_cast<float*>(p), _mm_castsi128_ps(a.m));
643 }
644 
645 /**
646  * @brief Gather N (vector width) indices from the array.
647  */
gatheri(const int * base,vint4 indices)648 ASTCENC_SIMD_INLINE vint4 gatheri(const int* base, vint4 indices)
649 {
650 #if ASTCENC_AVX >= 2
651 	return vint4(_mm_i32gather_epi32(base, indices.m, 4));
652 #else
653 	alignas(16) int idx[4];
654 	storea(indices, idx);
655 	return vint4(base[idx[0]], base[idx[1]], base[idx[2]], base[idx[3]]);
656 #endif
657 }
658 
659 /**
660  * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector.
661  */
pack_low_bytes(vint4 a)662 ASTCENC_SIMD_INLINE vint4 pack_low_bytes(vint4 a)
663 {
664 #if ASTCENC_SSE >= 41
665 	__m128i shuf = _mm_set_epi8(0,0,0,0, 0,0,0,0, 0,0,0,0, 12,8,4,0);
666 	return vint4(_mm_shuffle_epi8(a.m, shuf));
667 #else
668 	__m128i va = _mm_unpacklo_epi8(a.m, _mm_shuffle_epi32(a.m, _MM_SHUFFLE(1,1,1,1)));
669 	__m128i vb = _mm_unpackhi_epi8(a.m, _mm_shuffle_epi32(a.m, _MM_SHUFFLE(3,3,3,3)));
670 	return vint4(_mm_unpacklo_epi16(va, vb));
671 #endif
672 }
673 
674 /**
675  * @brief Return lanes from @c b if @c cond is set, else @c a.
676  */
select(vint4 a,vint4 b,vmask4 cond)677 ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond)
678 {
679 	__m128i condi = _mm_castps_si128(cond.m);
680 
681 #if ASTCENC_SSE >= 41
682 	return vint4(_mm_blendv_epi8(a.m, b.m, condi));
683 #else
684 	return vint4(_mm_or_si128(_mm_and_si128(condi, b.m), _mm_andnot_si128(condi, a.m)));
685 #endif
686 }
687 
688 // ============================================================================
689 // vfloat4 operators and functions
690 // ============================================================================
691 
692 /**
693  * @brief Overload: vector by vector addition.
694  */
695 ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b)
696 {
697 	return vfloat4(_mm_add_ps(a.m, b.m));
698 }
699 
700 /**
701  * @brief Overload: vector by vector subtraction.
702  */
703 ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b)
704 {
705 	return vfloat4(_mm_sub_ps(a.m, b.m));
706 }
707 
708 /**
709  * @brief Overload: vector by vector multiplication.
710  */
711 ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b)
712 {
713 	return vfloat4(_mm_mul_ps(a.m, b.m));
714 }
715 
716 /**
717  * @brief Overload: vector by vector division.
718  */
719 ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b)
720 {
721 	return vfloat4(_mm_div_ps(a.m, b.m));
722 }
723 
724 /**
725  * @brief Overload: vector by vector equality.
726  */
727 ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b)
728 {
729 	return vmask4(_mm_cmpeq_ps(a.m, b.m));
730 }
731 
732 /**
733  * @brief Overload: vector by vector inequality.
734  */
735 ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b)
736 {
737 	return vmask4(_mm_cmpneq_ps(a.m, b.m));
738 }
739 
740 /**
741  * @brief Overload: vector by vector less than.
742  */
743 ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b)
744 {
745 	return vmask4(_mm_cmplt_ps(a.m, b.m));
746 }
747 
748 /**
749  * @brief Overload: vector by vector greater than.
750  */
751 ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b)
752 {
753 	return vmask4(_mm_cmpgt_ps(a.m, b.m));
754 }
755 
756 /**
757  * @brief Overload: vector by vector less than or equal.
758  */
759 ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b)
760 {
761 	return vmask4(_mm_cmple_ps(a.m, b.m));
762 }
763 
764 /**
765  * @brief Overload: vector by vector greater than or equal.
766  */
767 ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b)
768 {
769 	return vmask4(_mm_cmpge_ps(a.m, b.m));
770 }
771 
772 /**
773  * @brief Return the min vector of two vectors.
