/external/sdv/vsomeip/third_party/boost/numeric/odeint/include/boost/numeric/odeint/algebra/ |
D | array_algebra.hpp | 36 //template< typename T , size_t dim , class Op > 38 size_t dim, class Op > 39 static void for_each1( Array< T, dim > &s1, Op op ) in for_each1() 41 for( size_t i=0 ; i<dim ; ++i ) in for_each1() 46 size_t dim, class Op > 47 static void for_each2( Array< T, dim > &s1, const Array< T, dim > &s2, in for_each2() 50 for( size_t i=0 ; i<dim ; ++i ) in for_each2() 55 size_t dim, class Op > 56 static void for_each3( Array< T , dim > &s1 , in for_each3() 57 const Array< T , dim > &s2 , in for_each3() [all …]
|
/external/pytorch/torch/_refs/ |
D | fft.py | 120 dim: int, 126 dims = (utils.canonicalize_dim(input.ndim, dim, wrap_scalar=False),) 127 last_dim_size = n if n is not None else 2 * (input.shape[dim] - 1) 139 output = prims.fft_c2r(input, dim=dims, last_dim_size=last_dim_size) 147 dim: int, 158 dims = (utils.canonicalize_dim(input.ndim, dim, wrap_scalar=False),) 159 dim_size = n if n is not None else input.shape[dim] 167 ret = prims.fft_r2c(input, dim=dims, onesided=onesided) 176 dim: int, 185 dims = (utils.canonicalize_dim(input.ndim, dim, wrap_scalar=False),) [all …]
|
/external/executorch/kernels/portable/cpu/util/ |
D | index_util.cpp | 17 int64_t dim, in check_gather_args() argument 22 ET_LOG_AND_RETURN_IF_FALSE(tensor_has_dim(in, dim)); in check_gather_args() 33 // Normalize dim to non-negative value in check_gather_args() 34 if (dim < 0) { in check_gather_args() 35 dim += nonzero_dim(in); in check_gather_args() 39 if (d != dim) { in check_gather_args() 42 …d of index should be smaller than the size of that dimension of input if dimension %zd != dim %zd", in check_gather_args() 45 (size_t)dim); in check_gather_args() 51 index_data[i] >= 0 && index_data[i] < nonempty_size(in, dim), in check_gather_args() 53 (size_t)dim, in check_gather_args() [all …]
|
D | copy_ops_util.cpp | 76 int64_t dim, in check_cat_args() argument 107 tensor_is_rank(tensors[ref_i], tensors[i].dim())); in check_cat_args() 109 for (size_t d = 0; d < tensors[i].dim(); ++d) { in check_cat_args() 110 if (d != dim) { in check_cat_args() 117 // Ensure dim is in range. in check_cat_args() 119 tensors[ref_i].numel() == 0 || tensors[ref_i].dim() > dim); in check_cat_args() 120 ET_LOG_AND_RETURN_IF_FALSE(dim >= 0); in check_cat_args() 127 int64_t dim, in get_cat_out_target_size() argument 132 // calculate out dim in get_cat_out_target_size() 137 cat_dim_size += tensors[i].size(dim); in get_cat_out_target_size() [all …]
|
D | slice_util.cpp | 20 int64_t dim, in check_narrow_copy_args() argument 24 ET_LOG_AND_RETURN_IF_FALSE(in.dim() > 0); in check_narrow_copy_args() 26 ET_LOG_AND_RETURN_IF_FALSE(tensor_has_dim(in, dim)); in check_narrow_copy_args() 28 ET_LOG_AND_RETURN_IF_FALSE(start >= -in.size(dim)); in check_narrow_copy_args() 29 ET_LOG_AND_RETURN_IF_FALSE(start <= in.size(dim)); in check_narrow_copy_args() 31 start += in.size(dim); in check_narrow_copy_args() 33 ET_LOG_AND_RETURN_IF_FALSE(start + lenth <= in.size(dim)); in check_narrow_copy_args() 39 int64_t dim, in get_narrow_copy_out_target_size() argument 43 *out_ndim = in.dim(); in get_narrow_copy_out_target_size() 45 for (size_t d = 0; d < in.dim(); ++d) { in get_narrow_copy_out_target_size() [all …]
