1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
18 #define ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
19
20 #include <map>
21 #include <unordered_set>
22 #include <vector>
23
24 #include "art_field-inl.h"
25 #include "base/macros.h"
26 #include "debug/elf_compilation_unit.h"
27 #include "debug/elf_debug_loc_writer.h"
28 #include "debug/method_debug_info.h"
29 #include "dex/code_item_accessors-inl.h"
30 #include "dex/dex_file-inl.h"
31 #include "dex/dex_file.h"
32 #include "dwarf/debug_abbrev_writer.h"
33 #include "dwarf/debug_info_entry_writer.h"
34 #include "elf/elf_builder.h"
35 #include "heap_poisoning.h"
36 #include "linear_alloc-inl.h"
37 #include "mirror/array.h"
38 #include "mirror/class-inl.h"
39 #include "mirror/class.h"
40 #include "oat/oat_file.h"
41 #include "obj_ptr-inl.h"
42
43 namespace art HIDDEN {
44 namespace debug {
45
GetParamNames(const MethodDebugInfo * mi)46 static std::vector<const char*> GetParamNames(const MethodDebugInfo* mi) {
47 std::vector<const char*> names;
48 DCHECK(mi->dex_file != nullptr);
49 CodeItemDebugInfoAccessor accessor(*mi->dex_file, mi->code_item, mi->dex_method_index);
50 if (accessor.HasCodeItem()) {
51 accessor.VisitParameterNames([&](dex::StringIndex string_idx) {
52 names.push_back(string_idx.IsValid() ? mi->dex_file->GetStringData(string_idx) : nullptr);
53 });
54 }
55 return names;
56 }
57
58 // Helper class to write .debug_info and its supporting sections.
59 template<typename ElfTypes>
60 class ElfDebugInfoWriter {
61 using Elf_Addr = typename ElfTypes::Addr;
62
63 public:
ElfDebugInfoWriter(ElfBuilder<ElfTypes> * builder)64 explicit ElfDebugInfoWriter(ElfBuilder<ElfTypes>* builder)
65 : builder_(builder),
66 debug_abbrev_(&debug_abbrev_buffer_) {
67 }
68
Start()69 void Start() {
70 builder_->GetDebugInfo()->Start();
71 }
72
End()73 void End() {
74 builder_->GetDebugInfo()->End();
75 builder_->WriteSection(".debug_abbrev", &debug_abbrev_buffer_);
76 if (!debug_loc_.empty()) {
77 builder_->WriteSection(".debug_loc", &debug_loc_);
78 }
79 if (!debug_ranges_.empty()) {
80 builder_->WriteSection(".debug_ranges", &debug_ranges_);
81 }
82 }
83
84 private:
85 ElfBuilder<ElfTypes>* builder_;
86 std::vector<uint8_t> debug_abbrev_buffer_;
87 dwarf::DebugAbbrevWriter<> debug_abbrev_;
88 std::vector<uint8_t> debug_loc_;
89 std::vector<uint8_t> debug_ranges_;
90
91 std::unordered_set<const char*> defined_dex_classes_; // For CHECKs only.
92
93 template<typename ElfTypes2>
94 friend class ElfCompilationUnitWriter;
95 };
96
97 // Helper class to write one compilation unit.
98 // It holds helper methods and temporary state.
99 template<typename ElfTypes>
100 class ElfCompilationUnitWriter {
101 using Elf_Addr = typename ElfTypes::Addr;
102
103 public:
ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes> * owner)104 explicit ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes>* owner)
105 : owner_(owner),
106 info_(Is64BitInstructionSet(owner_->builder_->GetIsa()), &owner->debug_abbrev_) {
107 }
108
Write(const ElfCompilationUnit & compilation_unit)109 void Write(const ElfCompilationUnit& compilation_unit) {
110 CHECK(!compilation_unit.methods.empty());
111 const Elf_Addr base_address = compilation_unit.is_code_address_text_relative
112 ? owner_->builder_->GetText()->GetAddress()
113 : 0;
114 const bool is64bit = Is64BitInstructionSet(owner_->builder_->GetIsa());
115 using namespace dwarf; // NOLINT. For easy access to DWARF constants.