774  *
775  * If either lane value is NaN, @c b will be returned for that lane.
776  */
min(vfloat4 a,vfloat4 b)777 ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b)
778 {
779 	// Do not reorder - second operand will return if either is NaN
780 	return vfloat4(_mm_min_ps(a.m, b.m));
781 }
782 
783 /**
784  * @brief Return the max vector of two vectors.
785  *
786  * If either lane value is NaN, @c b will be returned for that lane.
787  */
max(vfloat4 a,vfloat4 b)788 ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b)
789 {
790 	// Do not reorder - second operand will return if either is NaN
791 	return vfloat4(_mm_max_ps(a.m, b.m));
792 }
793 
794 /**
795  * @brief Return the absolute value of the float vector.
796  */
abs(vfloat4 a)797 ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a)
798 {
799 	return vfloat4(_mm_max_ps(_mm_sub_ps(_mm_setzero_ps(), a.m), a.m));
800 }
801 
802 /**
803  * @brief Return a float rounded to the nearest integer value.
804  */
round(vfloat4 a)805 ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a)
806 {
807 #if ASTCENC_SSE >= 41
808 	constexpr int flags = _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC;
809 	return vfloat4(_mm_round_ps(a.m, flags));
810 #else
811 	__m128 v = a.m;
812 	__m128 neg_zero = _mm_castsi128_ps(_mm_set1_epi32(static_cast<int>(0x80000000)));
813 	__m128 no_fraction = _mm_set1_ps(8388608.0f);
814 	__m128 abs_mask = _mm_castsi128_ps(_mm_set1_epi32(0x7FFFFFFF));
815 	__m128 sign = _mm_and_ps(v, neg_zero);
816 	__m128 s_magic = _mm_or_ps(no_fraction, sign);
817 	__m128 r1 = _mm_add_ps(v, s_magic);
818 	r1 = _mm_sub_ps(r1, s_magic);
819 	__m128 r2 = _mm_and_ps(v, abs_mask);
820 	__m128 mask = _mm_cmple_ps(r2, no_fraction);
821 	r2 = _mm_andnot_ps(mask, v);
822 	r1 = _mm_and_ps(r1, mask);
823 	return vfloat4(_mm_xor_ps(r1, r2));
824 #endif
825 }
826 
827 /**
828  * @brief Return the horizontal minimum of a vector.
829  */
hmin(vfloat4 a)830 ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a)
831 {
832 	a = min(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 3, 2))));
833 	a = min(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 1))));
834 	return vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 0)));
835 }
836 
837 /**
838  * @brief Return the horizontal maximum of a vector.
839  */
hmax(vfloat4 a)840 ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a)
841 {
842 	a = max(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 3, 2))));
843 	a = max(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 1))));
844 	return vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 0)));
845 }
846 
847 /**
848  * @brief Return the horizontal sum of a vector as a scalar.
849  */
hadd_s(vfloat4 a)850 ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a)
851 {
852 	// Add top and bottom halves, lane 1/0
853 	__m128 t = _mm_add_ps(a.m, _mm_movehl_ps(a.m, a.m));
854 
855 	// Add top and bottom halves, lane 0 (_mm_hadd_ps exists but slow)
856 	t = _mm_add_ss(t, _mm_shuffle_ps(t, t, 0x55));
857 
858 	return _mm_cvtss_f32(t);
859 }
860 
861 /**
862  * @brief Return the sqrt of the lanes in the vector.
863  */
sqrt(vfloat4 a)864 ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a)
865 {
866 	return vfloat4(_mm_sqrt_ps(a.m));
867 }
868 
869 /**
870  * @brief Return lanes from @c b if @c cond is set, else @c a.
871  */
select(vfloat4 a,vfloat4 b,vmask4 cond)872 ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond)
873 {
874 #if ASTCENC_SSE >= 41
875 	return vfloat4(_mm_blendv_ps(a.m, b.m, cond.m));
876 #else
877 	return vfloat4(_mm_or_ps(_mm_and_ps(cond.m, b.m), _mm_andnot_ps(cond.m, a.m)));
878 #endif
879 }
880 
881 /**
882  * @brief Return lanes from @c b if MSB of @c cond is set, else @c a.
