1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "optimizing_compiler.h"
18
19 #include <fstream>
20 #include <memory>
21 #include <sstream>
22
23 #include <stdint.h>
24
25 #include "art_method-inl.h"
26 #include "base/arena_allocator.h"
27 #include "base/arena_containers.h"
28 #include "base/dumpable.h"
29 #include "base/logging.h"
30 #include "base/macros.h"
31 #include "base/mutex.h"
32 #include "base/scoped_arena_allocator.h"
33 #include "base/systrace.h"
34 #include "base/timing_logger.h"
35 #include "builder.h"
36 #include "code_generator.h"
37 #include "compiler.h"
38 #include "com_android_art_flags.h"
39 #include "debug/elf_debug_writer.h"
40 #include "debug/method_debug_info.h"
41 #include "dex/dex_file_types.h"
42 #include "driver/compiled_code_storage.h"
43 #include "driver/compiler_options.h"
44 #include "driver/dex_compilation_unit.h"
45 #include "fast_compiler.h"
46 #include "graph_checker.h"
47 #include "graph_visualizer.h"
48 #include "inliner.h"
49 #include "jit/debugger_interface.h"
50 #include "jit/jit.h"
51 #include "jit/jit_code_cache.h"
52 #include "jit/jit_logger.h"
53 #include "jni/quick/jni_compiler.h"
54 #include "linker/linker_patch.h"
55 #include "nodes.h"
56 #include "oat/oat_quick_method_header.h"
57 #include "optimizing/write_barrier_elimination.h"
58 #include "prepare_for_register_allocation.h"
59 #include "profiling_info_builder.h"
60 #include "reference_type_propagation.h"
61 #include "register_allocator_linear_scan.h"
62 #include "ssa_builder.h"
63 #include "ssa_liveness_analysis.h"
64 #include "stack_map_stream.h"
65 #include "utils/assembler.h"
66
67 namespace art HIDDEN {
68
69 static constexpr size_t kArenaAllocatorMemoryReportThreshold = 8 * MB;
70
71 static constexpr const char* kPassNameSeparator = "$";
72
73 /**
74 * Filter to apply to the visualizer. Methods whose name contain that filter will
75 * be dumped.
76 */
77 static constexpr const char kStringFilter[] = "";
78
79 class PassScope;
80
81 class PassObserver : public ValueObject {
82 public:
PassObserver(HGraph * graph,CodeGenerator * codegen,std::ostream * visualizer_output,const CompilerOptions & compiler_options)83 PassObserver(HGraph* graph,
84 CodeGenerator* codegen,
85 std::ostream* visualizer_output,
86 const CompilerOptions& compiler_options)
87 : graph_(graph),
88 last_seen_graph_size_(0),
89 cached_method_name_(),
90 timing_logger_enabled_(compiler_options.GetDumpPassTimings()),
91 timing_logger_(timing_logger_enabled_ ? GetMethodName() : "", true, true),
92 disasm_info_(graph->GetAllocator()),
93 visualizer_oss_(),
94 visualizer_output_(visualizer_output),
95 visualizer_enabled_(!compiler_options.GetDumpCfgFileName().empty()),
96 visualizer_(&visualizer_oss_, graph, codegen),
97 codegen_(codegen),
98 graph_in_bad_state_(false) {
99 if (timing_logger_enabled_ || visualizer_enabled_) {
100 if (!IsVerboseMethod(compiler_options, GetMethodName())) {
101 timing_logger_enabled_ = visualizer_enabled_ = false;
102 }
103 if (visualizer_enabled_) {
104 visualizer_.PrintHeader(GetMethodName());
105 codegen->SetDisassemblyInformation(&disasm_info_);
106 }
107 }
108 }
109
~PassObserver()110 ~PassObserver() {
111 if (timing_logger_enabled_) {
112 LOG(INFO) << "TIMINGS " << GetMethodName();
113 LOG(INFO) << Dumpable<TimingLogger>(timing_logger_);
114 }
115 if (visualizer_enabled_) {
116 FlushVisualizer();
117 }
118 DCHECK(visualizer_oss_.str().empty());
119 }
120
DumpDisassembly()121 void DumpDisassembly() {
122 if (visualizer_enabled_) {
123 visualizer_.DumpGraphWithDisassembly();
124 FlushVisualizer();
125 }
126 }
127
SetGraphInBadState()128 void SetGraphInBadState() { graph_in_bad_state_ = true; }
129
GetMethodName()130 const char* GetMethodName() {
131 // PrettyMethod() is expensive, so we delay calling it until we actually have to.
132 if (cached_method_name_.empty()) {
133 cached_method_name_ = graph_->GetDexFile().PrettyMethod(graph_->GetMethodIdx());
134 }
135 return cached_method_name_.c_str();
136 }
137
138 private:
StartPass(const char * pass_name)139 void StartPass(const char* pass_name) {
140 VLOG(compiler) << "Starting pass: " << pass_name;
141 // Dump graph first, then start timer.
142 if (visualizer_enabled_) {
143 visualizer_.DumpGraph(pass_name, /* is_after_pass= */ false, graph_in_bad_state_);
144 FlushVisualizer();
145 }
146 if (timing_logger_enabled_) {
147 timing_logger_.StartTiming(pass_name);
148 }
149 }
150
FlushVisualizer()151 void FlushVisualizer() {
152 *visualizer_output_ << visualizer_oss_.str();
153 visualizer_output_->flush();
154 visualizer_oss_.str("");
155 visualizer_oss_.clear();
156 }
157
EndPass(const char * pass_name,bool pass_change)158 void EndPass(const char* pass_name, bool pass_change) {
159 // Pause timer first, then dump graph.
160 if (timing_logger_enabled_) {
161 timing_logger_.EndTiming();
162 }
163 if (visualizer_enabled_) {
164 visualizer_.DumpGraph(pass_name, /* is_after_pass= */ true, graph_in_bad_state_);
165 FlushVisualizer();
166 }
167
168 // Validate the HGraph if running in debug mode.
169 if (kIsDebugBuild) {
170 if (!graph_in_bad_state_) {
171 GraphChecker checker(graph_, codegen_);
172 last_seen_graph_size_ = checker.Run(pass_change, last_seen_graph_size_);
173 if (!checker.IsValid()) {
174 std::ostringstream stream;
175 graph_->Dump(stream, codegen_);
176 LOG(FATAL_WITHOUT_ABORT) << "Error after " << pass_name << "(" << graph_->PrettyMethod()
177 << "): " << stream.str();
178 LOG(FATAL) << "(" << pass_name << "): " << Dumpable<GraphChecker>(checker);
179 }
180 }
181 }
182 }
183
IsVerboseMethod(const CompilerOptions & compiler_options,const char * method_name)184 static bool IsVerboseMethod(const CompilerOptions& compiler_options, const char* method_name) {
185 // Test an exact match to --verbose-methods. If verbose-methods is set, this overrides an
186 // empty kStringFilter matching all methods.
