Home
last modified time | relevance | path

Searched full:quantized (Results 1 – 25 of 1881) sorted by relevance

12345678910>>...76

/external/pytorch/aten/src/ATen/native/quantized/
Dlibrary.cpp12 TORCH_LIBRARY(quantized, m) { in TORCH_LIBRARY() argument
19 …m.def(TORCH_SELECTIVE_SCHEMA("quantized::add(Tensor qa, Tensor qb, float scale, int zero_point) ->… in TORCH_LIBRARY()
20 …m.def(TORCH_SELECTIVE_SCHEMA("quantized::add.out(Tensor qa, Tensor qb, Tensor(a!) out) -> Tensor(a… in TORCH_LIBRARY()
21 …m.def(TORCH_SELECTIVE_SCHEMA("quantized::add.Scalar(Tensor qa, Scalar b) -> Tensor qc"), {at::Tag:… in TORCH_LIBRARY()
22 …m.def(TORCH_SELECTIVE_SCHEMA("quantized::add.Scalar2(Scalar b, Tensor qa) -> Tensor qc"), {at::Tag… in TORCH_LIBRARY()
23 …m.def(TORCH_SELECTIVE_SCHEMA("quantized::add.Scalar_out(Tensor qa, Scalar b, Tensor(a!) out) -> Te… in TORCH_LIBRARY()
24 …m.def(TORCH_SELECTIVE_SCHEMA("quantized::add_relu(Tensor qa, Tensor qb, float scale, int zero_poin… in TORCH_LIBRARY()
25 …m.def(TORCH_SELECTIVE_SCHEMA("quantized::add_relu.Scalar(Tensor qa, Scalar b) -> Tensor qc"), {at:… in TORCH_LIBRARY()
26 …m.def(TORCH_SELECTIVE_SCHEMA("quantized::add_relu.Scalar2(Scalar b, Tensor qa) -> Tensor qc"), {at… in TORCH_LIBRARY()
27 …m.def(TORCH_SELECTIVE_SCHEMA("quantized::add_relu.out(Tensor qa, Tensor qb, Tensor(a!) out) -> Ten… in TORCH_LIBRARY()
[all …]
DREADME.md1 The quantized folder holds the implementation of the low-level quantized kernel.
2 The kernels are registered in `torch::_ops` namespace, and operate on the quantized `at::Tensor` da…
3 …arn more about the quantized tensors in the [quantized tensor API wiki](https://github.com/pytorch…
5 This document serves as an entry point for quantized kernel implementation.
7 ## Implementing native quantized ops
9 The new quantized ops are almost always located under the `ATen/native/quantized/cpu` folder. For
10 the sake of an example, let us implement an element-wise quantized [logical XAND](https://en.wiktio…
11 operation under `ATen/native/quantized/cpu/qxand.cpp`.
13 ### Step 0. Implement the quantized function
15 Before writing the quantized kernel and registering it, let us implement a quantized function.
[all …]
Dqconv_unpack.cpp17 #include <ATen/native/quantized/cpu/fbgemm_utils.h>
18 #include <ATen/native/quantized/cpu/QnnpackUtils.h>
19 #include <ATen/native/quantized/cpu/OnednnUtils.h>
20 #include <ATen/native/quantized/cpu/QuantUtils.h>
21 #include <ATen/native/quantized/PackedParams.h>
67 "quantized::conv2d_unpack (qnnpack): QNNPACK only supports Conv2d " in run()
81 "Didn't find engine for operation quantized::conv2d_unpack ", in run()
122 "Didn't find engine for operation quantized::conv1d_unpack ", in run()
198 TORCH_LIBRARY_IMPL(quantized, CatchAll, m) { in TORCH_LIBRARY_IMPL() argument
202 m.impl(TORCH_SELECTIVE_NAME("quantized::conv_unpack"), TORCH_FN(QConvUnpackWeightsInt8<2>::run)); in TORCH_LIBRARY_IMPL()
[all …]
Dqlinear_unpack.cpp10 #include <ATen/native/quantized/cpu/fbgemm_utils.h>
11 #include <ATen/native/quantized/PackedParams.h>