116
117 info_.StartTag(DW_TAG_compile_unit);
118 info_.WriteString(DW_AT_producer, "Android dex2oat");
119 info_.WriteData1(DW_AT_language, DW_LANG_Java);
120 info_.WriteString(DW_AT_comp_dir, "$JAVA_SRC_ROOT");
121 // The low_pc acts as base address for several other addresses/ranges.
122 info_.WriteAddr(DW_AT_low_pc, base_address + compilation_unit.code_address);
123 info_.WriteSecOffset(DW_AT_stmt_list, compilation_unit.debug_line_offset);
124
125 // Write .debug_ranges entries covering code ranges of the whole compilation unit.
126 dwarf::Writer<> debug_ranges(&owner_->debug_ranges_);
127 info_.WriteSecOffset(DW_AT_ranges, owner_->debug_ranges_.size());
128 for (auto mi : compilation_unit.methods) {
129 uint64_t low_pc = mi->code_address - compilation_unit.code_address;
130 uint64_t high_pc = low_pc + mi->code_size;
131 if (is64bit) {
132 debug_ranges.PushUint64(low_pc);
133 debug_ranges.PushUint64(high_pc);
134 } else {
135 debug_ranges.PushUint32(low_pc);
136 debug_ranges.PushUint32(high_pc);
137 }
138 }
139 if (is64bit) {
140 debug_ranges.PushUint64(0); // End of list.
141 debug_ranges.PushUint64(0);
142 } else {
143 debug_ranges.PushUint32(0); // End of list.
144 debug_ranges.PushUint32(0);
145 }
146
147 const char* last_dex_class_desc = nullptr;
148 for (auto mi : compilation_unit.methods) {
149 DCHECK(mi->dex_file != nullptr);
150 const DexFile* dex = mi->dex_file;
151 CodeItemDebugInfoAccessor accessor(*dex, mi->code_item, mi->dex_method_index);
152 const dex::MethodId& dex_method = dex->GetMethodId(mi->dex_method_index);
153 const dex::ProtoId& dex_proto = dex->GetMethodPrototype(dex_method);
154 const dex::TypeList* dex_params = dex->GetProtoParameters(dex_proto);
155 const char* dex_class_desc = dex->GetMethodDeclaringClassDescriptor(dex_method);
156 const bool is_static = (mi->access_flags & kAccStatic) != 0;
157
158 // Enclose the method in correct class definition.
159 if (last_dex_class_desc != dex_class_desc) {
160 if (last_dex_class_desc != nullptr) {
161 EndClassTag();
162 }
163 // Write reference tag for the class we are about to declare.
164 size_t reference_tag_offset = info_.StartTag(DW_TAG_reference_type);
165 type_cache_.emplace(std::string(dex_class_desc), reference_tag_offset);
166 size_t type_attrib_offset = info_.size();
167 info_.WriteRef4(DW_AT_type, 0);
168 info_.EndTag();
169 // Declare the class that owns this method.
170 size_t class_offset = StartClassTag(dex_class_desc);
171 info_.UpdateUint32(type_attrib_offset, class_offset);
172 info_.WriteFlagPresent(DW_AT_declaration);
173 // Check that each class is defined only once.
174 bool unique = owner_->defined_dex_classes_.insert(dex_class_desc).second;
175 CHECK(unique) << "Redefinition of " << dex_class_desc;
176 last_dex_class_desc = dex_class_desc;
177 }
178
179 int start_depth = info_.Depth();
180 info_.StartTag(DW_TAG_subprogram);
181 WriteName(dex->GetMethodName(dex_method));
182 info_.WriteAddr(DW_AT_low_pc, base_address + mi->code_address);
183 info_.WriteUdata(DW_AT_high_pc, mi->code_size);
184 std::vector<uint8_t> expr_buffer;
185 Expression expr(&expr_buffer);
186 expr.WriteOpCallFrameCfa();
187 info_.WriteExprLoc(DW_AT_frame_base, expr);
188 WriteLazyType(dex->GetReturnTypeDescriptor(dex_proto));
189
190 // Decode dex register locations for all stack maps.
191 // It might be expensive, so do it just once and reuse the result.