|
/external/pytorch/torch/_refs/linalg/ |
D | __init__.py | 14 Dim, 73 def cross(a: Tensor, b: Tensor, dim: int = -1): 79 a.size(dim) == 3 and b.size(dim) == 3, 80 … lambda: f"linalg.cross: inputs dim {dim} must have length 3, got {a.size(dim)} and {b.size(dim)}", 83 dim = utils.canonicalize_dim(a.ndim, dim) 85 return a.index_select(dim, (idx + 1) % 3) * b.index_select( 86 dim, (idx + 2) % 3 87 ) - a.index_select(dim, (idx + 2) % 3) * b.index_select(dim, (idx + 1) % 3) 105 dim: Optional[DimsType] = None, 115 if isinstance(dim, Dim): [all …]
|
/external/pytorch/torch/export/ |
D | dynamic_shapes.py | 34 "Dim", 56 Metaclass for :func:`Dim` types. 68 return f"Dim('{name}')" 70 return f"Dim('{name}', max={max_})" 72 return f"Dim('{name}', min={min_})" 73 return f"Dim('{name}', min={min_}, max={max_})" 76 # e.g., dim + 1 88 # e.g., dim - 1 103 # e.g., dim * 2 125 Meta class for static :func:`Dim` types. [all …]
|
/external/pytorch/aten/src/ATen/native/ |
D | Integration.cpp | 32 Tensor do_trapezoid(const Tensor& y, const Tensor& dx, int64_t dim) { in do_trapezoid() argument 33 Tensor left = y.slice(dim, 0, -1); in do_trapezoid() 34 Tensor right = y.slice(dim, 1); in do_trapezoid() 37 return ((left + right) * dx).sum(dim) / 2.; in do_trapezoid() 42 Tensor do_trapezoid(const Tensor& y, double dx, int64_t dim) { in do_trapezoid() argument 43 return (y.sum(dim) - (y.select(dim, 0) + y.select(dim, -1)) * (0.5)) * dx; in do_trapezoid() 46 Tensor zeros_like_except(const Tensor& y, int64_t dim) { in zeros_like_except() argument 48 dim = maybe_wrap_dim(dim, y.dim()); in zeros_like_except() 49 sizes.erase(sizes.begin() + dim); in zeros_like_except() 53 Tensor do_cumulative_trapezoid(const Tensor& y, const Tensor& dx, int64_t dim) { in do_cumulative_trapezoid() argument [all …]
|
D | ReduceOps.cpp | 193 TORCH_META_FUNC2(all, dim)(const Tensor& self, int64_t dim, bool keepdim) { in TORCH_META_FUNC2() argument 194 allany_meta(*this, "all", self, dim, keepdim); in TORCH_META_FUNC2() 197 TORCH_META_FUNC2(all, dims)(const Tensor& self, OptionalIntArrayRef dim, bool keepdim) { in TORCH_META_FUNC2() 198 allany_meta(*this, "all", self, dim, keepdim); in TORCH_META_FUNC2() 205 TORCH_META_FUNC2(any, dim)(const Tensor& self, int64_t dim, bool keepdim) { in TORCH_META_FUNC2() argument 206 allany_meta(*this, "any", self, dim, keepdim); in TORCH_META_FUNC2() 209 TORCH_META_FUNC2(any, dims)(const Tensor& self, OptionalIntArrayRef dim, bool keepdim) { in TORCH_META_FUNC2() 210 allany_meta(*this, "any", self, dim, keepdim); in TORCH_META_FUNC2() 220 const std::optional<int64_t>& dim) { in check_argmax_argmin() argument 221 if (dim.has_value()) { in check_argmax_argmin() [all …]
|