187 if (compiler_options.HasVerboseMethods()) {
188 return compiler_options.IsVerboseMethod(method_name);
189 }
190
191 // Test the kStringFilter sub-string. constexpr helper variable to silence unreachable-code
192 // warning when the string is empty.
193 constexpr bool kStringFilterEmpty = arraysize(kStringFilter) <= 1;
194 if (kStringFilterEmpty || strstr(method_name, kStringFilter) != nullptr) {
195 return true;
196 }
197
198 return false;
199 }
200
201 HGraph* const graph_;
202 size_t last_seen_graph_size_;
203
204 std::string cached_method_name_;
205
206 bool timing_logger_enabled_;
207 TimingLogger timing_logger_;
208
209 DisassemblyInformation disasm_info_;
210
211 std::ostringstream visualizer_oss_;
212 std::ostream* visualizer_output_;
213 bool visualizer_enabled_;
214 HGraphVisualizer visualizer_;
215 CodeGenerator* codegen_;
216
217 // Flag to be set by the compiler if the pass failed and the graph is not
218 // expected to validate.
219 bool graph_in_bad_state_;
220
221 friend PassScope;
222
223 DISALLOW_COPY_AND_ASSIGN(PassObserver);
224 };
225
226 class PassScope : public ValueObject {
227 public:
PassScope(const char * pass_name,PassObserver * pass_observer)228 PassScope(const char *pass_name, PassObserver* pass_observer)
229 : pass_name_(pass_name),
230 pass_change_(true), // assume change
231 pass_observer_(pass_observer) {
232 pass_observer_->StartPass(pass_name_);
233 }
234
SetPassNotChanged()235 void SetPassNotChanged() {
236 pass_change_ = false;
237 }
238
~PassScope()239 ~PassScope() {
240 pass_observer_->EndPass(pass_name_, pass_change_);
241 }
242
243 private:
244 const char* const pass_name_;
245 bool pass_change_;
246 PassObserver* const pass_observer_;
247 };
248
249 class OptimizingCompiler final : public Compiler {
250 public:
251 explicit OptimizingCompiler(const CompilerOptions& compiler_options,
252 CompiledCodeStorage* storage);
253 ~OptimizingCompiler() override;
254
255 bool CanCompileMethod(uint32_t method_idx, const DexFile& dex_file) const override;
256
257 CompiledMethod* Compile(const dex::CodeItem* code_item,
258 uint32_t access_flags,
259 uint16_t class_def_idx,
260 uint32_t method_idx,
261 Handle<mirror::ClassLoader> class_loader,
262 const DexFile& dex_file,
263 Handle<mirror::DexCache> dex_cache) const override;
264
265 CompiledMethod* JniCompile(uint32_t access_flags,
266 uint32_t method_idx,
267 const DexFile& dex_file,
268 Handle<mirror::DexCache> dex_cache) const override;
269
GetEntryPointOf(ArtMethod * method) const270 uintptr_t GetEntryPointOf(ArtMethod* method) const override
271 REQUIRES_SHARED(Locks::mutator_lock_) {
272 return reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCodePtrSize(
273 InstructionSetPointerSize(GetCompilerOptions().GetInstructionSet())));
274 }
275
276 bool JitCompile(Thread* self,
277 jit::JitCodeCache* code_cache,
278 jit::JitMemoryRegion* region,
279 ArtMethod* method,
280 CompilationKind compilation_kind,
281 jit::JitLogger* jit_logger)
282 override
283 REQUIRES_SHARED(Locks::mutator_lock_);
284
285 private:
RunOptimizations(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer,const OptimizationDef definitions[],size_t length) const286 bool RunOptimizations(HGraph* graph,
287 CodeGenerator* codegen,
288 const DexCompilationUnit& dex_compilation_unit,
289 PassObserver* pass_observer,
290 const OptimizationDef definitions[],
291 size_t length) const {
292 // Convert definitions to optimization passes.
293 ArenaVector<HOptimization*> optimizations = ConstructOptimizations(
294 definitions,
295 length,
296 graph->GetAllocator(),
297 graph,
298 compilation_stats_.get(),
299 codegen,
300 dex_compilation_unit);
301 DCHECK_EQ(length, optimizations.size());
302 // Run the optimization passes one by one. Any "depends_on" pass refers back to
303 // the most recent occurrence of that pass, skipped or executed.
304 std::bitset<static_cast<size_t>(OptimizationPass::kLast) + 1u> pass_changes;
305 pass_changes[static_cast<size_t>(OptimizationPass::kNone)] = true;
306 bool change = false;
307 for (size_t i = 0; i < length; ++i) {
308 if (pass_changes[static_cast<size_t>(definitions[i].depends_on)]) {
309 // Execute the pass and record whether it changed anything.
310 PassScope scope(optimizations[i]->GetPassName(), pass_observer);
311 bool pass_change = optimizations[i]->Run();
312 pass_changes[static_cast<size_t>(definitions[i].pass)] = pass_change;
313 if (pass_change) {
314 change = true;
315 } else {
316 scope.SetPassNotChanged();
317 }
318 } else {
319 // Skip the pass and record that nothing changed.
320 pass_changes[static_cast<size_t>(definitions[i].pass)] = false;
321 }
322 }
323 return change;
324 }
325
RunOptimizations(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer,const OptimizationDef (& definitions)[length]) const326 template <size_t length> bool RunOptimizations(
327 HGraph* graph,
328 CodeGenerator* codegen,
329 const DexCompilationUnit& dex_compilation_unit,
330 PassObserver* pass_observer,
331 const OptimizationDef (&definitions)[length]) const {
332 return RunOptimizations(
333 graph, codegen, dex_compilation_unit, pass_observer, definitions, length);
334 }
335
336 void RunOptimizations(HGraph* graph,
337 CodeGenerator* codegen,
338 const DexCompilationUnit& dex_compilation_unit,
339 PassObserver* pass_observer) const;
340
341 // Create a 'CompiledMethod' for an optimized graph.
342 CompiledMethod* Emit(ArenaAllocator* allocator,
343 CodeGenerator* codegen,
344 bool is_intrinsic,
345 const dex::CodeItem* item) const;
346
347 // Try compiling a method and return the code generator used for
348 // compiling it.
349 // This method:
350 // 1) Builds the graph. Returns null if it failed to build it.