12 #include <ATen/native/quantized/cpu/QnnpackUtils.h>
38 "quantized::linear_unpack_fp16 is currently " in run()
50 "quantized.linear_unpack(Tensor) is unsupported! Please " in run()
51 "upgrade your model to use the newer quantized.linear_" in run()
61 "quantized.linear_unpack(Tensor) is unsupported! Please " in run()
62 "upgrade your model to use the newer quantized.linear_" in run()
67 TORCH_LIBRARY_IMPL(quantized, CPU, m) { in TORCH_LIBRARY_IMPL() argument
68 …m.impl(TORCH_SELECTIVE_NAME("quantized::linear_unpack.legacy"), TORCH_FN(QLinearUnpackWeightInt8Le… in TORCH_LIBRARY_IMPL()
[all …]
/external/pytorch/test/quantization/eager/
Dtest_numeric_suite_eager.py6 import torch.ao.nn.quantized as nnq
98 r"""Compare the weights of float and static quantized conv layer"""
100 qengine = torch.backends.quantized.engine
108 self.assertTrue(v["float"].shape == v["quantized"].shape)
120 r"""Compare the weights of float and static quantized linear layer"""
122 qengine = torch.backends.quantized.engine
130 self.assertTrue(v["float"].shape == v["quantized"].shape)
142 r"""Compare the weights of float and dynamic quantized linear layer"""
144 qengine = torch.backends.quantized.engine
152 self.assertTrue(len(v["float"]) == len(v["quantized"]))
[all …]
/external/pytorch/torch/ao/nn/quantized/
Dfunctional.py2 r""" Functional interface (quantized)."""
59 See :class:`~torch.ao.nn.quantized.AvgPool2d` for details and output shape.
62 input: quantized input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
77 raise ValueError("Input to 'quantized.avg_pool2d' must be quantized!")
106 input: quantized input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
121 raise ValueError("Input to 'quantized.avg_pool3d' must be quantized!")
135 Applies a 2D adaptive average pooling over a quantized input signal composed
136 of several quantized input planes.
140 See :class:`~torch.ao.nn.quantized.AdaptiveAvgPool2d` for details and output shape.
148 "Input to 'quantized.functional.adaptive_avg_pool2d' must be quantized!"
[all …]
/external/executorch/kernels/quantized/test/
Dtargets.bzl6 op_test("op_quantize_test", kernel_name = "quantized")
7 op_test("op_dequantize_test", kernel_name = "quantized")
8 op_test("op_choose_qparams_test", kernel_name = "quantized")
9 op_test("op_add_test", kernel_name = "quantized", deps = [
10 "//executorch/kernels/quantized/cpu:op_dequantize",
11 "//executorch/kernels/quantized/cpu:op_quantize",
12 "//executorch/kernels/quantized/cpu:op_add",
13 "//executorch/kernels/quantized:generated_lib_headers",
18 op_test("op_embedding_test", kernel_name = "quantized", deps = [
19 "//executorch/kernels/quantized/cpu:op_dequantize",
[all …]
/external/tensorflow/tensorflow/lite/toco/
Dtypes.proto23 // Float32, not quantized
26 // Uint8, quantized
29 // Int32, not quantized
32 // Int64, not quantized
35 // String, not quantized
38 // Int16, quantized
44 // Complex64, not quantized
47 // Int8, quantized based on QuantizationParameters in schema.
50 // Half precision float, not quantized.
53 // Double precision float, not quantized.