192 std::unique_ptr<const CodeInfo> code_info;
193 std::vector<DexRegisterMap> dex_reg_maps;
194 if (accessor.HasCodeItem() && mi->code_info != nullptr) {
195 code_info.reset(new CodeInfo(mi->code_info));
196 for (StackMap stack_map : code_info->GetStackMaps()) {
197 dex_reg_maps.push_back(code_info->GetDexRegisterMapOf(stack_map));
198 }
199 }
200
201 // Write parameters. DecodeDebugLocalInfo returns them as well, but it does not
202 // guarantee order or uniqueness so it is safer to iterate over them manually.
203 // DecodeDebugLocalInfo might not also be available if there is no debug info.
204 std::vector<const char*> param_names = GetParamNames(mi);
205 uint32_t arg_reg = 0;
206 if (!is_static) {
207 info_.StartTag(DW_TAG_formal_parameter);
208 WriteName("this");
209 info_.WriteFlagPresent(DW_AT_artificial);
210 WriteLazyType(dex_class_desc);
211 if (accessor.HasCodeItem()) {
212 // Write the stack location of the parameter.
213 const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg;
214 const bool is64bitValue = false;
215 WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
216 }
217 arg_reg++;
218 info_.EndTag();
219 }
220 if (dex_params != nullptr) {
221 for (uint32_t i = 0; i < dex_params->Size(); ++i) {
222 info_.StartTag(DW_TAG_formal_parameter);
223 // Parameter names may not be always available.
224 if (i < param_names.size()) {
225 WriteName(param_names[i]);
226 }
227 // Write the type.
228 const char* type_desc = dex->GetTypeDescriptor(dex_params->GetTypeItem(i).type_idx_);
229 WriteLazyType(type_desc);
230 const bool is64bitValue = type_desc[0] == 'D' || type_desc[0] == 'J';
231 if (accessor.HasCodeItem()) {
232 // Write the stack location of the parameter.
233 const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg;
234 WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
235 }
236 arg_reg += is64bitValue ? 2 : 1;
237 info_.EndTag();
238 }
239 if (accessor.HasCodeItem()) {
240 DCHECK_EQ(arg_reg, accessor.InsSize());
241 }
242 }
243
244 // Write local variables.
245 std::vector<DexFile::LocalInfo> local_infos;
246 if (accessor.DecodeDebugLocalInfo(is_static,
247 mi->dex_method_index,
248 [&](const DexFile::LocalInfo& entry) {
249 local_infos.push_back(entry);
250 })) {
251 for (const DexFile::LocalInfo& var : local_infos) {
252 if (var.reg_ < accessor.RegistersSize() - accessor.InsSize()) {
253 info_.StartTag(DW_TAG_variable);
254 WriteName(var.name_);
255 WriteLazyType(var.descriptor_);
256 bool is64bitValue = var.descriptor_[0] == 'D' || var.descriptor_[0] == 'J';
257 WriteRegLocation(mi,
258 dex_reg_maps,
259 var.reg_,
260 is64bitValue,
261 compilation_unit.code_address,
262 var.start_address_,
263 var.end_address_);
264 info_.EndTag();
265 }
266 }
267 }
268
269 info_.EndTag();
270 CHECK_EQ(info_.Depth(), start_depth); // Balanced start/end.
271 }
272 if (last_dex_class_desc != nullptr) {
273 EndClassTag();
274 }
275 FinishLazyTypes();
276 CloseNamespacesAboveDepth(0);
277 info_.EndTag(); // DW_TAG_compile_unit
278 CHECK_EQ(info_.Depth(), 0);
279 std::vector<uint8_t> buffer;
280 buffer.reserve(info_.data()->size() + KB);
281 // All compilation units share single table which is at the start of .debug_abbrev.
282 const size_t debug_abbrev_offset = 0;
283 WriteDebugInfoCU(debug_abbrev_offset, info_, &buffer);
284 owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
285 }
286
Write(const ArrayRef<mirror::Class * > & types)287 void Write(const ArrayRef<mirror::Class*>& types) REQUIRES_SHARED(Locks::mutator_lock_) {
288 using namespace dwarf; // NOLINT. For easy access to DWARF constants.