351 // 2) Transforms the graph to SSA. Returns null if it failed.
352 // 3) Runs optimizations on the graph, including register allocator.
353 CodeGenerator* TryCompile(ArenaAllocator* allocator,
354 ArenaStack* arena_stack,
355 const DexCompilationUnit& dex_compilation_unit,
356 ArtMethod* method,
357 CompilationKind compilation_kind,
358 VariableSizedHandleScope* handles) const;
359
360 CodeGenerator* TryCompileIntrinsic(ArenaAllocator* allocator,
361 ArenaStack* arena_stack,
362 const DexCompilationUnit& dex_compilation_unit,
363 ArtMethod* method,
364 VariableSizedHandleScope* handles) const;
365
366 bool RunArchOptimizations(HGraph* graph,
367 CodeGenerator* codegen,
368 const DexCompilationUnit& dex_compilation_unit,
369 PassObserver* pass_observer) const;
370
371 bool RunRequiredPasses(HGraph* graph,
372 CodeGenerator* codegen,
373 const DexCompilationUnit& dex_compilation_unit,
374 PassObserver* pass_observer) const;
375
376 std::vector<uint8_t> GenerateJitDebugInfo(const debug::MethodDebugInfo& method_debug_info);
377
378 // This must be called before any other function that dumps data to the cfg
379 void DumpInstructionSetFeaturesToCfg() const;
380
381 std::unique_ptr<OptimizingCompilerStats> compilation_stats_;
382
383 std::unique_ptr<std::ostream> visualizer_output_;
384
385 DISALLOW_COPY_AND_ASSIGN(OptimizingCompiler);
386 };
387
388 static const int kMaximumCompilationTimeBeforeWarning = 100; /* ms */
389
OptimizingCompiler(const CompilerOptions & compiler_options,CompiledCodeStorage * storage)390 OptimizingCompiler::OptimizingCompiler(const CompilerOptions& compiler_options,
391 CompiledCodeStorage* storage)
392 : Compiler(compiler_options, storage, kMaximumCompilationTimeBeforeWarning) {
393 // Enable C1visualizer output.
394 const std::string& cfg_file_name = compiler_options.GetDumpCfgFileName();
395 if (!cfg_file_name.empty()) {
396 std::ios_base::openmode cfg_file_mode =
397 compiler_options.GetDumpCfgAppend() ? std::ofstream::app : std::ofstream::out;
398 visualizer_output_.reset(new std::ofstream(cfg_file_name, cfg_file_mode));
399 DumpInstructionSetFeaturesToCfg();
400 }
401 if (compiler_options.GetDumpStats()) {
402 compilation_stats_.reset(new OptimizingCompilerStats());
403 }
404 }
405
~OptimizingCompiler()406 OptimizingCompiler::~OptimizingCompiler() {
407 if (compilation_stats_.get() != nullptr) {
408 compilation_stats_->Log();
409 }
410 }
411
DumpInstructionSetFeaturesToCfg() const412 void OptimizingCompiler::DumpInstructionSetFeaturesToCfg() const {
413 const CompilerOptions& compiler_options = GetCompilerOptions();
414 const InstructionSetFeatures* features = compiler_options.GetInstructionSetFeatures();
415 std::string isa_string =
416 std::string("isa:") + GetInstructionSetString(features->GetInstructionSet());
417 std::string features_string = "isa_features:" + features->GetFeatureString();
418 std::string read_barrier_type = "none";
419 if (compiler_options.EmitReadBarrier()) {
420 if (art::kUseBakerReadBarrier)
421 read_barrier_type = "baker";
422 else if (art::kUseTableLookupReadBarrier)
423 read_barrier_type = "tablelookup";
424 }
425 std::string read_barrier_string = ART_FORMAT("read_barrier_type:{}", read_barrier_type);
426 // It is assumed that visualizer_output_ is empty when calling this function, hence the fake
427 // compilation block containing the ISA features will be printed at the beginning of the .cfg
428 // file.
429 *visualizer_output_ << HGraphVisualizer::InsertMetaDataAsCompilationBlock(
430 isa_string + ' ' + features_string + ' ' + read_barrier_string);
431 }
432
CanCompileMethod(uint32_t method_idx,const DexFile & dex_file) const433 bool OptimizingCompiler::CanCompileMethod([[maybe_unused]] uint32_t method_idx,
434 [[maybe_unused]] const DexFile& dex_file) const {
435 return true;
436 }
437
IsInstructionSetSupported(InstructionSet instruction_set)438 static bool IsInstructionSetSupported(InstructionSet instruction_set) {
439 return instruction_set == InstructionSet::kArm ||
440 instruction_set == InstructionSet::kArm64 ||
441 instruction_set == InstructionSet::kThumb2 ||
442 instruction_set == InstructionSet::kRiscv64 ||
443 instruction_set == InstructionSet::kX86 ||
444 instruction_set == InstructionSet::kX86_64;
445 }
446
RunRequiredPasses(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer) const447 bool OptimizingCompiler::RunRequiredPasses(HGraph* graph,
448 CodeGenerator* codegen,
449 const DexCompilationUnit& dex_compilation_unit,
450 PassObserver* pass_observer) const {
451 switch (codegen->GetCompilerOptions().GetInstructionSet()) {
452 #if defined(ART_ENABLE_CODEGEN_arm)
453 case InstructionSet::kThumb2:
454 case InstructionSet::kArm: {
455 OptimizationDef arm_optimizations[] = {
456 OptDef(OptimizationPass::kCriticalNativeAbiFixupArm),
457 };
458 return RunOptimizations(graph,
459 codegen,
460 dex_compilation_unit,
461 pass_observer,
462 arm_optimizations);
463 }
464 #endif
465 #if defined(ART_ENABLE_CODEGEN_riscv64)
466 case InstructionSet::kRiscv64: {
467 OptimizationDef riscv64_optimizations[] = {
468 OptDef(OptimizationPass::kCriticalNativeAbiFixupRiscv64),
469 };
470 return RunOptimizations(graph,
471 codegen,
472 dex_compilation_unit,
473 pass_observer,
474 riscv64_optimizations);
475 }
476 #endif
477 #ifdef ART_ENABLE_CODEGEN_x86
478 case InstructionSet::kX86: {
479 OptimizationDef x86_optimizations[] = {
480 OptDef(OptimizationPass::kPcRelativeFixupsX86),
481 };
482 return RunOptimizations(graph,
483 codegen,
484 dex_compilation_unit,
485 pass_observer,
486 x86_optimizations);
487 }
488 #endif
489 default:
490 UNUSED(graph);
491 UNUSED(codegen);
492 UNUSED(dex_compilation_unit);
493 UNUSED(pass_observer);
494 return false;
495 }
496 }
497