[all …]
/external/pytorch/torch/csrc/jit/passes/quantization/
Dquantization_patterns.h136 // quant fusion for ops like `quantized::add_scalar`, `quantized::mul_scalar`
290 %w_quant : Tensor, %b : Tensor? = quantized::conv1d_unpack(%packed_params) in quant_fusion_pattern_and_replacements()
300 %w_quant : Tensor, %b : Tensor? = quantized::conv1d_unpack(%packed_params) in quant_fusion_pattern_and_replacements()
311 %w_quant : Tensor, %b : Tensor? = quantized::conv1d_unpack(%packed_params) in quant_fusion_pattern_and_replacements()
318 // quantized::conv1d in quant_fusion_pattern_and_replacements()
321 %r_quant = quantized::conv1d(%a_quant, %packed_params, %r_scale, %r_zero_point) in quant_fusion_pattern_and_replacements()
324 // quantized::conv1d_relu in quant_fusion_pattern_and_replacements()
327 %r_quant = quantized::conv1d_relu(%a_quant, %packed_params, %r_scale, %r_zero_point) in quant_fusion_pattern_and_replacements()
334 %w_quant : Tensor, %b : Tensor? = quantized::conv2d_unpack(%packed_params) in quant_fusion_pattern_and_replacements()
344 %w_quant : Tensor, %b : Tensor? = quantized::conv2d_unpack(%packed_params) in quant_fusion_pattern_and_replacements()
[all …]
/external/pytorch/torch/ao/ns/
D_numeric_suite.py5 import torch.ao.nn.quantized as nnq
6 import torch.ao.nn.quantized.dynamic as nnqd
58 r"""Compare the weights of the float module with its corresponding quantized
60 a dictionary with two keys 'float' and 'quantized', containing the float and
61 quantized weights. This dict can be used to compare and compute the quantization
62 error of the weights of float and quantized models.
73 wt_compare_dict[key]['quantized'].dequantize()
79 quantized_dict: state dict of the quantized model
83 a dictionary with two keys 'float' and 'quantized', containing the float and
84 quantized weights
[all …]
/external/pytorch/torch/nn/quantized/modules/
D__init__.py1 r"""Quantized Modules.
4 The `torch.nn.quantized` namespace is in the process of being deprecated.
5 Please, use `torch.ao.nn.quantized` instead.
10 # s.a. `from torch.nn.quantized.modules.conv import ...`.
12 from torch.ao.nn.quantized.modules import (
27 from torch.ao.nn.quantized.modules.activation import (
37 from torch.ao.nn.quantized.modules.batchnorm import BatchNorm2d, BatchNorm3d
38 from torch.ao.nn.quantized.modules.conv import (
46 from torch.ao.nn.quantized.modules.dropout import Dropout
47 from torch.ao.nn.quantized.modules.embedding_ops import Embedding, EmbeddingBag
[all …]
/external/pytorch/docs/source/
Dquantization.rst16 tensors at lower bitwidths than floating point precision. A quantized model
24 speed up inference and only the forward pass is supported for quantized
35 At lower level, PyTorch provides a way to represent quantized tensors and
51 (1). Programmable API for configuring how a model is quantized that can scale to many more use cases
53 …reference quantized model representation that can represent quantized computation with integer ope…
105 1. dynamic quantization (weights quantized with activations read/stored in
106 floating point and quantized for compute)
107 2. static quantization (weights quantized, activations quantized, calibration
109 3. static quantization aware training (weights quantized, activations quantized,
156 quantized ahead of time but the activations are dynamically quantized
[all …]
Dquantization-support.rst182 Quantized Tensors support a limited subset of data manipulation methods of the
316 then be quantized.
366 torch.ao.nn.intrinsic.quantized
368 .. automodule:: torch.ao.nn.intrinsic.quantized
369 .. automodule:: torch.ao.nn.intrinsic.quantized.modules
372 This module implements the quantized implementations of fused operations
376 .. currentmodule:: torch.ao.nn.intrinsic.quantized
390 torch.ao.nn.intrinsic.quantized.dynamic
392 .. automodule:: torch.ao.nn.intrinsic.quantized.dynamic
393 .. automodule:: torch.ao.nn.intrinsic.quantized.dynamic.modules
[all …]
/external/pytorch/test/quantization/ao_migration/
Dtest_ao_migration.py8 r"""Tests the migration of the torch.nn.quantized.functional"""
33 self._test_function_import("functional", function_list, base="nn.quantized")
69 self._test_function_import("modules", module_list, base="nn.quantized")
81 "activation", function_list, base="nn.quantized.modules"
90 "batchnorm", function_list, base="nn.quantized.modules"
104 self._test_function_import("conv", function_list, base="nn.quantized.modules")
111 "dropout", function_list, base="nn.quantized.modules"