883  */
select_msb(vfloat4 a,vfloat4 b,vmask4 cond)884 ASTCENC_SIMD_INLINE vfloat4 select_msb(vfloat4 a, vfloat4 b, vmask4 cond)
885 {
886 #if ASTCENC_SSE >= 41
887 	return vfloat4(_mm_blendv_ps(a.m, b.m, cond.m));
888 #else
889 	__m128 d = _mm_castsi128_ps(_mm_srai_epi32(_mm_castps_si128(cond.m), 31));
890 	return vfloat4(_mm_or_ps(_mm_and_ps(d, b.m), _mm_andnot_ps(d, a.m)));
891 #endif
892 }
893 
894 /**
895  * @brief Load a vector of gathered results from an array;
896  */
gatherf(const float * base,vint4 indices)897 ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices)
898 {
899 #if ASTCENC_AVX >= 2
900 	return vfloat4(_mm_i32gather_ps(base, indices.m, 4));
901 #else
902 	alignas(16) int idx[4];
903 	storea(indices, idx);
904 	return vfloat4(base[idx[0]], base[idx[1]], base[idx[2]], base[idx[3]]);
905 #endif
906 }
907 
908 /**
909  * @brief Store a vector to an unaligned memory address.
910  */
store(vfloat4 a,float * p)911 ASTCENC_SIMD_INLINE void store(vfloat4 a, float* p)
912 {
913 	_mm_storeu_ps(p, a.m);
914 }
915 
916 /**
917  * @brief Store a vector to a 16B aligned memory address.
918  */
storea(vfloat4 a,float * p)919 ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* p)
920 {
921 	_mm_store_ps(p, a.m);
922 }
923 
924 /**
925  * @brief Return a integer value for a float vector, using truncation.
926  */
float_to_int(vfloat4 a)927 ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a)
928 {
929 	return vint4(_mm_cvttps_epi32(a.m));
930 }
931 
932 /**
933  * @brief Return a integer value for a float vector, using round-to-nearest.
934  */
float_to_int_rtn(vfloat4 a)935 ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a)
936 {
937 	a = round(a);
938 	return vint4(_mm_cvttps_epi32(a.m));
939 }
940 
941 /**
942  * @brief Return a float value for an integer vector.
943  */
int_to_float(vint4 a)944 ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a)
945 {
946 	return vfloat4(_mm_cvtepi32_ps(a.m));
947 }
948 
949 /**
950  * @brief Return a float16 value for a float vector, using round-to-nearest.
951  */
float_to_float16(vfloat4 a)952 ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a)
953 {
954 #if ASTCENC_F16C >= 1
955 	__m128i packedf16 = _mm_cvtps_ph(a.m, 0);
956 	__m128i f16 = _mm_cvtepu16_epi32(packedf16);
957 	return vint4(f16);
958 #else
959 	return vint4(
960 		float_to_sf16(a.lane<0>()),
961 		float_to_sf16(a.lane<1>()),
962 		float_to_sf16(a.lane<2>()),
963 		float_to_sf16(a.lane<3>()));
964 #endif
965 }
966 
967 /**
968  * @brief Return a float16 value for a float scalar, using round-to-nearest.
969  */
float_to_float16(float a)970 static inline uint16_t float_to_float16(float a)
971 {
972 #if ASTCENC_F16C >= 1
973 	__m128i f16 = _mm_cvtps_ph(_mm_set1_ps(a), 0);
974 	return  static_cast<uint16_t>(_mm_cvtsi128_si32(f16));
975 #else
976 	return float_to_sf16(a);
977 #endif
978 }
979 
980 /**
981  * @brief Return a float value for a float16 vector.
982  */
float16_to_float(vint4 a)983 ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a)
984 {
985 #if ASTCENC_F16C >= 1
986 	__m128i packed = _mm_packs_epi32(a.m, a.m);
987 	__m128 f32 = _mm_cvtph_ps(packed);
988 	return vfloat4(f32);
989 #else
990 	return vfloat4(
991 		sf16_to_float(static_cast<uint16_t>(a.lane<0>())),
992 		sf16_to_float(static_cast<uint16_t>(a.lane<1>())),
993 		sf16_to_float(static_cast<uint16_t>(a.lane<2>())),
994 		sf16_to_float(static_cast<uint16_t>(a.lane<3>())));
995 #endif
996 }
997 
998 /**
999  * @brief Return a float value for a float16 scalar.
