1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 *
16 */
17
18 #include <testUtil.h>
19
20 #include <assert.h>
21 #include <errno.h>
22 #include <math.h>
23 #include <stdarg.h>
24 #include <stdbool.h>
25 #include <stdint.h>
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <sys/time.h>
30 #include <sys/wait.h>
31 #include <time.h>
32
33 #include <log/log.h>
34
35 #define ALEN(a) (sizeof(a) / sizeof((a)[0])) // Array length
36
37 #define MAXSTR 200
38
39 static const char *logCatTag;
40 static const unsigned int uSecsPerSec = 1000000;
41 static const unsigned int nSecsPerSec = 1000000000;
42
43 // struct timespec to double
ts2double(const struct timespec * val)44 double ts2double(const struct timespec *val)
45 {
46 double rv;
47
48 rv = val->tv_sec;
49 rv += (double) val->tv_nsec / nSecsPerSec;
50
51 return rv;
52 }
53
54 // struct timeval to double
tv2double(const struct timeval * val)55 double tv2double(const struct timeval *val)
56 {
57 double rv;
58
59 rv = val->tv_sec;
60 rv += (double) val->tv_usec / uSecsPerSec;
61
62 return rv;
63 }
64
65 // double to struct timespec
double2ts(double amt)66 struct timespec double2ts(double amt)
67 {
68 struct timespec rv;
69
70 rv.tv_sec = floor(amt);
71 rv.tv_nsec = (amt - rv.tv_sec) * nSecsPerSec;
72 // TODO: Handle cases where amt is negative
73 while ((unsigned) rv.tv_nsec >= nSecsPerSec) {
74 rv.tv_nsec -= nSecsPerSec;
75 rv.tv_sec++;
76 }
77
78 return rv;
79 }
80
81 // double to struct timeval
double2tv(double amt)82 struct timeval double2tv(double amt)
83 {
84 struct timeval rv;
85
86 rv.tv_sec = floor(amt);
87 rv.tv_usec = (amt - rv.tv_sec) * uSecsPerSec;
88 // TODO: Handle cases where amt is negative
89 while ((unsigned) rv.tv_usec >= uSecsPerSec) {
90 rv.tv_usec -= uSecsPerSec;
91 rv.tv_sec++;
92 }
93
94 return rv;
95 }
96
97 // Delta (difference) between two struct timespec.
98 // It is expected that the time given by the structure pointed to by
99 // second, is later than the time pointed to by first.
tsDelta(const struct timespec * first,const struct timespec * second)100 struct timespec tsDelta(const struct timespec *first,
101 const struct timespec *second)
102 {
103 struct timespec rv;
104
105 assert(first != NULL);
106 assert(second != NULL);
107 assert(first->tv_nsec >= 0 && first->tv_nsec < nSecsPerSec);
108 assert(second->tv_nsec >= 0 && second->tv_nsec < nSecsPerSec);
109 rv.tv_sec = second->tv_sec - first->tv_sec;
110 if (second->tv_nsec >= first->tv_nsec) {
111 rv.tv_nsec = second->tv_nsec - first->tv_nsec;
112 } else {
113 rv.tv_nsec = (second->tv_nsec + nSecsPerSec) - first->tv_nsec;
114 rv.tv_sec--;
115 }
116
117 return rv;
118 }
119
120 // Delta (difference) between two struct timeval.
121 // It is expected that the time given by the structure pointed to by
122 // second, is later than the time pointed to by first.
tvDelta(const struct timeval * first,const struct timeval * second)123 struct timeval tvDelta(const struct timeval *first,
124 const struct timeval *second)
125 {
126 struct timeval rv;
127
128 assert(first != NULL);
129 assert(second != NULL);
130 assert(first->tv_usec >= 0 && first->tv_usec < uSecsPerSec);
131 assert(second->tv_usec >= 0 && second->tv_usec < uSecsPerSec);
132 rv.tv_sec = second->tv_sec - first->tv_sec;
133 if (second->tv_usec >= first->tv_usec) {
134 rv.tv_usec = second->tv_usec - first->tv_usec;
135 } else {
136 rv.tv_usec = (second->tv_usec + uSecsPerSec) - first->tv_usec;
137 rv.tv_sec--;
138 }
139
140 return rv;
141 }
142
testPrint(FILE * stream,const char * fmt,...)143 void testPrint(FILE *stream, const char *fmt, ...)
