• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2012, The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *  * Neither the name of Google, Inc. nor the names of its contributors
15  *    may be used to endorse or promote products derived from this
16  *    software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
21  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
22  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
28  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35 #include <unistd.h>
36 
37 #define MAX_BUF_SIZE 64
38 
39 struct freq_info {
40     unsigned freq;
41     long unsigned time;
42 };
43 
44 struct cpu_info {
45     long unsigned utime, ntime, stime, itime, iowtime, irqtime, sirqtime;
46     struct freq_info* freqs;
47     int freq_count;
48 };
49 
50 #define die(...)                      \
51     {                                 \
52         fprintf(stderr, __VA_ARGS__); \
53         exit(EXIT_FAILURE);           \
54     }
55 
56 static struct cpu_info old_total_cpu, new_total_cpu, *old_cpus, *new_cpus;
57 static int cpu_count, delay, iterations;
58 static char minimal, aggregate_freq_stats;
59 
60 static int get_cpu_count();
61 static int get_cpu_count_from_file(char* filename);
62 static long unsigned get_cpu_total_time(struct cpu_info* cpu);
63 static int get_freq_scales_count(int cpu);
64 static void print_stats();
65 static void print_cpu_stats(char* label, struct cpu_info* new_cpu, struct cpu_info* old_cpu,
66                             char print_freq);
67 static void print_freq_stats(struct cpu_info* new_cpu, struct cpu_info* old_cpu);
68 static void read_stats();
69 static void read_freq_stats(int cpu);
70 static char should_aggregate_freq_stats();
71 static char should_print_freq_stats();
72 static void usage(char* cmd);
73 
main(int argc,char * argv[])74 int main(int argc, char* argv[]) {
75     struct cpu_info *tmp_cpus, tmp_total_cpu;
76     int i, freq_count;
77 
78     delay = 3;
79     iterations = -1;
80     minimal = 0;
81     aggregate_freq_stats = 0;
82 
83     for (i = 0; i < argc; i++) {
84         if (!strcmp(argv[i], "-n")) {
85             if (i + 1 >= argc) {
86                 fprintf(stderr, "Option -n expects an argument.\n");
87                 usage(argv[0]);
88                 exit(EXIT_FAILURE);
89             }
90             iterations = atoi(argv[++i]);
91             continue;
92         }
93         if (!strcmp(argv[i], "-d")) {
94             if (i + 1 >= argc) {
95                 fprintf(stderr, "Option -d expects an argument.\n");
96                 usage(argv[0]);
97                 exit(EXIT_FAILURE);
98             }
99             delay = atoi(argv[++i]);
100             continue;
101         }
102         if (!strcmp(argv[i], "-m")) {
103             minimal = 1;
104         }
105         if (!strcmp(argv[i], "-h")) {
106             usage(argv[0]);
107             exit(EXIT_SUCCESS);
108         }
109     }
110 
111     cpu_count = get_cpu_count();
112     if (cpu_count < 1) die("Unexpected cpu count\n");
113 
114     old_cpus = malloc(sizeof(struct cpu_info) * cpu_count);
115     if (!old_cpus) die("Could not allocate struct cpu_info\n");
116     new_cpus = malloc(sizeof(struct cpu_info) * cpu_count);
117     if (!new_cpus) die("Could not allocate struct cpu_info\n");
118 
119     for (i = 0; i < cpu_count; i++) {
120         freq_count = get_freq_scales_count(i);
121         if (freq_count < 1) die("Unexpected frequency scale count\n");
122         old_cpus[i].freq_count = new_cpus[i].freq_count = freq_count;
123         new_cpus[i].freqs = malloc(sizeof(struct freq_info) * new_cpus[i].freq_count);
124         if (!new_cpus[i].freqs) die("Could not allocate struct freq_info\n");
125         old_cpus[i].freqs = malloc(sizeof(struct freq_info) * old_cpus[i].freq_count);