RunArchOptimizations(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer) const498 bool OptimizingCompiler::RunArchOptimizations(HGraph* graph,
499 CodeGenerator* codegen,
500 const DexCompilationUnit& dex_compilation_unit,
501 PassObserver* pass_observer) const {
502 switch (codegen->GetCompilerOptions().GetInstructionSet()) {
503 #if defined(ART_ENABLE_CODEGEN_arm)
504 case InstructionSet::kThumb2:
505 case InstructionSet::kArm: {
506 OptimizationDef arm_optimizations[] = {
507 OptDef(OptimizationPass::kInstructionSimplifierArm),
508 OptDef(OptimizationPass::kSideEffectsAnalysis),
509 OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
510 OptDef(OptimizationPass::kCriticalNativeAbiFixupArm),
511 OptDef(OptimizationPass::kScheduling)
512 };
513 return RunOptimizations(graph,
514 codegen,
515 dex_compilation_unit,
516 pass_observer,
517 arm_optimizations);
518 }
519 #endif
520 #ifdef ART_ENABLE_CODEGEN_arm64
521 case InstructionSet::kArm64: {
522 OptimizationDef arm64_optimizations[] = {
523 OptDef(OptimizationPass::kInstructionSimplifierArm64),
524 OptDef(OptimizationPass::kSideEffectsAnalysis),
525 OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
526 OptDef(OptimizationPass::kScheduling)
527 };
528 return RunOptimizations(graph,
529 codegen,
530 dex_compilation_unit,
531 pass_observer,
532 arm64_optimizations);
533 }
534 #endif
535 #if defined(ART_ENABLE_CODEGEN_riscv64)
536 case InstructionSet::kRiscv64: {
537 OptimizationDef riscv64_optimizations[] = {
538 OptDef(OptimizationPass::kInstructionSimplifierRiscv64),
539 OptDef(OptimizationPass::kSideEffectsAnalysis),
540 OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
541 OptDef(OptimizationPass::kCriticalNativeAbiFixupRiscv64)
542 };
543 return RunOptimizations(graph,
544 codegen,
545 dex_compilation_unit,
546 pass_observer,
547 riscv64_optimizations);
548 }
549 #endif
550 #ifdef ART_ENABLE_CODEGEN_x86
551 case InstructionSet::kX86: {
552 OptimizationDef x86_optimizations[] = {
553 OptDef(OptimizationPass::kInstructionSimplifierX86),
554 OptDef(OptimizationPass::kSideEffectsAnalysis),
555 OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
556 OptDef(OptimizationPass::kPcRelativeFixupsX86),
557 OptDef(OptimizationPass::kX86MemoryOperandGeneration)
558 };
559 return RunOptimizations(graph,
560 codegen,
561 dex_compilation_unit,
562 pass_observer,
563 x86_optimizations);
564 }
565 #endif
566 #ifdef ART_ENABLE_CODEGEN_x86_64
567 case InstructionSet::kX86_64: {
568 OptimizationDef x86_64_optimizations[] = {
569 OptDef(OptimizationPass::kInstructionSimplifierX86_64),
570 OptDef(OptimizationPass::kSideEffectsAnalysis),
571 OptDef(OptimizationPass::kGlobalValueNumbering, "GVN$after_arch"),
572 OptDef(OptimizationPass::kX86MemoryOperandGeneration)
573 };
574 return RunOptimizations(graph,
575 codegen,
576 dex_compilation_unit,
577 pass_observer,
578 x86_64_optimizations);
579 }
580 #endif
581 default:
582 UNUSED(graph);
583 UNUSED(dex_compilation_unit);
584 UNUSED(pass_observer);
585 return false;
586 }
587 }
588
589 NO_INLINE // Avoid increasing caller's frame size by large stack-allocated objects.
AllocateRegisters(HGraph * graph,CodeGenerator * codegen,PassObserver * pass_observer,OptimizingCompilerStats * stats)590 static void AllocateRegisters(HGraph* graph,
591 CodeGenerator* codegen,
592 PassObserver* pass_observer,
593 OptimizingCompilerStats* stats) {
594 {
595 PassScope scope(PrepareForRegisterAllocation::kPrepareForRegisterAllocationPassName,
596 pass_observer);
597 PrepareForRegisterAllocation(graph, codegen->GetCompilerOptions(), stats).Run();
598 }
599 // Use local allocator shared by SSA liveness analysis and register allocator.
600 // (Register allocator creates new objects in the liveness data.)
601 ScopedArenaAllocator local_allocator(graph->GetArenaStack());
602 SsaLivenessAnalysis liveness(graph, codegen, &local_allocator);
603 {
604 PassScope scope(SsaLivenessAnalysis::kLivenessPassName, pass_observer);
605 liveness.Analyze();
606 }
607 {
608 PassScope scope(RegisterAllocator::kRegisterAllocatorPassName, pass_observer);
609 std::unique_ptr<RegisterAllocator> register_allocator =
610 RegisterAllocator::Create(&local_allocator, codegen, liveness);
611 register_allocator->AllocateRegisters();
612 }
613 }
614
615 // Strip pass name suffix to get optimization name.
ConvertPassNameToOptimizationName(const std::string & pass_name)616 static std::string ConvertPassNameToOptimizationName(const std::string& pass_name) {
617 size_t pos = pass_name.find(kPassNameSeparator);
618 return pos == std::string::npos ? pass_name : pass_name.substr(0, pos);
619 }
620
RunOptimizations(HGraph * graph,CodeGenerator * codegen,const DexCompilationUnit & dex_compilation_unit,PassObserver * pass_observer) const621 void OptimizingCompiler::RunOptimizations(HGraph* graph,
622 CodeGenerator* codegen,
623 const DexCompilationUnit& dex_compilation_unit,
624 PassObserver* pass_observer) const {
625 const std::vector<std::string>* pass_names = GetCompilerOptions().GetPassesToRun();
626 if (pass_names != nullptr) {
627 // If passes were defined on command-line, build the optimization
628 // passes and run these instead of the built-in optimizations.
629 // TODO: a way to define depends_on via command-line?
630 const size_t length = pass_names->size();
631 std::vector<OptimizationDef> optimizations;
632 for (const std::string& pass_name : *pass_names) {
633 std::string opt_name = ConvertPassNameToOptimizationName(pass_name);
634 optimizations.push_back(OptDef(OptimizationPassByName(opt_name), pass_name.c_str()));
635 }
636 RunOptimizations(graph,
637 codegen,
638 dex_compilation_unit,
639 pass_observer,
640 optimizations.data(),
641 length);
642 return;
643 }
644
645 OptimizationDef optimizations[] = {
646 // Initial optimizations.
