/external/executorch/backends/arm/quantizer/quantization_annotation/ |
D | adaptive_ang_pool2d_annotator.py | 25 @register_annotator("adaptive_avg_pool2d") 31 """Always annotate adaptive_avg_pool2d op""" 33 gm.graph, [torch.nn.AdaptiveAvgPool2d, F.adaptive_avg_pool2d], filter_fn 41 or pool_node.target != torch.ops.aten.adaptive_avg_pool2d.default 43 raise ValueError(f"{pool_node} is not an aten adaptive_avg_pool2d operator")
|
/external/pytorch/aten/src/ATen/native/ |
D | AdaptiveAveragePooling.cpp | 29 TORCH_CHECK(output_size.size() == 2, "adaptive_avg_pool2d: output_size must be 2"); in adaptive_avg_pool2d_out_cpu_template() 32 "adaptive_avg_pool2d(): Expected 3D or 4D tensor, but got ", input.sizes()); in adaptive_avg_pool2d_out_cpu_template() 35 "adaptive_avg_pool2d(): Expected input to have non-zero size for non-batch dimensions, " in adaptive_avg_pool2d_out_cpu_template() 110 TORCH_CHECK(output_size.size() == 2, "adaptive_avg_pool2d: output_size must be 2"); in adaptive_avg_pool2d_symint() 113 "adaptive_avg_pool2d: elements of output_size must be greater than or equal to 0 ", in adaptive_avg_pool2d_symint()
|
D | Pooling.cpp | 13 #include <ATen/ops/adaptive_avg_pool2d.h> 47 auto output = at::adaptive_avg_pool2d( in adaptive_avg_pool1d()
|
/external/pytorch/test/quantization/pt2e/ |
D | test_metadata_porting.py | 25 self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d((1, 1)) 30 x = self.adaptive_avg_pool2d(x) 161 annotated_partitions = OP_TO_ANNOTATOR["adaptive_avg_pool2d"]( 165 backend_string, "adaptive_avg_pool2d", annotated_partitions 201 torch.ops.aten.adaptive_avg_pool2d.default: "BackendA_adaptive_avg_pool2d_0", 269 annotated_partitions = OP_TO_ANNOTATOR["adaptive_avg_pool2d"]( 273 backend_string, "adaptive_avg_pool2d", annotated_partitions 438 OP_TO_ANNOTATOR["adaptive_avg_pool2d"](gm, quantization_config)
|
D | test_duplicate_dq.py | 37 self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d((1, 1)) 42 x = self.adaptive_avg_pool2d(x) 71 self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d((1, 1)) 75 w = self.adaptive_avg_pool2d(x) 136 OP_TO_ANNOTATOR["adaptive_avg_pool2d"](gm, quantization_config)
|
/external/executorch/backends/arm/test/ops/ |
D | test_mean_dim.py | 45 self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d(output_size=(1, 1)) 48 return self.adaptive_avg_pool2d(x) 87 .check(["torch.ops.aten.adaptive_avg_pool2d.default"]) 108 .check_count({"torch.ops.aten.adaptive_avg_pool2d.default": 1}) 132 .check(["torch.ops.aten.adaptive_avg_pool2d.default"])
|
D | test_conv_combos.py | 98 self.adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d((1, 1)) 105 return self.adaptive_avg_pool2d(x)
|
/external/pytorch/aten/src/ATen/native/metal/ops/ |
D | MetalPooling.mm | 72 static Tensor adaptive_avg_pool2d(const Tensor& input, IntArrayRef output_size) { 106 m.impl(TORCH_SELECTIVE_NAME("aten::adaptive_avg_pool2d"), TORCH_FN(adaptive_avg_pool2d));
|
/external/pytorch/aten/src/ATen/native/vulkan/ops/ |
D | Pool.cpp | 13 Tensor adaptive_avg_pool2d( in adaptive_avg_pool2d() function 18 "Vulkan adaptive_avg_pool2d expects 4-dimensional input!"); in adaptive_avg_pool2d() 66 VK_KERNEL(adaptive_avg_pool2d), in adaptive_avg_pool2d() 288 TORCH_FN(adaptive_avg_pool2d)); in TORCH_LIBRARY_IMPL()
|
/external/executorch/backends/example/example_operators/ |
D | TARGETS | 8 "adaptive_avg_pool2d.py",