289
290 info_.StartTag(DW_TAG_compile_unit);
291 info_.WriteString(DW_AT_producer, "Android dex2oat");
292 info_.WriteData1(DW_AT_language, DW_LANG_Java);
293
294 // Base class references to be patched at the end.
295 std::map<size_t, mirror::Class*> base_class_references;
296
297 // Already written declarations or definitions.
298 std::map<mirror::Class*, size_t> class_declarations;
299
300 std::vector<uint8_t> expr_buffer;
301 for (mirror::Class* type : types) {
302 if (type->IsPrimitive()) {
303 // For primitive types the definition and the declaration is the same.
304 if (type->GetPrimitiveType() != Primitive::kPrimVoid) {
305 WriteTypeDeclaration(type->GetDescriptor(nullptr));
306 }
307 } else if (type->IsArrayClass()) {
308 ObjPtr<mirror::Class> element_type = type->GetComponentType();
309 uint32_t component_size = type->GetComponentSize();
310 uint32_t data_offset = mirror::Array::DataOffset(component_size).Uint32Value();
311 uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
312
313 CloseNamespacesAboveDepth(0); // Declare in root namespace.
314 info_.StartTag(DW_TAG_array_type);
315 std::string descriptor_string;
316 WriteLazyType(element_type->GetDescriptor(&descriptor_string));
317 WriteLinkageName(type);
318 info_.WriteUdata(DW_AT_data_member_location, data_offset);
319 info_.StartTag(DW_TAG_subrange_type);
320 Expression count_expr(&expr_buffer);
321 count_expr.WriteOpPushObjectAddress();
322 count_expr.WriteOpPlusUconst(length_offset);
323 count_expr.WriteOpDerefSize(4); // Array length is always 32-bit wide.
324 info_.WriteExprLoc(DW_AT_count, count_expr);
325 info_.EndTag(); // DW_TAG_subrange_type.
326 info_.EndTag(); // DW_TAG_array_type.
327 } else if (type->IsInterface()) {
328 // Skip. Variables cannot have an interface as a dynamic type.
329 // We do not expose the interface information to the debugger in any way.
330 } else {
331 std::string descriptor_string;
332 const char* desc = type->GetDescriptor(&descriptor_string);
333 size_t class_offset = StartClassTag(desc);
334 class_declarations.emplace(type, class_offset);
335
336 if (!type->IsVariableSize()) {
337 info_.WriteUdata(DW_AT_byte_size, type->GetObjectSize());
338 }
339
340 WriteLinkageName(type);
341
342 if (type->IsObjectClass()) {
343 // Generate artificial member which is used to get the dynamic type of variable.
344 // The run-time value of this field will correspond to linkage name of some type.
345 // We need to do it only once in j.l.Object since all other types inherit it.
346 info_.StartTag(DW_TAG_member);
347 WriteName(".dynamic_type");
348 WriteLazyType(sizeof(uintptr_t) == 8 ? "J" : "I");
349 info_.WriteFlagPresent(DW_AT_artificial);
350 // Create DWARF expression to get the value of the methods_ field.
351 Expression expr(&expr_buffer);
352 // The address of the object has been implicitly pushed on the stack.
353 // Dereference the klass_ field of Object (32-bit; possibly poisoned).
354 DCHECK_EQ(type->ClassOffset().Uint32Value(), 0u);
355 DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Class>), 4u);
356 expr.WriteOpDerefSize(4);
357 if (kPoisonHeapReferences) {
358 expr.WriteOpNeg();
359 // DWARF stack is pointer sized. Ensure that the high bits are clear.
360 expr.WriteOpConstu(0xFFFFFFFF);
361 expr.WriteOpAnd();
362 }
363 // Add offset to the methods_ field.
364 expr.WriteOpPlusUconst(mirror::Class::MethodsOffset().Uint32Value());
365 // Top of stack holds the location of the field now.
366 info_.WriteExprLoc(DW_AT_data_member_location, expr);
367 info_.EndTag(); // DW_TAG_member.
368 }
369
370 // Base class.
371 ObjPtr<mirror::Class> base_class = type->GetSuperClass();
372 if (base_class != nullptr) {
373 info_.StartTag(DW_TAG_inheritance);
374 base_class_references.emplace(info_.size(), base_class.Ptr());
375 info_.WriteRef4(DW_AT_type, 0);
376 info_.WriteUdata(DW_AT_data_member_location, 0);
377 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
378 info_.EndTag(); // DW_TAG_inheritance.