126         if (!old_cpus[i].freqs) die("Could not allocate struct freq_info\n");
127     }
128 
129     // Read stats without aggregating freq stats in the total cpu
130     read_stats();
131 
132     aggregate_freq_stats = should_aggregate_freq_stats();
133     if (aggregate_freq_stats) {
134         old_total_cpu.freq_count = new_total_cpu.freq_count = new_cpus[0].freq_count;
135         new_total_cpu.freqs = malloc(sizeof(struct freq_info) * new_total_cpu.freq_count);
136         if (!new_total_cpu.freqs) die("Could not allocate struct freq_info\n");
137         old_total_cpu.freqs = malloc(sizeof(struct freq_info) * old_total_cpu.freq_count);
138         if (!old_total_cpu.freqs) die("Could not allocate struct freq_info\n");
139 
140         // Read stats again with aggregating freq stats in the total cpu
141         read_stats();
142     }
143 
144     while ((iterations == -1) || (iterations-- > 0)) {
145         // Swap new and old cpu buffers;
146         tmp_total_cpu = old_total_cpu;
147         old_total_cpu = new_total_cpu;
148         new_total_cpu = tmp_total_cpu;
149 
150         tmp_cpus = old_cpus;
151         old_cpus = new_cpus;
152         new_cpus = tmp_cpus;
153 
154         sleep(delay);
155         read_stats();
156         print_stats();
157     }
158 
159     // Clean up
160     if (aggregate_freq_stats) {
161         free(new_total_cpu.freqs);
162         free(old_total_cpu.freqs);
163     }
164     for (i = 0; i < cpu_count; i++) {
165         free(new_cpus[i].freqs);
166         free(old_cpus[i].freqs);
167     }
168     free(new_cpus);
169     free(old_cpus);
170 
171     return 0;
172 }
173 
174 /*
175  * Get the number of CPUs of the system.
176  *
177  * Uses the two files /sys/devices/system/cpu/present and
178  * /sys/devices/system/cpu/online to determine the number of CPUs. Expects the
179  * format of both files to be either 0 or 0-N where N+1 is the number of CPUs.
180  *
181  * Exits if the present CPUs is not equal to the online CPUs
182  */
get_cpu_count()183 static int get_cpu_count() {
184     int cpu_count = get_cpu_count_from_file("/sys/devices/system/cpu/present");
185     if (cpu_count != get_cpu_count_from_file("/sys/devices/system/cpu/online")) {
186         die("present cpus != online cpus\n");
187     }
188     return cpu_count;
189 }
190 
191 /*
192  * Get the number of CPUs from a given filename.
193  */
get_cpu_count_from_file(char * filename)194 static int get_cpu_count_from_file(char* filename) {
195     FILE* file;
196     char line[MAX_BUF_SIZE];
197     int cpu_count;
198 
199     file = fopen(filename, "r");
200     if (!file) die("Could not open %s\n", filename);
201     if (!fgets(line, MAX_BUF_SIZE, file)) die("Could not get %s contents\n", filename);
202     fclose(file);
203 
204     if (strcmp(line, "0\n") == 0) {
205         return 1;
206     }
207 
208     if (1 == sscanf(line, "0-%d\n", &cpu_count)) {
209         return cpu_count + 1;
210     }
211 
212     die("Unexpected input in file %s (%s).\n", filename, line);
213     return -1;
214 }
215 
216 /*
217  * Get the number of frequency states a given CPU can be scaled to.
218  */
get_freq_scales_count(int cpu)219 static int get_freq_scales_count(int cpu) {
220     FILE* file;
221     char filename[MAX_BUF_SIZE];
222     long unsigned freq;
223     int count = 0;
224 
225     sprintf(filename, "/sys/devices/system/cpu/cpu%d/cpufreq/stats/time_in_state", cpu);
226     file = fopen(filename, "r");
227     if (!file) die("Could not open %s\n", filename);
228     do {
229         freq = 0;
230         fscanf(file, "%lu %*d\n", &freq);
231         if (freq) count++;
232     } while (freq);
233     fclose(file);
234 
235     return count;
236 }
237 
238 /*
239  * Read the CPU and frequency stats for all cpus.