|
D | ops.py | 9 from executorch.backends.example.example_operators.adaptive_avg_pool2d import (
|
D | adaptive_avg_pool2d.py | 19 This is what the graph of a simple adaptive_avg_pool2d op looks like:
|
/external/executorch/backends/arm/quantizer/ |
D | arm_quantizer.py | 74 "adaptive_avg_pool2d": [ 76 [F.adaptive_avg_pool2d], 265 "adaptive_avg_pool2d",
|
/external/pytorch/torch/ao/quantization/quantizer/ |
D | xnnpack_quantizer.py | 79 "adaptive_avg_pool2d": [ 81 [F.adaptive_avg_pool2d], 255 "adaptive_avg_pool2d",
|
D | xnnpack_quantizer_utils.py | 636 @register_annotator("adaptive_avg_pool2d") 642 """Always annotate adaptive_avg_pool2d op""" 644 gm.graph, [torch.nn.AdaptiveAvgPool2d, F.adaptive_avg_pool2d], filter_fn 652 or pool_node.target != torch.ops.aten.adaptive_avg_pool2d.default 654 raise ValueError(f"{pool_node} is not an aten adaptive_avg_pool2d operator") 1012 torch.ops.aten.adaptive_avg_pool2d.default,
|
/external/pytorch/aten/src/ATen/native/mps/operations/ |
D | AdaptivePooling.mm | 12 #include <ATen/ops/adaptive_avg_pool2d.h> 66 … "adaptive_avg_pool2d(): Expected input to have non-zero size for non-batch dimensions, "
|
/external/pytorch/test/jit/ |
D | test_dtype_analysis.py | 40 "nn.functional.adaptive_avg_pool2d", 270 return torch._C._nn.adaptive_avg_pool2d(input, output_size)
|
/external/pytorch/torch/csrc/api/include/torch/nn/functional/ |
D | pooling.h | 568 inline Tensor adaptive_avg_pool2d( in adaptive_avg_pool2d() function 573 return torch::adaptive_avg_pool2d(input, output_size_); in adaptive_avg_pool2d() 579 /// https://pytorch.org/docs/main/nn.functional.html#torch.nn.functional.adaptive_avg_pool2d 589 /// F::adaptive_avg_pool2d(x, F::AdaptiveAvgPool2dFuncOptions(3)); 591 inline Tensor adaptive_avg_pool2d( in adaptive_avg_pool2d() function 594 return detail::adaptive_avg_pool2d(input, options.output_size()); in adaptive_avg_pool2d()
|
/external/pytorch/torch/ao/quantization/pt2e/ |
D | graph_utils.py | 24 {torch.nn.AdaptiveAvgPool2d, torch.nn.functional.adaptive_avg_pool2d},
|
/external/pytorch/docs/source/ |
D | nn.functional.rst | 48 adaptive_avg_pool2d
|
/external/pytorch/torch/ao/nn/quantized/ |
D | functional.py | 20 "adaptive_avg_pool2d", 133 def adaptive_avg_pool2d(input: Tensor, output_size: BroadcastingList2[int]) -> Tensor: function 148 "Input to 'quantized.functional.adaptive_avg_pool2d' must be quantized!" 150 return torch.nn.functional.adaptive_avg_pool2d(input, output_size)
|
/external/executorch/exir/passes/ |
D | quant_fusion_pass.py | 108 # batchnorm2d, relu, adaptive_avg_pool2d, reshape, squeeze, permute
|
/external/pytorch/torch/ao/ns/fx/ |
D | mappings.py | 76 F.adaptive_avg_pool2d, 544 F.adaptive_avg_pool2d,
|
/external/pytorch/aten/src/ATen/native/cuda/ |
D | AdaptiveAveragePooling.cu | 449 TORCH_CHECK(output_size.size() == 2, "adaptive_avg_pool2d: output_size must be 2"); in adaptive_avg_pool2d_out_cuda_template() 452 "adaptive_avg_pool2d(): Expected 3D or 4D tensor, but got ", input.sizes()); in adaptive_avg_pool2d_out_cuda_template() 455 "adaptive_avg_pool2d(): Expected input to have non-zero size for non-batch dimensions, " in adaptive_avg_pool2d_out_cuda_template() 465 "adaptive_avg_pool2d(): Expected 4D tensor, but got ", in adaptive_avg_pool2d_out_cuda_template()
|
/external/pytorch/functorch/op_analysis/ |
D | public_api | 442 nn.functional.adaptive_avg_pool2d
|