121 "embedding_ops", function_list, base="nn.quantized.modules"
131 "functional_modules", function_list, base="nn.quantized.modules"
139 self._test_function_import("linear", function_list, base="nn.quantized.modules")
[all …]
/external/pytorch/torch/ao/quantization/fx/
D_lower_to_native_backend.py7 import torch.ao.nn.intrinsic.quantized as nniq
8 import torch.ao.nn.intrinsic.quantized.dynamic as nniqd
9 import torch.ao.nn.quantized as nnq
10 import torch.ao.nn.quantized.dynamic as nnqd
11 import torch.ao.nn.quantized.reference as nnqr
14 from torch.ao.nn.quantized.modules.utils import WeightedQuantizedModule
32 torch._ops.ops.quantized.hardswish: ["inplace"],
33 torch._ops.ops.quantized.elu: ["inplace"],
34 torch._ops.ops.quantized.dropout: ["inplace"],
35 torch._ops.ops.quantized.instance_norm: [
[all …]
/external/ComputeLibrary/arm_compute/core/
DQuantizationInfo.h38 using qasymm8_signed_t = int8_t; /**< 8 bit signed quantized asymmetric scalar value */
39 using qasymm8_t = uint8_t; /**< 8 bit quantized asymmetric scalar value */
40 using qsymm16_t = int16_t; /**< 16 bit quantized symmetric scalar value */
41 using qasymm16_t = uint16_t; /**< 16 bit quantized asymmetric scalar value */
216 "quantized type should be either uint8_t or int8_t.");
223 * @return Quantized value
228 const int quantized = support::cpp11::lround(value / qinfo.scale) + qinfo.offset; in quantize() local
229 …_cast<QUANTIZED_TYPE>(arm_compute::utility::clamp<decltype(quantized), QUANTIZED_TYPE>(quantized)); in quantize()
238 * @return Quantized value
248 … const int quantized = arm_compute::round(value / qinfo.scale, rounding_policy) + qinfo.offset; in quantize() local
[all …]
/external/pytorch/torch/ao/quantization/experimental/
Dlinear.py5 from torch.ao.nn.quantized.modules.utils import WeightedQuantizedModule
12 A quantized linear module with quantized tensor as inputs and outputs
21 alpha: `alpha` qparam of output Quantized Tensor, type: Tensor
22 gamma: `gamma` qparam of output Quantized Tensor, type: Tensor
23 quantization_levels: `quantization_levels` qparam of output Quantized Tensor, type: Tensor
24 level_indices: `level_indices` qparam of output Quantized Tensor, type: Tensor
25 weight: APoT quantized tensor from weight2quantize
64 x (Tensor): binary representation of APoT quantized tensor
83 weight_val: list of binary digits representing APoT quantized weight value
84 r: int representing uniformly quantized activation value
[all …]
/external/pytorch/aten/src/ATen/native/quantized/cpu/
Dqmul.cpp8 #include <ATen/native/quantized/cpu/OnednnUtils.h>
9 #include <ATen/native/quantized/cpu/QnnpackUtils.h>
10 #include <ATen/native/quantized/cpu/QuantUtils.h>
11 #include <ATen/native/quantized/cpu/QuantizedOps.h>
12 #include <ATen/native/quantized/cpu/XnnpackUtils.h>
13 #include <ATen/native/quantized/cpu/init_qnnpack.h>
14 #include <ATen/quantized/Quantizer.h>
322 // all variations of `quantized::mul` is merged into `quantized::mul`
337 // all variations of `quantized::mul` is merged into `quantized::mul`
347 TORCH_LIBRARY_IMPL(quantized, QuantizedCPU, m) { in TORCH_LIBRARY_IMPL() argument
[all …]
Dqembeddingbag_unpack.cpp4 #include <ATen/native/quantized/cpu/EmbeddingPackedParams.h>
5 #include <ATen/native/quantized/cpu/fbgemm_utils.h>
6 #include <ATen/native/quantized/cpu/qembeddingbag.h>
117 // packed_weights = torch.ops.quantized.embedding_bag_byte_prepack(weights) in qembeddingbag_byte_unpack_out()
119 // unpacked_weights = torch.ops.quantized.embedding_bag_byte_unpack(packed_weights) in qembeddingbag_byte_unpack_out()
226 std::uint8_t quantized = input_row[col / NUM_ELEM_PER_BYTE]; in _qembeddingbag_nbit_unpack_helper() local
227 quantized >>= (col % NUM_ELEM_PER_BYTE) * BIT_RATE; in _qembeddingbag_nbit_unpack_helper()
228 quantized &= (1 << BIT_RATE) - 1; in _qembeddingbag_nbit_unpack_helper()
229 output_row[col] = scale * quantized + zero_point; in _qembeddingbag_nbit_unpack_helper()
238 // The input is expected to first have quantized values,
[all …]
/external/pytorch/test/mobile/model_test/
Dcoverage.yaml662 - quantized::add
663 - quantized::add_relu
664 - quantized::add_scalar
665 - quantized::batch_norm2d
666 - quantized::batch_norm3d
667 - quantized::cat
668 - quantized::conv1d
669 - quantized::conv1d_prepack
670 - quantized::conv1d_relu
671 - quantized::conv1d_unpack
[all …]
/external/tensorflow/tensorflow/core/api_def/base_api/
Dapi_def_UniformQuantizedDotHybrid.pbtxt34 The output data is the original output data itself (Not quantized).