647 OptDef(OptimizationPass::kConstantFolding),
648 OptDef(OptimizationPass::kInstructionSimplifier),
649 OptDef(OptimizationPass::kDeadCodeElimination,
650 "dead_code_elimination$initial"),
651 // Inlining.
652 OptDef(OptimizationPass::kInliner),
653 // Simplification (if inlining occurred, or if we analyzed the invoke as "always throwing").
654 OptDef(OptimizationPass::kConstantFolding,
655 "constant_folding$after_inlining",
656 OptimizationPass::kInliner),
657 OptDef(OptimizationPass::kInstructionSimplifier,
658 "instruction_simplifier$after_inlining",
659 OptimizationPass::kInliner),
660 OptDef(OptimizationPass::kDeadCodeElimination,
661 "dead_code_elimination$after_inlining",
662 OptimizationPass::kInliner),
663 // GVN.
664 OptDef(OptimizationPass::kSideEffectsAnalysis,
665 "side_effects$before_gvn"),
666 OptDef(OptimizationPass::kGlobalValueNumbering),
667 OptDef(OptimizationPass::kReferenceTypePropagation,
668 "reference_type_propagation$after_gvn",
669 OptimizationPass::kGlobalValueNumbering),
670 // Simplification (TODO: only if GVN occurred).
671 OptDef(OptimizationPass::kControlFlowSimplifier),
672 OptDef(OptimizationPass::kConstantFolding,
673 "constant_folding$after_gvn"),
674 OptDef(OptimizationPass::kInstructionSimplifier,
675 "instruction_simplifier$after_gvn"),
676 OptDef(OptimizationPass::kDeadCodeElimination,
677 "dead_code_elimination$after_gvn"),
678 // High-level optimizations.
679 OptDef(OptimizationPass::kSideEffectsAnalysis,
680 "side_effects$before_licm"),
681 OptDef(OptimizationPass::kInvariantCodeMotion),
682 OptDef(OptimizationPass::kInductionVarAnalysis),
683 OptDef(OptimizationPass::kBoundsCheckElimination),
684 OptDef(OptimizationPass::kLoopOptimization),
685 // Simplification.
686 OptDef(OptimizationPass::kConstantFolding,
687 "constant_folding$after_loop_opt"),
688 OptDef(OptimizationPass::kAggressiveInstructionSimplifier,
689 "instruction_simplifier$after_loop_opt"),
690 OptDef(OptimizationPass::kDeadCodeElimination,
691 "dead_code_elimination$after_loop_opt"),
692 // Other high-level optimizations.
693 OptDef(OptimizationPass::kLoadStoreElimination),
694 OptDef(OptimizationPass::kCHAGuardOptimization),
695 OptDef(OptimizationPass::kCodeSinking),
696 // Simplification.
697 OptDef(OptimizationPass::kConstantFolding,
698 "constant_folding$before_codegen"),
699 // The codegen has a few assumptions that only the instruction simplifier
700 // can satisfy. For example, the code generator does not expect to see a
701 // HTypeConversion from a type to the same type.
702 OptDef(OptimizationPass::kAggressiveInstructionSimplifier,
703 "instruction_simplifier$before_codegen"),
704 // Simplification may result in dead code that should be removed prior to
705 // code generation.
706 OptDef(OptimizationPass::kDeadCodeElimination,
707 "dead_code_elimination$before_codegen"),
708 // Eliminate constructor fences after code sinking to avoid
709 // complicated sinking logic to split a fence with many inputs.
710 OptDef(OptimizationPass::kConstructorFenceRedundancyElimination)
711 };
712 RunOptimizations(graph,
713 codegen,
714 dex_compilation_unit,
715 pass_observer,
716 optimizations);
717
718 RunArchOptimizations(graph, codegen, dex_compilation_unit, pass_observer);
719 }
720
EmitAndSortLinkerPatches(CodeGenerator * codegen)721 static ArenaVector<linker::LinkerPatch> EmitAndSortLinkerPatches(CodeGenerator* codegen) {
722 ArenaVector<linker::LinkerPatch> linker_patches(codegen->GetGraph()->GetAllocator()->Adapter());
723 codegen->EmitLinkerPatches(&linker_patches);
724
725 // Sort patches by literal offset. Required for .oat_patches encoding.
726 std::sort(linker_patches.begin(), linker_patches.end(),
727 [](const linker::LinkerPatch& lhs, const linker::LinkerPatch& rhs) {
728 return lhs.LiteralOffset() < rhs.LiteralOffset();
729 });
730
731 return linker_patches;
732 }
733
Emit(ArenaAllocator * allocator,CodeGenerator * codegen,bool is_intrinsic,const dex::CodeItem * code_item_for_osr_check) const734 CompiledMethod* OptimizingCompiler::Emit(ArenaAllocator* allocator,
735 CodeGenerator* codegen,
736 bool is_intrinsic,
737 const dex::CodeItem* code_item_for_osr_check) const {
738 ArenaVector<linker::LinkerPatch> linker_patches = EmitAndSortLinkerPatches(codegen);
739 ScopedArenaVector<uint8_t> stack_map = codegen->BuildStackMaps(code_item_for_osr_check);
740
741 CompiledCodeStorage* storage = GetCompiledCodeStorage();
742 CompiledMethod* compiled_method = storage->CreateCompiledMethod(
743 codegen->GetInstructionSet(),
744 codegen->GetCode(),
745 ArrayRef<const uint8_t>(stack_map),
746 ArrayRef<const uint8_t>(*codegen->GetAssembler()->cfi().data()),
747 ArrayRef<const linker::LinkerPatch>(linker_patches),
748 is_intrinsic);
749
750 for (const linker::LinkerPatch& patch : linker_patches) {
751 if (codegen->NeedsThunkCode(patch) && storage->GetThunkCode(patch).empty()) {
752 ArenaVector<uint8_t> code(allocator->Adapter());
753 std::string debug_name;
754 codegen->EmitThunkCode(patch, &code, &debug_name);
755 storage->SetThunkCode(patch, ArrayRef<const uint8_t>(code), debug_name);
756 }
757 }
758
759 return compiled_method;
760 }
761
762 #ifdef ART_USE_RESTRICTED_MODE
763
764 // This class acts as a filter and enables gradual enablement of ART Simulator work - we
765 // compile (and hence simulate) only limited types of methods.