1000  */
float16_to_float(uint16_t a)1001 ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a)
1002 {
1003 #if ASTCENC_F16C >= 1
1004 	__m128i packed = _mm_set1_epi16(static_cast<short>(a));
1005 	__m128 f32 = _mm_cvtph_ps(packed);
1006 	return _mm_cvtss_f32(f32);
1007 #else
1008 	return sf16_to_float(a);
1009 #endif
1010 }
1011 
1012 /**
1013  * @brief Return a float value as an integer bit pattern (i.e. no conversion).
1014  *
1015  * It is a common trick to convert floats into integer bit patterns, perform
1016  * some bit hackery based on knowledge they are IEEE 754 layout, and then
1017  * convert them back again. This is the first half of that flip.
1018  */
float_as_int(vfloat4 a)1019 ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a)
1020 {
1021 	return vint4(_mm_castps_si128(a.m));
1022 }
1023 
1024 /**
1025  * @brief Return a integer value as a float bit pattern (i.e. no conversion).
1026  *
1027  * It is a common trick to convert floats into integer bit patterns, perform
1028  * some bit hackery based on knowledge they are IEEE 754 layout, and then
1029  * convert them back again. This is the second half of that flip.
1030  */
int_as_float(vint4 v)1031 ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 v)
1032 {
1033 	return vfloat4(_mm_castsi128_ps(v.m));
1034 }
1035 
1036 /**
1037  * @brief Prepare a vtable lookup table for use with the native SIMD size.
1038  */
vtable_prepare(vint4 t0,vint4 & t0p)1039 ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4& t0p)
1040 {
1041 	t0p = t0;
1042 }
1043 
1044 /**
1045  * @brief Prepare a vtable lookup table for use with the native SIMD size.
1046  */
vtable_prepare(vint4 t0,vint4 t1,vint4 & t0p,vint4 & t1p)1047 ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint4& t0p, vint4& t1p)
1048 {
1049 #if ASTCENC_SSE >= 30
1050 	t0p = t0;
1051 	t1p = t0 ^ t1;
1052 #else
1053 	t0p = t0;
1054 	t1p = t1;
1055 #endif
1056 }
1057 
1058 /**
1059  * @brief Prepare a vtable lookup table for use with the native SIMD size.
1060  */
vtable_prepare(vint4 t0,vint4 t1,vint4 t2,vint4 t3,vint4 & t0p,vint4 & t1p,vint4 & t2p,vint4 & t3p)1061 ASTCENC_SIMD_INLINE void vtable_prepare(
1062 	vint4 t0, vint4 t1, vint4 t2, vint4 t3,
1063 	vint4& t0p, vint4& t1p, vint4& t2p, vint4& t3p)
1064 {
1065 #if ASTCENC_SSE >= 30
1066 	t0p = t0;
1067 	t1p = t0 ^ t1;
1068 	t2p = t1 ^ t2;
1069 	t3p = t2 ^ t3;
1070 #else
1071 	t0p = t0;
1072 	t1p = t1;
1073 	t2p = t2;
1074 	t3p = t3;
1075 #endif
1076 }
1077 
1078 /**
1079  * @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes.
1080  */
vtable_8bt_32bi(vint4 t0,vint4 idx)1081 ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx)
1082 {
1083 #if ASTCENC_SSE >= 30
1084 	// Set index byte MSB to 1 for unused bytes so shuffle returns zero
1085 	__m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00)));
1086 
1087 	__m128i result = _mm_shuffle_epi8(t0.m, idxx);
1088 	return vint4(result);
1089 #else
1090 	alignas(ASTCENC_VECALIGN) uint8_t table[16];
1091 	storea(t0, reinterpret_cast<int*>(table +  0));
1092 
1093 	return vint4(table[idx.lane<0>()],
1094 	             table[idx.lane<1>()],
1095 	             table[idx.lane<2>()],
1096 	             table[idx.lane<3>()]);
1097 #endif
1098 }
1099 
1100 /**
1101  * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes.
