Home
last modified time | relevance | path

Searched defs:num_classes (Results 1 – 25 of 88) sorted by relevance

1234

/external/tensorflow/tensorflow/lite/kernels/ctc/
Dctc_decoder.h43 CTCDecoder(int num_classes, int batch_size, bool merge_repeated) in CTCDecoder()
61 int num_classes() { return num_classes_; } in num_classes() function
74 CTCGreedyDecoder(int num_classes, int batch_size, bool merge_repeated) in CTCGreedyDecoder()
/external/tensorflow/tensorflow/core/util/ctc/
Dctc_decoder.h46 CTCDecoder(int num_classes, int batch_size, bool merge_repeated) in CTCDecoder()
64 int num_classes() { return num_classes_; } in num_classes() function
79 CTCGreedyDecoder(int num_classes, int batch_size, bool merge_repeated) in CTCGreedyDecoder()
Dctc_beam_search_test.cc109 const int num_classes = 6; in ctc_beam_search_decoding_with_and_without_dictionary() local
199 const int num_classes = 6; in ctc_beam_search_decoding_all_beam_elements_have_finite_scores() local
277 const int num_classes = 6; in ctc_beam_search_label_selection() local
/external/tensorflow/tensorflow/python/ops/
Dconfusion_matrix.py94 num_classes=None, argument
202 num_classes=None, argument
Dnn_impl.py1830 num_classes, argument
2017 num_classes, argument
2122 num_classes, argument
2234 num_classes, argument
2326 num_classes, argument
/external/tensorflow/tensorflow/python/keras/
Dtesting_utils.py60 num_classes, argument
422 def get_small_sequential_mlp(num_hidden, num_classes, input_dim=None): argument
433 def get_small_functional_mlp(num_hidden, num_classes, input_dim): argument
446 num_classes, argument
474 def __init__(self, num_hidden, num_classes): argument
491 def get_small_subclass_mlp(num_hidden, num_classes): argument
495 def get_small_subclass_mlp_with_custom_build(num_hidden, num_classes): argument
499 def get_small_mlp(num_hidden, num_classes, input_dim): argument
/external/tensorflow/tensorflow/core/kernels/
Din_topk_op_gpu.cu.cc43 int num_targets, int num_classes) { in ComputePredictionMaskKernel()
96 const Eigen::Index num_classes = predictions.dimension(1); in operator ()() local
Dsoftmax_op_functor.h50 const int num_classes = logits.dimension(kClassDim); in Compute() local
Dxent_op.h70 const int num_classes = shape[kClassDim]; in Compute() local
Dxent_op_test.cc25 static Graph* Xent(int batch_size, int num_classes, DataType type) { in Xent()
Dmultinomial_op_test.cc27 static Graph* Multinomial(int batch_size, int num_classes, int num_samples) { in Multinomial()
Done_hot_op_test.cc25 static Graph* OneHot(int batch_size, int num_classes, int axis) { in OneHot()
Dsparse_xent_op_test.cc27 static Graph* SparseXent(int batch_size, int num_classes, DataType type) { in SparseXent()
Din_topk_op_test.cc36 static Graph* InTopK(int num_targets, int num_classes, T top_k) { in InTopK()
/external/pytorch/benchmarks/functional_autograd_benchmark/
Dtorchvision_models.py150 num_classes=1000, argument
420 def _segm_resnet(name, backbone_name, num_classes, aux, pretrained_backbone=True): argument
453 arch_type, backbone, pretrained, progress, num_classes, aux_loss, **kwargs argument
470 pretrained=False, progress=True, num_classes=21, aux_loss=None, **kwargs argument
499 num_classes, argument
668 def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses): argument
/external/pytorch/aten/src/ATen/native/
DOnehot.cpp17 Tensor one_hot(const Tensor &self, int64_t num_classes) { in one_hot()
/external/tensorflow/tensorflow/python/keras/utils/
Dnp_utils.py22 def to_categorical(y, num_classes=None, dtype='float32'): argument
/external/pytorch/test/
Dtest_expanded_weights.py478 def convnet(num_classes, num_dim): argument
501 def convnet(num_classes, num_dim): argument
527 def instance_norm_model(num_classes, num_dim): argument
553 def group_norm_model(num_classes, num_dim): argument
572 def layer_norm_model(num_classes, num_dim): argument
590 def embedding_model(num_classes, num_embedding): argument
/external/tensorflow/tensorflow/python/ops/numpy_ops/integration_test/benchmarks/
Dnumpy_mlp.py30 def __init__(self, num_classes=NUM_CLASSES, input_size=INPUT_SIZE, argument
Dtf_numpy_mlp.py32 def __init__(self, num_classes=NUM_CLASSES, input_size=INPUT_SIZE, argument
/external/pytorch/test/onnx/model_defs/
Dsqueezenet.py31 def __init__(self, version=1.0, num_classes=1000, ceil_mode=False): argument
/external/ComputeLibrary/src/cpu/kernels/boundingboxtransform/generic/neon/
Dimpl.cpp32 const size_t num_classes = deltas->info()->tensor_shape()[0] >> 2; in bounding_box_transform_qsymm16() local
89 const size_t num_classes = deltas->info()->tensor_shape()[0] >> 2; in bounding_box_transform() local
/external/armnn/tests/TfLiteYoloV3Big-Armnn/
DNMS.hpp14 unsigned int num_classes{0}; /**< Number of classes in the detected boxes */ member
/external/executorch/examples/mediatek/eval_utils/
Deval_oss_result.py119 def make_confusion(goldens, predictions, num_classes): argument
/external/tensorflow/tensorflow/compiler/mlir/tfr/examples/mnist/
Dmnist_train.py32 num_classes = 10 # total classes (0-9 digits). variable

1234