766 class CompilationFilterForRestrictedMode : public HGraphDelegateVisitor {
767 public:
CompilationFilterForRestrictedMode(HGraph * graph)768 explicit CompilationFilterForRestrictedMode(HGraph* graph)
769 : HGraphDelegateVisitor(graph),
770 has_unsupported_instructions_(false) {}
771
772 // Returns true if the graph contains instructions which are not currently supported in
773 // the restricted mode.
GraphRejected() const774 bool GraphRejected() const { return has_unsupported_instructions_; }
775
776 private:
VisitInstruction(HInstruction *)777 void VisitInstruction(HInstruction*) override {
778 // Currently we don't support compiling methods unless they were annotated with $compile$.
779 RejectGraph();
780 }
RejectGraph()781 void RejectGraph() {
782 has_unsupported_instructions_ = true;
783 }
784
785 bool has_unsupported_instructions_;
786 };
787
788 // Returns whether an ArtMethod, specified by a name, should be compiled. Used in restricted
789 // mode.
790 //
791 // In restricted mode, the simulator will execute only those methods which are compiled; thus
792 // this is going to be an effective filter for methods to be simulated.
793 //
794 // TODO(Simulator): compile and simulate all the methods as in regular host mode.
ShouldMethodBeCompiled(HGraph * graph,const std::string & method_name)795 bool ShouldMethodBeCompiled(HGraph* graph, const std::string& method_name) {
796 if (method_name.find("$compile$") != std::string::npos) {
797 return true;
798 }
799
800 CompilationFilterForRestrictedMode filter_visitor(graph);
801 filter_visitor.VisitReversePostOrder();
802
803 return !filter_visitor.GraphRejected();
804 }
805 #endif // ART_USE_RESTRICTED_MODE
806
TryCompile(ArenaAllocator * allocator,ArenaStack * arena_stack,const DexCompilationUnit & dex_compilation_unit,ArtMethod * method,CompilationKind compilation_kind,VariableSizedHandleScope * handles) const807 CodeGenerator* OptimizingCompiler::TryCompile(ArenaAllocator* allocator,
808 ArenaStack* arena_stack,
809 const DexCompilationUnit& dex_compilation_unit,
810 ArtMethod* method,
811 CompilationKind compilation_kind,
812 VariableSizedHandleScope* handles) const {
813 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kAttemptBytecodeCompilation);
814 const CompilerOptions& compiler_options = GetCompilerOptions();
815 InstructionSet instruction_set = compiler_options.GetInstructionSet();
816 const DexFile& dex_file = *dex_compilation_unit.GetDexFile();
817 uint32_t method_idx = dex_compilation_unit.GetDexMethodIndex();
818 const dex::CodeItem* code_item = dex_compilation_unit.GetCodeItem();
819
820 // Always use the Thumb-2 assembler: some runtime functionality
821 // (like implicit stack overflow checks) assume Thumb-2.
822 DCHECK_NE(instruction_set, InstructionSet::kArm);
823
824 // Do not attempt to compile on architectures we do not support.
825 if (!IsInstructionSetSupported(instruction_set)) {
826 MaybeRecordStat(compilation_stats_.get(),
827 MethodCompilationStat::kNotCompiledUnsupportedIsa);
828 return nullptr;
829 }
830
831 if (Compiler::IsPathologicalCase(*code_item, method_idx, dex_file)) {
832 SCOPED_TRACE << "Not compiling because of pathological case";
833 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledPathological);
834 return nullptr;
835 }
836
837 // Implementation of the space filter: do not compile a code item whose size in
838 // code units is bigger than 128.
839 static constexpr size_t kSpaceFilterOptimizingThreshold = 128;
840 if ((compiler_options.GetCompilerFilter() == CompilerFilter::kSpace)
841 && (CodeItemInstructionAccessor(dex_file, code_item).InsnsSizeInCodeUnits() >
842 kSpaceFilterOptimizingThreshold)) {
843 SCOPED_TRACE << "Not compiling because of space filter";
844 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledSpaceFilter);
845 return nullptr;
846 }
847
848 CodeItemDebugInfoAccessor code_item_accessor(dex_file, code_item, method_idx);
849
850 bool dead_reference_safe;
851 // For AOT compilation, we may not get a method, for example if its class is erroneous,
852 // possibly due to an unavailable superclass. JIT should always have a method.
853 DCHECK(Runtime::Current()->IsAotCompiler() || method != nullptr);
854 if (method != nullptr) {
855 const dex::ClassDef* containing_class;
856 {
857 ScopedObjectAccess soa(Thread::Current());
858 containing_class = &method->GetClassDef();
859 }
860 // MethodContainsRSensitiveAccess is currently slow, but HasDeadReferenceSafeAnnotation()
861 // is currently rarely true.
862 dead_reference_safe =
863 annotations::HasDeadReferenceSafeAnnotation(dex_file, *containing_class)
864 && !annotations::MethodContainsRSensitiveAccess(dex_file, *containing_class, method_idx);
865 } else {
866 // If we could not resolve the class, conservatively assume it's dead-reference unsafe.
867 dead_reference_safe = false;
868 }
869
870 HGraph* graph = new (allocator) HGraph(
871 allocator,
872 arena_stack,
873 handles,
874 dex_file,
875 method_idx,
876 compiler_options.GetInstructionSet(),
877 kInvalidInvokeType,
878 dead_reference_safe,
879 compiler_options.GetDebuggable(),
880 compilation_kind);
881
882 if (method != nullptr) {
883 graph->SetArtMethod(method);
884 }
885
886 jit::Jit* jit = Runtime::Current()->GetJit();
887 if (jit != nullptr) {
888 ProfilingInfo* info = jit->GetCodeCache()->GetProfilingInfo(method, Thread::Current());
889 graph->SetProfilingInfo(info);
890 }
891
892 std::unique_ptr<CodeGenerator> codegen(
893 CodeGenerator::Create(graph,
894 compiler_options,
895 compilation_stats_.get()));
896 if (codegen.get() == nullptr) {
897 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledNoCodegen);
898 return nullptr;
899 }
900 codegen->GetAssembler()->cfi().SetEnabled(compiler_options.GenerateAnyDebugInfo());
901
902 PassObserver pass_observer(graph,
903 codegen.get(),
904 visualizer_output_.get(),
905 compiler_options);
906
907 {
908 VLOG(compiler) << "Building " << pass_observer.GetMethodName();
909 PassScope scope(HGraphBuilder::kBuilderPassName, &pass_observer);
910 HGraphBuilder builder(graph,
911 code_item_accessor,
912 &dex_compilation_unit,
913 &dex_compilation_unit,
914 codegen.get(),
915 compilation_stats_.get());
916 GraphAnalysisResult result = builder.BuildGraph();
917 if (result != kAnalysisSuccess) {
918 // Don't try recompiling this method again.