1102  */
vtable_8bt_32bi(vint4 t0,vint4 t1,vint4 idx)1103 ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx)
1104 {
1105 #if ASTCENC_SSE >= 30
1106 	// Set index byte MSB to 1 for unused bytes so shuffle returns zero
1107 	__m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00)));
1108 
1109 	__m128i result = _mm_shuffle_epi8(t0.m, idxx);
1110 	idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
1111 
1112 	__m128i result2 = _mm_shuffle_epi8(t1.m, idxx);
1113 	result = _mm_xor_si128(result, result2);
1114 
1115 	return vint4(result);
1116 #else
1117 	alignas(ASTCENC_VECALIGN) uint8_t table[32];
1118 	storea(t0, reinterpret_cast<int*>(table +  0));
1119 	storea(t1, reinterpret_cast<int*>(table + 16));
1120 
1121 	return vint4(table[idx.lane<0>()],
1122 	             table[idx.lane<1>()],
1123 	             table[idx.lane<2>()],
1124 	             table[idx.lane<3>()]);
1125 #endif
1126 }
1127 
1128 /**
1129  * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes.
1130  */
vtable_8bt_32bi(vint4 t0,vint4 t1,vint4 t2,vint4 t3,vint4 idx)1131 ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4 idx)
1132 {
1133 #if ASTCENC_SSE >= 30
1134 	// Set index byte MSB to 1 for unused bytes so shuffle returns zero
1135 	__m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00)));
1136 
1137 	__m128i result = _mm_shuffle_epi8(t0.m, idxx);
1138 	idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
1139 
1140 	__m128i result2 = _mm_shuffle_epi8(t1.m, idxx);
1141 	result = _mm_xor_si128(result, result2);
1142 	idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
1143 
1144 	result2 = _mm_shuffle_epi8(t2.m, idxx);
1145 	result = _mm_xor_si128(result, result2);
1146 	idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
1147 
1148 	result2 = _mm_shuffle_epi8(t3.m, idxx);
1149 	result = _mm_xor_si128(result, result2);
1150 
1151 	return vint4(result);
1152 #else
1153 	alignas(ASTCENC_VECALIGN) uint8_t table[64];
1154 	storea(t0, reinterpret_cast<int*>(table +  0));
1155 	storea(t1, reinterpret_cast<int*>(table + 16));
1156 	storea(t2, reinterpret_cast<int*>(table + 32));
1157 	storea(t3, reinterpret_cast<int*>(table + 48));
1158 
1159 	return vint4(table[idx.lane<0>()],
1160 	             table[idx.lane<1>()],
1161 	             table[idx.lane<2>()],
1162 	             table[idx.lane<3>()]);
1163 #endif
1164 }
1165 
1166 /**
1167  * @brief Return a vector of interleaved RGBA data.
1168  *
1169  * Input vectors have the value stored in the bottom 8 bits of each lane,
1170  * with high  bits set to zero.
1171  *
1172  * Output vector stores a single RGBA texel packed in each lane.
1173  */
interleave_rgba8(vint4 r,vint4 g,vint4 b,vint4 a)1174 ASTCENC_SIMD_INLINE vint4 interleave_rgba8(vint4 r, vint4 g, vint4 b, vint4 a)
1175 {
1176 // Workaround an XCode compiler internal fault; note is slower than slli_epi32
1177 // so we should revert this when we get the opportunity
1178 #if defined(__APPLE__)
1179 	__m128i value = r.m;
1180 	value = _mm_add_epi32(value, _mm_bslli_si128(g.m, 1));
1181 	value = _mm_add_epi32(value, _mm_bslli_si128(b.m, 2));
1182 	value = _mm_add_epi32(value, _mm_bslli_si128(a.m, 3));
1183 	return vint4(value);
1184 #else
1185 	__m128i value = r.m;
1186 	value = _mm_add_epi32(value, _mm_slli_epi32(g.m,  8));
1187 	value = _mm_add_epi32(value, _mm_slli_epi32(b.m, 16));
1188 	value = _mm_add_epi32(value, _mm_slli_epi32(a.m, 24));
1189 	return vint4(value);
1190 #endif
1191 }
1192 
1193 /**
1194  * @brief Store a vector, skipping masked lanes.