D | DilatedConvolutionUtils.h | 10 #define TORCH_CHECK_DIM_SIZE(T, DIM, DIM_SIZE, SIZE) \ argument 12 T.dim() == DIM && T.size(DIM_SIZE) == SIZE, \ 14 DIM, \ 37 template <int64_t dim> 45 for (const auto index : c10::irange(dim)) { in get_output_size() 48 input.size(index + input.dim() - dim) + 2 * pad_size[index] - in get_output_size() 57 template <int64_t dim> 65 auto output_size = get_output_size<dim>( in get_output_size() 68 if (input.dim() == dim + 2) { in get_output_size() 77 template <int64_t dim> [all …]
|
D | SpectralOps.cpp | 162 IntArrayRef dim, int64_t norm, bool onesided) { in fft_r2c_maybe_out() argument 167 return at::_fft_r2c_outf(input, dim, norm, onesided, out_mut); in fft_r2c_maybe_out() 169 return at::_fft_r2c(input, dim, norm, onesided); in fft_r2c_maybe_out() 174 IntArrayRef dim, int64_t norm, SymInt last_dim_size) { in fft_c2r_maybe_out() argument 181 return at::_fft_c2r_symint_outf(input, dim, norm, last_dim_size, out_mut); in fft_c2r_maybe_out() 183 return at::_fft_c2r_symint(input, dim, norm, last_dim_size); in fft_c2r_maybe_out() 188 IntArrayRef dim, int64_t norm, bool forward) { in fft_c2c_maybe_out() argument 193 return at::_fft_c2c_outf(input, dim, norm, forward, out_mut); in fft_c2c_maybe_out() 195 return at::_fft_c2c(input, dim, norm, forward); in fft_c2c_maybe_out() 206 const auto input_dim = input.dim(); in fft_c2r() [all …]
|
D | Sorting.cpp | 56 int64_t dim = maybe_wrap_dim(dim_, self.dim(), /*wrap_scalar=*/true); in TORCH_META_FUNC() local 58 k >= 0 && k <= (self.dim() > 0 ? self.size(dim) : 1), in TORCH_META_FUNC() 60 int64_t sliceSize = self.dim() == 0 ? 1 : self.size(dim); in TORCH_META_FUNC() 63 // Build the output size, which is the dim being selected set to in TORCH_META_FUNC() 67 topKSize[dim] = k; in TORCH_META_FUNC() 74 (const Tensor& self, std::optional<bool> stable, int64_t dim, bool descending) { in TORCH_META_FUNC2() 75 maybe_wrap_dim(dim, self.dim()); in TORCH_META_FUNC2() 95 void _fill_indices(const TensorBase &indices, int64_t dim) { in _fill_indices() argument 96 auto ndim = indices.dim(); in _fill_indices() 97 assert(0 <= dim && dim < ndim); in _fill_indices() [all …]
|
/external/eigen/Eigen/src/Geometry/ |
D | Transform.h | 24 Dim = Transform::Dim, enumerator 42 int Dim, 58 int Dim, 95 * - #Affine: the transformation is stored as a (Dim+1)^2 matrix, 97 * - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix. 98 * - #Projective: the transformation is stored as a (Dim+1)^2 matrix 129 * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product. 136 * \b Translation t (Dim)x(1): 142 * \b Rotation R (Dim)x(Dim): 148 * \b Linear \b Matrix L (Dim)x(Dim): [all …]
|
D | RotationBase.h | 32 enum { Dim = _Dim }; enumerator 37 typedef Matrix<Scalar,Dim,Dim> RotationMatrixType; 38 typedef Matrix<Scalar,Dim,1> VectorType; 56 …EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Isometry> operator*(const Translation<Scalar,Dim>& t… 57 { return Transform<Scalar,Dim,Isometry>(*this) * t; } 67 * - a vector of size Dim 80 …EIGEN_DEVICE_FUNC friend inline Transform<Scalar,Dim,Affine> operator*(const DiagonalMatrix<Scalar… 82 Transform<Scalar,Dim,Affine> res(r); 89 …EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode> operator*(const Transform<Scalar,Dim,Mode,Opti… 103 enum { Dim = RotationDerived::Dim }; [all …]