379 }
380
381 // Member variables.
382 for (uint32_t i = 0, count = type->NumFields(); i < count; ++i) {
383 ArtField* field = type->GetField(i);
384 if (field->IsStatic()) {
385 continue;
386 }
387 info_.StartTag(DW_TAG_member);
388 WriteName(field->GetName());
389 WriteLazyType(field->GetTypeDescriptor());
390 info_.WriteUdata(DW_AT_data_member_location, field->GetOffset().Uint32Value());
391 uint32_t access_flags = field->GetAccessFlags();
392 if (access_flags & kAccPublic) {
393 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
394 } else if (access_flags & kAccProtected) {
395 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_protected);
396 } else if (access_flags & kAccPrivate) {
397 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
398 }
399 info_.EndTag(); // DW_TAG_member.
400 }
401
402 if (type->IsStringClass()) {
403 // Emit debug info about an artifical class member for java.lang.String which represents
404 // the first element of the data stored in a string instance. Consumers of the debug
405 // info will be able to read the content of java.lang.String based on the count (real
406 // field) and based on the location of this data member.
407 info_.StartTag(DW_TAG_member);
408 WriteName("value");
409 // We don't support fields with C like array types so we just say its type is java char.
410 WriteLazyType("C"); // char.
411 info_.WriteUdata(DW_AT_data_member_location,
412 mirror::String::ValueOffset().Uint32Value());
413 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
414 info_.EndTag(); // DW_TAG_member.
415 }
416
417 EndClassTag();
418 }
419 }
420
421 // Write base class declarations.
422 for (const auto& base_class_reference : base_class_references) {
423 size_t reference_offset = base_class_reference.first;
424 mirror::Class* base_class = base_class_reference.second;
425 const auto it = class_declarations.find(base_class);
426 if (it != class_declarations.end()) {
427 info_.UpdateUint32(reference_offset, it->second);
428 } else {
429 // Declare base class. We can not use the standard WriteLazyType
430 // since we want to avoid the DW_TAG_reference_tag wrapping.
431 std::string tmp_storage;
432 const char* base_class_desc = base_class->GetDescriptor(&tmp_storage);
433 size_t base_class_declaration_offset = StartClassTag(base_class_desc);
434 info_.WriteFlagPresent(DW_AT_declaration);
435 WriteLinkageName(base_class);
436 EndClassTag();
437 class_declarations.emplace(base_class, base_class_declaration_offset);
438 info_.UpdateUint32(reference_offset, base_class_declaration_offset);
439 }
440 }
441
442 FinishLazyTypes();
443 CloseNamespacesAboveDepth(0);
444 info_.EndTag(); // DW_TAG_compile_unit.
445 CHECK_EQ(info_.Depth(), 0);
446 std::vector<uint8_t> buffer;
447 buffer.reserve(info_.data()->size() + KB);
448 // All compilation units share single table which is at the start of .debug_abbrev.
449 const size_t debug_abbrev_offset = 0;
450 WriteDebugInfoCU(debug_abbrev_offset, info_, &buffer);
451 owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
452 }
453
454 // Write table into .debug_loc which describes location of dex register.
455 // The dex register might be valid only at some points and it might
456 // move between machine registers and stack.
457 void WriteRegLocation(const MethodDebugInfo* method_info,
458 const std::vector<DexRegisterMap>& dex_register_maps,
459 uint16_t vreg,
460 bool is64bitValue,
461 uint64_t compilation_unit_code_address,
462 uint32_t dex_pc_low = 0,
463 uint32_t dex_pc_high = 0xFFFFFFFF) {
464 WriteDebugLocEntry(method_info,
465 dex_register_maps,
466 vreg,
467 is64bitValue,
468 compilation_unit_code_address,
469 dex_pc_low,
470 dex_pc_high,
471 owner_->builder_->GetIsa(),
472 &info_,
473 &owner_->debug_loc_,
474 &owner_->debug_ranges_);
475 }
476
477 // Linkage name uniquely identifies type.
478 // It is used to determine the dynamic type of objects.