919 if (method != nullptr) {
920 ScopedObjectAccess soa(Thread::Current());
921 method->SetDontCompile();
922 }
923 SCOPED_TRACE << "Not compiling because of " << result;
924 switch (result) {
925 case kAnalysisSkipped: {
926 MaybeRecordStat(compilation_stats_.get(),
927 MethodCompilationStat::kNotCompiledSkipped);
928 break;
929 }
930 case kAnalysisInvalidBytecode: {
931 MaybeRecordStat(compilation_stats_.get(),
932 MethodCompilationStat::kNotCompiledInvalidBytecode);
933 break;
934 }
935 case kAnalysisFailThrowCatchLoop: {
936 MaybeRecordStat(compilation_stats_.get(),
937 MethodCompilationStat::kNotCompiledThrowCatchLoop);
938 break;
939 }
940 case kAnalysisFailAmbiguousArrayOp: {
941 MaybeRecordStat(compilation_stats_.get(),
942 MethodCompilationStat::kNotCompiledAmbiguousArrayOp);
943 break;
944 }
945 case kAnalysisFailIrreducibleLoopAndStringInit: {
946 MaybeRecordStat(compilation_stats_.get(),
947 MethodCompilationStat::kNotCompiledIrreducibleLoopAndStringInit);
948 break;
949 }
950 case kAnalysisFailPhiEquivalentInOsr: {
951 MaybeRecordStat(compilation_stats_.get(),
952 MethodCompilationStat::kNotCompiledPhiEquivalentInOsr);
953 break;
954 }
955 case kAnalysisSuccess:
956 LOG(FATAL) << "Unreachable";
957 UNREACHABLE();
958 }
959 pass_observer.SetGraphInBadState();
960 return nullptr;
961 }
962 }
963
964 if (compilation_kind == CompilationKind::kBaseline && compiler_options.ProfileBranches()) {
965 graph->SetUsefulOptimizing();
966 // Branch profiling currently doesn't support running optimizations.
967 RunRequiredPasses(graph, codegen.get(), dex_compilation_unit, &pass_observer);
968 } else {
969 RunOptimizations(graph, codegen.get(), dex_compilation_unit, &pass_observer);
970 PassScope scope(WriteBarrierElimination::kWBEPassName, &pass_observer);
971 WriteBarrierElimination(graph, compilation_stats_.get()).Run();
972 }
973
974 // If we are compiling baseline and we haven't created a profiling info for
975 // this method already, do it now.
976 if (jit != nullptr &&
977 compilation_kind == CompilationKind::kBaseline &&
978 graph->IsUsefulOptimizing() &&
979 graph->GetProfilingInfo() == nullptr) {
980 ProfilingInfoBuilder(
981 graph, codegen->GetCompilerOptions(), codegen.get(), compilation_stats_.get()).Run();
982 // We expect a profiling info to be created and attached to the graph.
983 // However, we may have run out of memory trying to create it, so in this
984 // case just abort the compilation.
985 if (graph->GetProfilingInfo() == nullptr) {
986 SCOPED_TRACE << "Not compiling because of out of memory";
987 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kJitOutOfMemoryForCommit);
988 return nullptr;
989 }
990 }
991
992 AllocateRegisters(graph,
993 codegen.get(),
994 &pass_observer,
995 compilation_stats_.get());
996
997 if (UNLIKELY(codegen->GetFrameSize() > codegen->GetMaximumFrameSize())) {
998 SCOPED_TRACE << "Not compiling because of stack frame too large";
999 LOG(WARNING) << "Stack frame size is " << codegen->GetFrameSize()
1000 << " which is larger than the maximum of " << codegen->GetMaximumFrameSize()
1001 << " bytes. Method: " << graph->PrettyMethod();
1002 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kNotCompiledFrameTooBig);
1003 return nullptr;
1004 }
1005
1006 #ifdef ART_USE_RESTRICTED_MODE
1007 // Check whether the method should be compiled according to the compilation filter. Note: this
1008 // relies on a LocationSummary being available for each instruction so should take place after
1009 // register allocation does liveness analysis.
1010 // TODO(Simulator): support and compile all methods.
1011 std::string method_name = dex_file.PrettyMethod(method_idx);
1012 if (!ShouldMethodBeCompiled(graph, method_name)) {
1013 return nullptr;
1014 }
1015 #endif // ART_USE_RESTRICTED_MODE
1016
1017 codegen->Compile();
1018 pass_observer.DumpDisassembly();
1019
1020 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kCompiledBytecode);
1021 return codegen.release();
1022 }
1023
TryCompileIntrinsic(ArenaAllocator * allocator,ArenaStack * arena_stack,const DexCompilationUnit & dex_compilation_unit,ArtMethod * method,VariableSizedHandleScope * handles) const1024 CodeGenerator* OptimizingCompiler::TryCompileIntrinsic(
1025 ArenaAllocator* allocator,
1026 ArenaStack* arena_stack,
1027 const DexCompilationUnit& dex_compilation_unit,
1028 ArtMethod* method,
1029 VariableSizedHandleScope* handles) const {
1030 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kAttemptIntrinsicCompilation);
1031 const CompilerOptions& compiler_options = GetCompilerOptions();
1032 InstructionSet instruction_set = compiler_options.GetInstructionSet();
1033 const DexFile& dex_file = *dex_compilation_unit.GetDexFile();
1034 uint32_t method_idx = dex_compilation_unit.GetDexMethodIndex();
1035
1036 // TODO(Simulator): Reenable compilation of intrinsics.
1037 #ifdef ART_USE_RESTRICTED_MODE
1038 return nullptr;
1039 #endif // ART_USE_RESTRICTED_MODE
1040
1041 // Always use the Thumb-2 assembler: some runtime functionality
1042 // (like implicit stack overflow checks) assume Thumb-2.
1043 DCHECK_NE(instruction_set, InstructionSet::kArm);
1044
1045 // Do not attempt to compile on architectures we do not support.
1046 if (!IsInstructionSetSupported(instruction_set)) {
1047 return nullptr;
1048 }
1049
1050 HGraph* graph = new (allocator) HGraph(
1051 allocator,
1052 arena_stack,
1053 handles,
1054 dex_file,
1055 method_idx,
1056 compiler_options.GetInstructionSet(),
1057 kInvalidInvokeType,
1058 /* dead_reference_safe= */ true, // Intrinsics don't affect dead reference safety.