|
/external/tensorflow/tensorflow/core/profiler/internal/testdata/ |
D | graph.pbtxt | 9 dim { 12 dim { 15 dim { 18 dim { 37 dim { 40 dim { 43 dim { 46 dim { 71 dim { 89 dim { [all …]
|
/external/tensorflow/tensorflow/compiler/tf2xla/kernels/ |
D | sharding_util_ops.cc | 80 for (int dim = 0; dim < expected_rank; ++dim) { in GetAndValidateAttributes() local 81 if (paddings[dim] < 0) { in GetAndValidateAttributes() 83 "'padding' must be all non-negative, but got ", paddings[dim], in GetAndValidateAttributes() 84 " at index ", dim, "."); in GetAndValidateAttributes() 86 if (paddings[dim] > 0) { in GetAndValidateAttributes() 108 auto divisor = [&](const int dim) { in GetSliceIndices() argument 110 for (int i = num_partitions.size() - 1; i > dim; --i) { in GetSliceIndices() 116 for (int dim = num_partitions.size() - 1; dim > 0; --dim) { in GetSliceIndices() local 117 slice_indices[dim] = in GetSliceIndices() 118 ((index / divisor(dim)) % num_partitions[dim]) * slice_shape[dim]; in GetSliceIndices() [all …]
|
/external/sdv/vsomeip/third_party/boost/numeric/odeint/examples/ |
D | point_type.hpp | 23 template< class T , size_t Dim > 25 boost::additive1< point< T , Dim > , 26 boost::additive2< point< T , Dim > , T , 27 boost::multiplicative2< point< T , Dim > , T 32 const static size_t dim = Dim; member in point 34 typedef point< value_type , dim > point_type; 41 for( size_t i=0 ; i<dim ; ++i ) m_val[i] = 0.0; in point() 46 for( size_t i=0 ; i<dim ; ++i ) m_val[i] = val; in point() 51 if( dim > 0 ) m_val[0] = x; in point() 52 if( dim > 1 ) m_val[1] = y; in point() [all …]
|
/external/tensorflow/tensorflow/compiler/tests/ |
D | lstm_layer_inference.config.pbtxt | 2 feed{ id{node_name:"inputs/x_seq_0/read"} shape{dim{size:128}dim{size:1024}} } 3 feed{ id{node_name:"inputs/x_seq_1/read"} shape{dim{size:128}dim{size:1024}} } 4 feed{ id{node_name:"inputs/x_seq_2/read"} shape{dim{size:128}dim{size:1024}} } 5 feed{ id{node_name:"inputs/x_seq_3/read"} shape{dim{size:128}dim{size:1024}} } 6 feed{ id{node_name:"inputs/x_seq_4/read"} shape{dim{size:128}dim{size:1024}} } 7 feed{ id{node_name:"inputs/pad_seq_0/read"} shape{dim{size:128}dim{size:1}} } 8 feed{ id{node_name:"inputs/pad_seq_1/read"} shape{dim{size:128}dim{size:1}} } 9 feed{ id{node_name:"inputs/pad_seq_2/read"} shape{dim{size:128}dim{size:1}} } 10 feed{ id{node_name:"inputs/pad_seq_3/read"} shape{dim{size:128}dim{size:1}} } 11 feed{ id{node_name:"inputs/pad_seq_4/read"} shape{dim{size:128}dim{size:1}} } [all …]
|
/external/armnn/src/armnnOnnxParser/test/ |
D | Conv2D.cpp | 29 dim { in SimpleConv2DFixture() 32 dim { in SimpleConv2DFixture() 35 dim { in SimpleConv2DFixture() 38 dim { in SimpleConv2DFixture() 51 dim { in SimpleConv2DFixture() 54 dim { in SimpleConv2DFixture() 57 dim { in SimpleConv2DFixture() 60 dim { in SimpleConv2DFixture() 127 dim { in SimpleConv2DFixture() 130 dim { in SimpleConv2DFixture() [all …]
|
D | Addition.cpp | 29 dim { in AddMainFixture() 32 dim { in AddMainFixture() 35 dim { in AddMainFixture() 38 dim { in AddMainFixture() 51 dim { in AddMainFixture() 54 dim { in AddMainFixture() 57 dim { in AddMainFixture() 60 dim { in AddMainFixture() 82 dim { in AddMainFixture() 85 dim { in AddMainFixture() [all …]