144 {
145 char line[MAXSTR];
146 va_list args;
147
148 va_start(args, fmt);
149 vsnprintf(line, sizeof(line), fmt, args);
150 if (stream == stderr) {
151 ALOG(LOG_ERROR, logCatTag, "%s", line);
152 } else {
153 ALOG(LOG_INFO, logCatTag, "%s", line);
154 }
155 vfprintf(stream, fmt, args);
156 va_end(args);
157 fputc('\n', stream);
158 }
159
160 // Set tag used while logging to the logcat error interface
testSetLogCatTag(const char * tag)161 void testSetLogCatTag(const char *tag)
162 {
163 logCatTag = tag;
164 }
165
166 // Obtain pointer to current log to logcat error interface tag
testGetLogCatTag(void)167 const char * testGetLogCatTag(void)
168 {
169 return logCatTag;
170 }
171
172 /*
173 * Random
174 *
175 * Returns a pseudo random number in the range [0:2^32-1].
176 *
177 * Precondition: srand48() called to set the seed of
178 * the pseudo random number generator.
179 */
testRand(void)180 uint32_t testRand(void)
181 {
182 uint32_t val;
183
184 // Use lrand48() to obtain 31 bits worth
185 // of randomness.
186 val = lrand48();
187
188 // Make an additional lrand48() call and merge
189 // the randomness into the most significant bits.
190 val ^= lrand48() << 1;
191
192 return val;
193 }
194
195 /*
196 * Random Modulus
197 *
198 * Pseudo randomly returns unsigned integer in the range [0, mod).
199 *
200 * Precondition: srand48() called to set the seed of
201 * the pseudo random number generator.
202 */
testRandMod(uint32_t mod)203 uint32_t testRandMod(uint32_t mod)
204 {
205 // Obtain the random value
206 // Use lrand48() when it would produce a sufficient
207 // number of random bits, otherwise use testRand().
208 const uint32_t lrand48maxVal = ((uint32_t) 1 << 31) - 1;
209 uint32_t val = (mod <= lrand48maxVal) ? (uint32_t) lrand48() : testRand();
210
211 /*
212 * The contents of individual bytes tend to be less than random
213 * across different seeds. For example, srand48(x) and
214 * srand48(x + n * 4) cause lrand48() to return the same sequence of
215 * least significant bits. For small mod values this can produce
216 * noticably non-random sequnces. For mod values of less than 2
217 * bytes, will use the randomness from all the bytes.
218 */
219 if (mod <= 0x10000) {
220 val = (val & 0xffff) ^ (val >> 16);
221
222 // If mod less than a byte, can further combine down to
223 // a single byte.
224 if (mod <= 0x100) {
225 val = (val & 0xff) ^ (val >> 8);
226 }
227 }
228
229 return val % mod;
230 }
231
232 /*
233 * Random Boolean
234 *
235 * Pseudo randomly returns 0 (false) or 1 (true).
236 *
237 * Precondition: srand48() called to set the seed of
238 * the pseudo random number generator.
239 */
testRandBool(void)240 int testRandBool(void)
241 {
242 return (testRandMod(2));
243 }
244
245 /*
246 * Random Fraction
247 *
248 * Pseudo randomly return a value in the range [0.0, 1.0).
249 *
250 * Precondition: srand48() called to set the seed of
251 * the pseudo random number generator.
252 */
testRandFract(void)253 double testRandFract(void)
254 {
255 return drand48();
256 }
257
258 // Delays for the number of seconds specified by amt or a greater amount.
259 // The amt variable is of type float and thus non-integer amounts
260 // of time can be specified. This function automatically handles cases
261 // where nanosleep(2) returns early due to reception of a signal.
testDelay(float amt)262 void testDelay(float amt)
263 {
264 struct timespec start, current, delta;
265 struct timespec remaining;
266
267 // Get the time at which we started
268 clock_gettime(CLOCK_MONOTONIC, &start);
269
270 do {
271 // Get current time
272 clock_gettime(CLOCK_MONOTONIC, ¤t);
273
274 // How much time is left
275 delta = tsDelta(&start, ¤t);
276 if (ts2double(&delta) > amt) { break; }
277
278 // Request to sleep for the remaining time
279 remaining = double2ts(amt - ts2double(&delta));
280 (void) nanosleep(&remaining, NULL);
281 } while (true);
282 }
283
284 // Delay spins for the number of seconds specified by amt or a greater
285 // amount. The amt variable is of type float and thus non-integer amounts
286 // of time can be specified. Differs from testDelay() in that
287 // testDelaySpin() performs a spin loop, instead of using nanosleep().
testDelaySpin(float amt)288 void testDelaySpin(float amt)
289 {
290 struct timespec start, current, delta;
291
292 // Get the time at which we started
293 clock_gettime(CLOCK_MONOTONIC, &start);
294
295 do {
296 // Get current time
297 clock_gettime(CLOCK_MONOTONIC, ¤t);
298
299 // How much time is left
300 delta = tsDelta(&start, ¤t);
301 if (ts2double(&delta) > amt) { break; }
302 } while (true);
303 }
304
305 /*
306 * Hex Dump
307 *
308 * Displays in hex the contents of the memory starting at the location
309 * pointed to by buf, for the number of bytes given by size.