1195  *
1196  * All masked lanes must be at the end of vector, after all non-masked lanes.
1197  */
store_lanes_masked(int * base,vint4 data,vmask4 mask)1198 ASTCENC_SIMD_INLINE void store_lanes_masked(int* base, vint4 data, vmask4 mask)
1199 {
1200 #if ASTCENC_AVX >= 2
1201 	_mm_maskstore_epi32(base, _mm_castps_si128(mask.m), data.m);
1202 #else
1203 	// Note - we cannot use _mm_maskmoveu_si128 as the underlying hardware doesn't guarantee
1204 	// fault suppression on masked lanes so we can get page faults at the end of an image.
1205 	if (mask.lane<3>() != 0.0f)
1206 	{
1207 		store(data, base);
1208 	}
1209 	else if (mask.lane<2>() != 0.0f)
1210 	{
1211 		base[0] = data.lane<0>();
1212 		base[1] = data.lane<1>();
1213 		base[2] = data.lane<2>();
1214 	}
1215 	else if (mask.lane<1>() != 0.0f)
1216 	{
1217 		base[0] = data.lane<0>();
1218 		base[1] = data.lane<1>();
1219 	}
1220 	else if (mask.lane<0>() != 0.0f)
1221 	{
1222 		base[0] = data.lane<0>();
1223 	}
1224 #endif
1225 }
1226 
1227 #if defined(ASTCENC_NO_INVARIANCE) && (ASTCENC_SSE >= 41)
1228 
1229 #define ASTCENC_USE_NATIVE_DOT_PRODUCT 1
1230 
1231 /**
1232  * @brief Return the dot product for the full 4 lanes, returning scalar.
1233  */
dot_s(vfloat4 a,vfloat4 b)1234 ASTCENC_SIMD_INLINE float dot_s(vfloat4 a, vfloat4 b)
1235 {
1236 	return _mm_cvtss_f32(_mm_dp_ps(a.m, b.m, 0xFF));
1237 }
1238 
1239 /**
1240  * @brief Return the dot product for the full 4 lanes, returning vector.
1241  */
dot(vfloat4 a,vfloat4 b)1242 ASTCENC_SIMD_INLINE vfloat4 dot(vfloat4 a, vfloat4 b)
1243 {
1244 	return vfloat4(_mm_dp_ps(a.m, b.m, 0xFF));
1245 }
1246 
1247 /**
1248  * @brief Return the dot product for the bottom 3 lanes, returning scalar.
1249  */
dot3_s(vfloat4 a,vfloat4 b)1250 ASTCENC_SIMD_INLINE float dot3_s(vfloat4 a, vfloat4 b)
1251 {
1252 	return _mm_cvtss_f32(_mm_dp_ps(a.m, b.m, 0x77));
1253 }
1254 
1255 /**
1256  * @brief Return the dot product for the bottom 3 lanes, returning vector.
1257  */
dot3(vfloat4 a,vfloat4 b)1258 ASTCENC_SIMD_INLINE vfloat4 dot3(vfloat4 a, vfloat4 b)
1259 {
1260 	return vfloat4(_mm_dp_ps(a.m, b.m, 0x77));
1261 }
1262 
1263 #endif // #if defined(ASTCENC_NO_INVARIANCE) && (ASTCENC_SSE >= 41)
1264 
1265 #if ASTCENC_POPCNT >= 1
1266 
1267 #define ASTCENC_USE_NATIVE_POPCOUNT 1
1268 
1269 /**
1270  * @brief Population bit count.
1271  *
1272  * @param v   The value to population count.
1273  *
1274  * @return The number of 1 bits.
1275  */
popcount(uint64_t v)1276 ASTCENC_SIMD_INLINE int popcount(uint64_t v)
1277 {
1278 	return static_cast<int>(_mm_popcnt_u64(v));
1279 }
1280 
1281 #endif // ASTCENC_POPCNT >= 1
1282 
1283 #endif // #ifndef ASTC_VECMATHLIB_SSE_4_H_INCLUDED
1284