|
/external/tensorflow/tensorflow/compiler/xla/ |
D | window_util.cc | 65 /* static */ std::string ToString(const WindowDimension& dim) { in ToString() argument 68 std::string str = StrCat("(size=", dim.size()); in ToString() 69 if (dim.stride() != 1) { in ToString() 70 StrAppend(&str, ",stride=", dim.stride()); in ToString() 72 if (dim.padding_low() != 0) { in ToString() 73 StrAppend(&str, ",padding_low=", dim.padding_low()); in ToString() 75 if (dim.padding_high() != 0) { in ToString() 76 StrAppend(&str, ",padding_high=", dim.padding_high()); in ToString() 78 if (dim.base_dilation() != 1) { in ToString() 79 StrAppend(&str, ",base_dilation=", dim.base_dilation()); in ToString() [all …]
|
/external/pytorch/aten/src/ATen/native/vulkan/ops/ |
D | Mean.cpp | 15 int64_t dim, in mean_dim() argument 19 self.dim() >= 2 && self.dim() <= 4, in mean_dim() 22 dim >= -self.dim() && dim < self.dim(), in mean_dim() 23 "Vulkan mean.dim dimension out of range expected to be in range of [", in mean_dim() 24 -self.dim(), in mean_dim() 26 self.dim() - 1, in mean_dim() 28 dim); in mean_dim() 37 // Normalize dim into range [0, self.dim()] in mean_dim() 38 dim = utils::normalize(dim, self.dim()); in mean_dim() 42 uint32_t dim_size = output_size[dim]; in mean_dim() [all …]
|
/external/pytorch/torch/_higher_order_ops/ |
D | associative_scan.py | 41 def _interleave(a, b, dim): argument 43 if b_trunc := (a.shape[dim] == b.shape[dim] + 1): 45 [0] * ((b.ndim - dim - 1) * 2 + 1) 47 + [0] * (b.ndim * 2 - ((b.ndim - dim - 1) * 2 + 2)) 51 stacked = torch.stack([a, b], dim=dim + 1) 52 interleaved = torch.flatten(stacked, start_dim=dim, end_dim=dim + 1) 54 # TODO: find torch alternative for slice_along dim for torch.jit.script to work 55 interleaved = aten.slice(interleaved, dim, 0, b.shape[dim] + a.shape[dim] - 1) 76 def __call__(self, combine_fn, input, dim): argument 77 return super().__call__(combine_fn, input, dim) [all …]
|
/external/tensorflow/tensorflow/core/ir/importexport/tests/roundtrip/ |
D | shape-attrs.pbtxt | 90 dim { 93 dim { 98 dim { 101 dim { 104 dim { 137 dim { 140 dim { 145 dim { 148 dim { 151 dim { [all …]
|
/external/pytorch/aten/src/ATen/native/cuda/ |
D | Sorting.cpp | 39 int64_t dim = maybe_wrap_dim(dim_, self.dim()); in kthvalue_out_impl_cuda() local 40 int64_t slicesize = self.dim() == 0 ? 1 : self.size(dim); in kthvalue_out_impl_cuda() 41 zero_numel_check_dims(self, dim, "kthvalue()"); in kthvalue_out_impl_cuda() 44 "kthvalue(): selected number k out of range for dimension ", dim); in kthvalue_out_impl_cuda() 49 values, indices, self, dim, keepdim); in kthvalue_out_impl_cuda() 50 if (self.dim() == 0 && self.numel() == 1) { in kthvalue_out_impl_cuda() 57 self.dim() <= MAX_TENSORINFO_DIMS, in kthvalue_out_impl_cuda() 65 launch_kthvalue_kernel(values, indices, self, dim, k); in kthvalue_out_impl_cuda() 69 values.squeeze_(dim); in kthvalue_out_impl_cuda() 70 indices.squeeze_(dim); in kthvalue_out_impl_cuda() [all …]
|