240  */
read_stats()241 static void read_stats() {
242     FILE* file;
243     char scanline[MAX_BUF_SIZE];
244     int i;
245 
246     file = fopen("/proc/stat", "r");
247     if (!file) die("Could not open /proc/stat.\n");
248     fscanf(file, "cpu  %lu %lu %lu %lu %lu %lu %lu %*d %*d %*d\n", &new_total_cpu.utime,
249            &new_total_cpu.ntime, &new_total_cpu.stime, &new_total_cpu.itime, &new_total_cpu.iowtime,
250            &new_total_cpu.irqtime, &new_total_cpu.sirqtime);
251     if (aggregate_freq_stats) {
252         for (i = 0; i < new_total_cpu.freq_count; i++) {
253             new_total_cpu.freqs[i].time = 0;
254         }
255     }
256 
257     for (i = 0; i < cpu_count; i++) {
258         sprintf(scanline, "cpu%d %%lu %%lu %%lu %%lu %%lu %%lu %%lu %%*d %%*d %%*d\n", i);
259         fscanf(file, scanline, &new_cpus[i].utime, &new_cpus[i].ntime, &new_cpus[i].stime,
260                &new_cpus[i].itime, &new_cpus[i].iowtime, &new_cpus[i].irqtime,
261                &new_cpus[i].sirqtime);
262         read_freq_stats(i);
263     }
264     fclose(file);
265 }
266 
267 /*
268  * Read the frequency stats for a given cpu.
269  */
read_freq_stats(int cpu)270 static void read_freq_stats(int cpu) {
271     FILE* file;
272     char filename[MAX_BUF_SIZE];
273     int i;
274 
275     sprintf(filename, "/sys/devices/system/cpu/cpu%d/cpufreq/stats/time_in_state", cpu);
276     file = fopen(filename, "r");
277     for (i = 0; i < new_cpus[cpu].freq_count; i++) {
278         if (file) {
279             fscanf(file, "%u %lu\n", &new_cpus[cpu].freqs[i].freq, &new_cpus[cpu].freqs[i].time);
280         } else {
281             /* The CPU has been off lined for some reason */
282             new_cpus[cpu].freqs[i].freq = old_cpus[cpu].freqs[i].freq;
283             new_cpus[cpu].freqs[i].time = old_cpus[cpu].freqs[i].time;
284         }
285         if (aggregate_freq_stats) {
286             new_total_cpu.freqs[i].freq = new_cpus[cpu].freqs[i].freq;
287             new_total_cpu.freqs[i].time += new_cpus[cpu].freqs[i].time;
288         }
289     }
290     if (file) fclose(file);
291 }
292 
293 /*
294  * Get the sum of the cpu time from all categories.
295  */
get_cpu_total_time(struct cpu_info * cpu)296 static long unsigned get_cpu_total_time(struct cpu_info* cpu) {
297     return (cpu->utime + cpu->ntime + cpu->stime + cpu->itime + cpu->iowtime + cpu->irqtime +
298             cpu->sirqtime);
299 }
300 
301 /*
302  * Print the stats for all CPUs.
303  */
print_stats()304 static void print_stats() {
305     char label[8];
306     int i;
307     char print_freq;
308 
309     print_freq = should_print_freq_stats();
310 
311     print_cpu_stats("Total", &new_total_cpu, &old_total_cpu, 1);
312     for (i = 0; i < cpu_count; i++) {
313         sprintf(label, "cpu%d", i);
314         print_cpu_stats(label, &new_cpus[i], &old_cpus[i], print_freq);
315     }
316     printf("\n");
317 }
318 
319 /*
320  * Print the stats for a single CPU.