479 // We use the methods_ field of class since it is unique and it is not moved by the GC.
WriteLinkageName(mirror::Class * type)480 void WriteLinkageName(mirror::Class* type) REQUIRES_SHARED(Locks::mutator_lock_) {
481 auto* methods_ptr = type->GetMethodsPtr();
482 if (methods_ptr == nullptr) {
483 // Some types might have no methods. Allocate empty array instead.
484 LinearAlloc* allocator = Runtime::Current()->GetLinearAlloc();
485 void* storage = allocator->Alloc(Thread::Current(),
486 sizeof(LengthPrefixedArray<ArtMethod>),
487 LinearAllocKind::kNoGCRoots);
488 methods_ptr = new (storage) LengthPrefixedArray<ArtMethod>(0);
489 type->SetMethodsPtr(methods_ptr, 0, 0);
490 DCHECK(type->GetMethodsPtr() != nullptr);
491 }
492 char name[32];
493 snprintf(name, sizeof(name), "0x%" PRIXPTR, reinterpret_cast<uintptr_t>(methods_ptr));
494 info_.WriteString(dwarf::DW_AT_linkage_name, name);
495 }
496
497 // Some types are difficult to define as we go since they need
498 // to be enclosed in the right set of namespaces. Therefore we
499 // just define all types lazily at the end of compilation unit.
WriteLazyType(const char * type_descriptor)500 void WriteLazyType(const char* type_descriptor) {
501 if (type_descriptor != nullptr && type_descriptor[0] != 'V') {
502 lazy_types_.emplace(std::string(type_descriptor), info_.size());
503 info_.WriteRef4(dwarf::DW_AT_type, 0);
504 }
505 }
506
FinishLazyTypes()507 void FinishLazyTypes() {
508 for (const auto& lazy_type : lazy_types_) {
509 info_.UpdateUint32(lazy_type.second, WriteTypeDeclaration(lazy_type.first));
510 }
511 lazy_types_.clear();
512 }
513
514 private:
WriteName(const char * name)515 void WriteName(const char* name) {
516 if (name != nullptr) {
517 info_.WriteString(dwarf::DW_AT_name, name);
518 }
519 }
520
521 // Convert dex type descriptor to DWARF.
522 // Returns offset in the compilation unit.
WriteTypeDeclaration(const std::string & desc)523 size_t WriteTypeDeclaration(const std::string& desc) {
524 using namespace dwarf; // NOLINT. For easy access to DWARF constants.
525
526 DCHECK(!desc.empty());
527 const auto it = type_cache_.find(desc);
528 if (it != type_cache_.end()) {
529 return it->second;
530 }
531
532 size_t offset;
533 if (desc[0] == 'L') {
534 // Class type. For example: Lpackage/name;
535 size_t class_offset = StartClassTag(desc.c_str());
536 info_.WriteFlagPresent(DW_AT_declaration);
537 EndClassTag();
538 // Reference to the class type.
539 offset = info_.StartTag(DW_TAG_reference_type);
540 info_.WriteRef(DW_AT_type, class_offset);
541 info_.EndTag();
542 } else if (desc[0] == '[') {
543 // Array type.
544 size_t element_type = WriteTypeDeclaration(desc.substr(1));
545 CloseNamespacesAboveDepth(0); // Declare in root namespace.
546 size_t array_type = info_.StartTag(DW_TAG_array_type);
547 info_.WriteFlagPresent(DW_AT_declaration);
548 info_.WriteRef(DW_AT_type, element_type);
549 info_.EndTag();
550 offset = info_.StartTag(DW_TAG_reference_type);
551 info_.WriteRef4(DW_AT_type, array_type);
552 info_.EndTag();
553 } else {
554 // Primitive types.