310 * Each line of output is indented by a number of spaces that
311 * can be set by calling xDumpSetIndent(). It is also possible
312 * to offset the displayed address by an amount set by calling
313 * xDumpSetOffset.
314 */
315 static uint8_t xDumpIndent;
316 static uint64_t xDumpOffset;
317 void
testXDump(const void * buf,size_t size)318 testXDump(const void *buf, size_t size)
319 {
320 const unsigned int bytesPerLine = 16;
321 int rv;
322 char line[MAXSTR];
323 const unsigned char *ptr = buf, *start = buf;
324 size_t num = size;
325 char *linep = line;
326
327 while (num) {
328 if (((ptr - start) % bytesPerLine) == 0) {
329 if (linep != line) {
330 testPrintE("%s", line);
331 }
332 linep = line;
333 rv = snprintf(linep, ALEN(line) - (linep - line),
334 "%*s%06llx:", xDumpIndent, "",
335 (long long) (ptr - start) + xDumpOffset);
336 linep += rv;
337 }
338
339 // Check that there is at least room for 4
340 // more characters. The 4 characters being
341 // a space, 2 hex digits and the terminating
342 // '\0'.
343 assert((ALEN(line) - 4) >= (linep - line));
344 rv = snprintf(linep, ALEN(line) - (linep - line),
345 " %02x", *ptr++);
346 linep += rv;
347 num--;
348 }
349 if (linep != line) {
350 testPrintE("%s", line);
351 }
352 }
353
354 // Set an indent of spaces for each line of hex dump output
355 void
testXDumpSetIndent(uint8_t indent)356 testXDumpSetIndent(uint8_t indent)
357 {
358 xDumpIndent = indent;
359 }
360
361 // Obtain the current hex dump indent amount
362 uint8_t
testXDumpGetIndent(void)363 testXDumpGetIndent(void)
364 {
365 return xDumpIndent;
366 }
367
368 // Set the hex dump address offset amount
369 void
testXDumpSetOffset(uint64_t offset)370 testXDumpSetOffset(uint64_t offset)
371 {
372 xDumpOffset = offset;
373 }
374
375 // Get the current hex dump address offset amount
376 uint64_t
testXDumpGetOffset(void)377 testXDumpGetOffset(void)
378 {
379 return xDumpOffset;
380 }
381
382 /*
383 * Execute Command
384 *
385 * Executes the command pointed to by cmd. Output from the
386 * executed command is captured and sent to LogCat Info. Once
387 * the command has finished execution, it's exit status is captured
388 * and checked for an exit status of zero. Any other exit status
389 * causes diagnostic information to be printed and an immediate
390 * testcase failure.
391 */
testExecCmd(const char * cmd)392 void testExecCmd(const char *cmd)
393 {
394 FILE *fp;
395 int status;
396 char str[MAXSTR];
397
398 // Display command to be executed
399 testPrintI("cmd: %s", cmd);
400
401 // Execute the command
402 fflush(stdout);
403 if ((fp = popen(cmd, "r")) == NULL) {
404 testPrintE("execCmd popen failed, errno: %i", errno);
405 exit(100);
406 }
407
408 // Obtain and display each line of output from the executed command
409 while (fgets(str, sizeof(str), fp) != NULL) {
410 if ((strlen(str) > 1) && (str[strlen(str) - 1] == '\n')) {
411 str[strlen(str) - 1] = '\0';
412 }
413 testPrintI(" out: %s", str);
414 }
415
416 // Obtain and check return status of executed command.
417 // Fail on non-zero exit status
418 status = pclose(fp);
419 if (!(WIFEXITED(status) && (WEXITSTATUS(status) == 0))) {
420 testPrintE("Unexpected command failure");
421 testPrintE(" status: %#x", status);
422 if (WIFEXITED(status)) {
423 testPrintE("WEXITSTATUS: %i", WEXITSTATUS(status));
424 }
425 if (WIFSIGNALED(status)) {
426 testPrintE("WTERMSIG: %i", WTERMSIG(status));
427 }
428 exit(101);
429 }
430 }
431