321  */
print_cpu_stats(char * label,struct cpu_info * new_cpu,struct cpu_info * old_cpu,char print_freq)322 static void print_cpu_stats(char* label, struct cpu_info* new_cpu, struct cpu_info* old_cpu,
323                             char print_freq) {
324     long int total_delta_time;
325 
326     if (!minimal) {
327         total_delta_time = get_cpu_total_time(new_cpu) - get_cpu_total_time(old_cpu);
328         printf("%s: User %ld + Nice %ld + Sys %ld + Idle %ld + IOW %ld + IRQ %ld + SIRQ %ld = "
329                "%ld\n",
330                label, new_cpu->utime - old_cpu->utime, new_cpu->ntime - old_cpu->ntime,
331                new_cpu->stime - old_cpu->stime, new_cpu->itime - old_cpu->itime,
332                new_cpu->iowtime - old_cpu->iowtime, new_cpu->irqtime - old_cpu->irqtime,
333                new_cpu->sirqtime - old_cpu->sirqtime, total_delta_time);
334         if (print_freq) {
335             print_freq_stats(new_cpu, old_cpu);
336         }
337     } else {
338         printf("%s,%ld,%ld,%ld,%ld,%ld,%ld,%ld", label, new_cpu->utime - old_cpu->utime,
339                new_cpu->ntime - old_cpu->ntime, new_cpu->stime - old_cpu->stime,
340                new_cpu->itime - old_cpu->itime, new_cpu->iowtime - old_cpu->iowtime,
341                new_cpu->irqtime - old_cpu->irqtime, new_cpu->sirqtime - old_cpu->sirqtime);
342         print_freq_stats(new_cpu, old_cpu);
343         printf("\n");
344     }
345 }
346 
347 /*
348  * Print the CPU stats for a single CPU.
349  */
print_freq_stats(struct cpu_info * new_cpu,struct cpu_info * old_cpu)350 static void print_freq_stats(struct cpu_info* new_cpu, struct cpu_info* old_cpu) {
351     long int delta_time, total_delta_time;
352     int i;
353 
354     if (new_cpu->freq_count > 0) {
355         if (!minimal) {
356             total_delta_time = 0;
357             printf("  ");
358             for (i = 0; i < new_cpu->freq_count; i++) {
359                 delta_time = new_cpu->freqs[i].time - old_cpu->freqs[i].time;
360                 total_delta_time += delta_time;
361                 printf("%ukHz %ld", new_cpu->freqs[i].freq, delta_time);
362                 if (i + 1 != new_cpu->freq_count) {
363                     printf(" + \n  ");
364                 } else {
365                     printf(" = ");
366                 }
367             }
368             printf("%ld\n", total_delta_time);
369         } else {
370             for (i = 0; i < new_cpu->freq_count; i++) {
371                 printf(",%u,%ld", new_cpu->freqs[i].freq,
372                        new_cpu->freqs[i].time - old_cpu->freqs[i].time);
373             }
374         }
375     }
376 }
377 
378 /*
379  * Determine if frequency stats should be printed.
380  *
381  * If the frequency stats are different between CPUs, the stats should be
382  * printed for each CPU, else only the aggregate frequency stats should be
383  * printed.
384  */
should_print_freq_stats()385 static char should_print_freq_stats() {
386     int i, j;
387 
388     for (i = 1; i < cpu_count; i++) {
389         for (j = 0; j < new_cpus[i].freq_count; j++) {
390             if (new_cpus[i].freqs[j].time - old_cpus[i].freqs[j].time !=
391                 new_cpus[0].freqs[j].time - old_cpus[0].freqs[j].time) {
392                 return 1;
393             }
394         }
395     }
396     return 0;
397 }
398 
399 /*
400  * Determine if the frequency stats should be aggregated.
401  *
402  * Only aggregate the frequency stats in the total cpu stats if the frequencies
403  * reported by all CPUs are identical.  Must be called after read_stats() has
404  * been called once.
405  */
should_aggregate_freq_stats()406 static char should_aggregate_freq_stats() {
407     int i, j;
408 
409     for (i = 1; i < cpu_count; i++) {
410         if (new_cpus[i].freq_count != new_cpus[0].freq_count) {
411             return 0;
412         }
413         for (j = 0; j < new_cpus[i].freq_count; j++) {
414             if (new_cpus[i].freqs[j].freq != new_cpus[0].freqs[j].freq) {
415                 return 0;
416             }
417         }
418     }
419 
420     return 1;
421 }
422 
423 /*
424  * Print the usage message.
425  */
usage(char * cmd)426 static void usage(char* cmd) {
427     fprintf(stderr,
428             "Usage %s [ -n iterations ] [ -d delay ] [ -c cpu ] [ -m ] [ -h ]\n"
429             "    -n num  Updates to show before exiting.\n"
430             "    -d num  Seconds to wait between updates.\n"
431             "    -m      Display minimal output.\n"
432             "    -h      Display this help screen.\n",
433             cmd);
434 }
435