555 DCHECK_EQ(desc.size(), 1u);
556
557 const char* name;
558 uint32_t encoding;
559 uint32_t byte_size;
560 switch (desc[0]) {
561 case 'B':
562 name = "byte";
563 encoding = DW_ATE_signed;
564 byte_size = 1;
565 break;
566 case 'C':
567 name = "char";
568 encoding = DW_ATE_UTF;
569 byte_size = 2;
570 break;
571 case 'D':
572 name = "double";
573 encoding = DW_ATE_float;
574 byte_size = 8;
575 break;
576 case 'F':
577 name = "float";
578 encoding = DW_ATE_float;
579 byte_size = 4;
580 break;
581 case 'I':
582 name = "int";
583 encoding = DW_ATE_signed;
584 byte_size = 4;
585 break;
586 case 'J':
587 name = "long";
588 encoding = DW_ATE_signed;
589 byte_size = 8;
590 break;
591 case 'S':
592 name = "short";
593 encoding = DW_ATE_signed;
594 byte_size = 2;
595 break;
596 case 'Z':
597 name = "boolean";
598 encoding = DW_ATE_boolean;
599 byte_size = 1;
600 break;
601 case 'V':
602 LOG(FATAL) << "Void type should not be encoded";
603 UNREACHABLE();
604 default:
605 LOG(FATAL) << "Unknown dex type descriptor: \"" << desc << "\"";
606 UNREACHABLE();
607 }
608 CloseNamespacesAboveDepth(0); // Declare in root namespace.
609 offset = info_.StartTag(DW_TAG_base_type);
610 WriteName(name);
611 info_.WriteData1(DW_AT_encoding, encoding);
612 info_.WriteData1(DW_AT_byte_size, byte_size);
613 info_.EndTag();
614 }
615
616 type_cache_.emplace(desc, offset);
617 return offset;
618 }
619
620 // Start DW_TAG_class_type tag nested in DW_TAG_namespace tags.
621 // Returns offset of the class tag in the compilation unit.
StartClassTag(const char * desc)622 size_t StartClassTag(const char* desc) {
623 std::string name = SetNamespaceForClass(desc);
624 size_t offset = info_.StartTag(dwarf::DW_TAG_class_type);
625 WriteName(name.c_str());
626 return offset;
627 }
628
EndClassTag()629 void EndClassTag() {
630 info_.EndTag();
631 }
632
633 // Set the current namespace nesting to one required by the given class.
634 // Returns the class name with namespaces, 'L', and ';' stripped.
SetNamespaceForClass(const char * desc)635 std::string SetNamespaceForClass(const char* desc) {
636 DCHECK(desc != nullptr && desc[0] == 'L');
637 desc++; // Skip the initial 'L'.
638 size_t depth = 0;
639 for (const char* end; (end = strchr(desc, '/')) != nullptr; desc = end + 1, ++depth) {
640 // Check whether the name at this depth is already what we need.
641 if (depth < current_namespace_.size()) {
642 const std::string& name = current_namespace_[depth];
643 if (name.compare(0, name.size(), desc, end - desc) == 0) {
644 continue;
645 }
646 }
647 // Otherwise we need to open a new namespace tag at this depth.
648 CloseNamespacesAboveDepth(depth);
649 info_.StartTag(dwarf::DW_TAG_namespace);
650 std::string name(desc, end - desc);
651 WriteName(name.c_str());
652 current_namespace_.push_back(std::move(name));
653 }
654 CloseNamespacesAboveDepth(depth);
655 return std::string(desc, strchr(desc, ';') - desc);
656 }
657
658 // Close namespace tags to reach the given nesting depth.
CloseNamespacesAboveDepth(size_t depth)659 void CloseNamespacesAboveDepth(size_t depth) {
660 DCHECK_LE(depth, current_namespace_.size());
661 while (current_namespace_.size() > depth) {
662 info_.EndTag();
663 current_namespace_.pop_back();
664 }
665 }
666
667 // For access to the ELF sections.
668 ElfDebugInfoWriter<ElfTypes>* owner_;
669 // Temporary buffer to create and store the entries.
670 dwarf::DebugInfoEntryWriter<> info_;
671 // Cache of already translated type descriptors.
672 std::map<std::string, size_t> type_cache_; // type_desc -> definition_offset.
673 // 32-bit references which need to be resolved to a type later.
674 // Given type may be used multiple times. Therefore we need a multimap.
675 std::multimap<std::string, size_t> lazy_types_; // type_desc -> patch_offset.
676 // The current set of open namespace tags which are active and not closed yet.
677 std::vector<std::string> current_namespace_;
678 };
679
680 } // namespace debug
681 } // namespace art
682
683 #endif // ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
684
685