46 The type of rhs (quantized) input Tensor.
67 The min value of the quantized data stored in rhs.
68 For example, if Trhs is qint8, this must be set to -127 if narrow range quantized or -128 if not.
74 The max value of the quantized data stored in rhs.
78 summary: "Perform hybrid quantized dot of float Tensor `lhs` and quantized Tensor `rhs`."
80 Given float `lhs` and quantized `rhs`, internally performs quantization on `lhs`, and then performs…
83 `rhs` must be quantized Tensor, where its data value is quantized using the formula:
Dapi_def_QuantizedBatchNormWithGlobalNormalization.pbtxt12 The value represented by the lowest quantized input.
18 The value represented by the highest quantized input.
32 The value represented by the lowest quantized mean.
38 The value represented by the highest quantized mean.
52 The value represented by the lowest quantized variance.
58 The value represented by the highest quantized variance.
71 The value represented by the lowest quantized offset.
77 The value represented by the highest quantized offset.
91 The value represented by the lowest quantized gamma.
97 The value represented by the highest quantized gamma.
[all …]
/external/pytorch/test/quantization/jit/
Dtest_fusion_passes.py13 a = torch.ops.quantized.add(x, y, 1.0, 0)
28 # Check quantized add + relu fusion
39 FileCheck().check_not("aten::relu").check("quantized::add_relu").run(
47 a = torch.ops.quantized.add_out(x, y, z)
54 # Check quantized add + relu fusion
64 FileCheck().check_not("aten::relu").check_not("quantized::add_out").check(
65 "quantized::add_relu_out"
72 a = torch.ops.quantized.add_scalar(x, y)
76 # Check quantized add + relu fusion
82 FileCheck().check_not("aten::relu").check_not("quantized::add_scalar(").check(
[all …]
/external/pytorch/torch/ao/nn/quantized/dynamic/modules/
Dlinear.py4 import torch.ao.nn.quantized as nnq
5 from torch.ao.nn.quantized.modules.utils import _quantize_weight
15 A dynamic quantized linear module with floating point tensor as inputs and outputs.
23 weight (Tensor): the non-learnable quantized weights of the module which are of
32 >>> m = nn.quantized.dynamic.Linear(20, 30)
53 Y = torch.ops.quantized.linear_dynamic(
57 Y = torch.ops.quantized.linear_dynamic(
61 Y = torch.ops.quantized.linear_dynamic_fp16(
65 raise RuntimeError("Unsupported dtype on dynamic quantized linear!")
101 r"""Create a dynamic quantized module from a float module or qparams_dict
[all …]
/external/pytorch/torch/ao/quantization/
Dquantization_mappings.py8 import torch.ao.nn.intrinsic.quantized as nniq
9 import torch.ao.nn.intrinsic.quantized.dynamic as nniqd
12 import torch.ao.nn.quantized as nnq
13 import torch.ao.nn.quantized.dynamic as nnqd
14 import torch.ao.nn.quantized.reference as nnqr
56 # Default map for swapping float module to reference quantized modules
75 # Default map for swapping float module to quantized ones
179 # Default mapping from floating point function or torch ops to quantized ops
182 F.elu: torch.ops.quantized.elu,
183 F.hardswish: torch.ops.quantized.hardswish,
[all …]

12345678910>>...76