1059 compiler_options.GetDebuggable(),
1060 CompilationKind::kOptimized);
1061
1062 DCHECK(Runtime::Current()->IsAotCompiler());
1063 DCHECK(method != nullptr);
1064 graph->SetArtMethod(method);
1065
1066 std::unique_ptr<CodeGenerator> codegen(
1067 CodeGenerator::Create(graph,
1068 compiler_options,
1069 compilation_stats_.get()));
1070 if (codegen.get() == nullptr) {
1071 return nullptr;
1072 }
1073 codegen->GetAssembler()->cfi().SetEnabled(compiler_options.GenerateAnyDebugInfo());
1074
1075 PassObserver pass_observer(graph,
1076 codegen.get(),
1077 visualizer_output_.get(),
1078 compiler_options);
1079
1080 {
1081 VLOG(compiler) << "Building intrinsic graph " << pass_observer.GetMethodName();
1082 PassScope scope(HGraphBuilder::kBuilderPassName, &pass_observer);
1083 HGraphBuilder builder(graph,
1084 CodeItemDebugInfoAccessor(), // Null code item.
1085 &dex_compilation_unit,
1086 &dex_compilation_unit,
1087 codegen.get(),
1088 compilation_stats_.get());
1089 builder.BuildIntrinsicGraph(method);
1090 }
1091
1092 OptimizationDef optimizations[] = {
1093 // The codegen has a few assumptions that only the instruction simplifier
1094 // can satisfy.
1095 OptDef(OptimizationPass::kInstructionSimplifier),
1096 };
1097 RunOptimizations(graph,
1098 codegen.get(),
1099 dex_compilation_unit,
1100 &pass_observer,
1101 optimizations);
1102
1103 RunArchOptimizations(graph, codegen.get(), dex_compilation_unit, &pass_observer);
1104 {
1105 PassScope scope(WriteBarrierElimination::kWBEPassName, &pass_observer);
1106 WriteBarrierElimination(graph, compilation_stats_.get()).Run();
1107 }
1108
1109 AllocateRegisters(graph,
1110 codegen.get(),
1111 &pass_observer,
1112 compilation_stats_.get());
1113 if (!codegen->IsLeafMethod()) {
1114 VLOG(compiler) << "Intrinsic method is not leaf: " << method->GetIntrinsic()
1115 << " " << graph->PrettyMethod();
1116 return nullptr;
1117 }
1118
1119 CHECK_LE(codegen->GetFrameSize(), codegen->GetMaximumFrameSize());
1120 codegen->Compile();
1121 pass_observer.DumpDisassembly();
1122
1123 VLOG(compiler) << "Compiled intrinsic: " << method->GetIntrinsic()
1124 << " " << graph->PrettyMethod();
1125 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kCompiledIntrinsic);
1126 return codegen.release();
1127 }
1128
Compile(const dex::CodeItem * code_item,uint32_t access_flags,uint16_t class_def_idx,uint32_t method_idx,Handle<mirror::ClassLoader> jclass_loader,const DexFile & dex_file,Handle<mirror::DexCache> dex_cache) const1129 CompiledMethod* OptimizingCompiler::Compile(const dex::CodeItem* code_item,
1130 uint32_t access_flags,
1131 uint16_t class_def_idx,
1132 uint32_t method_idx,
1133 Handle<mirror::ClassLoader> jclass_loader,
1134 const DexFile& dex_file,
1135 Handle<mirror::DexCache> dex_cache) const {
1136 const CompilerOptions& compiler_options = GetCompilerOptions();
1137 DCHECK(compiler_options.IsAotCompiler());
1138 CompiledMethod* compiled_method = nullptr;
1139 Runtime* runtime = Runtime::Current();
1140 DCHECK(runtime->IsAotCompiler());
1141 ArenaAllocator allocator(runtime->GetArenaPool());
1142 ArenaStack arena_stack(runtime->GetArenaPool());
1143 std::unique_ptr<CodeGenerator> codegen;
1144 bool compiled_intrinsic = false;
1145 {
1146 ScopedObjectAccess soa(Thread::Current());
1147 ArtMethod* method =
1148 runtime->GetClassLinker()->ResolveMethodId(method_idx, dex_cache, jclass_loader);
1149 soa.Self()->ClearException(); // Suppress exception if any.
1150 VariableSizedHandleScope handles(soa.Self());
1151 Handle<mirror::Class> compiling_class =
1152 handles.NewHandle(method != nullptr ? method->GetDeclaringClass() : nullptr);
1153 DexCompilationUnit dex_compilation_unit(
1154 jclass_loader,
1155 runtime->GetClassLinker(),
1156 dex_file,
1157 code_item,
1158 class_def_idx,
1159 method_idx,
1160 access_flags,
1161 /*verified_method=*/ nullptr, // Not needed by the Optimizing compiler.
1162 dex_cache,
1163 compiling_class);
1164 // All signature polymorphic methods are native.
1165 DCHECK(method == nullptr || !method->IsSignaturePolymorphic());
1166 // Go to native so that we don't block GC during compilation.
1167 ScopedThreadSuspension sts(soa.Self(), ThreadState::kNative);
1168 // Try to compile a fully intrinsified implementation.
1169 if (method != nullptr && UNLIKELY(method->IsIntrinsic())) {
1170 DCHECK(compiler_options.IsBootImage());
1171 codegen.reset(
1172 TryCompileIntrinsic(&allocator,
1173 &arena_stack,
1174 dex_compilation_unit,
1175 method,
1176 &handles));
1177 if (codegen != nullptr) {
1178 compiled_intrinsic = true;
1179 }
1180 }
1181 if (codegen == nullptr) {
1182 codegen.reset(
1183 TryCompile(&allocator,
1184 &arena_stack,
1185 dex_compilation_unit,
1186 method,
1187 compiler_options.IsBaseline()
1188 ? CompilationKind::kBaseline
1189 : CompilationKind::kOptimized,
1190 &handles));
1191 }
1192 }
1193 if (codegen.get() != nullptr) {
1194 compiled_method = Emit(&allocator,
1195 codegen.get(),
1196 compiled_intrinsic,
1197 compiled_intrinsic ? nullptr : code_item);
1198
1199 if (kArenaAllocatorCountAllocations) {
1200 codegen.reset(); // Release codegen's ScopedArenaAllocator for memory accounting.
1201 size_t total_allocated = allocator.BytesAllocated() + arena_stack.PeakBytesAllocated();
1202 if (total_allocated > kArenaAllocatorMemoryReportThreshold) {
1203 MemStats mem_stats(allocator.GetMemStats());
1204 MemStats peak_stats(arena_stack.GetPeakStats());
1205 LOG(INFO) << "Used " << total_allocated << " bytes of arena memory for compiling "
1206 << dex_file.PrettyMethod(method_idx)
1207 << "\n" << Dumpable<MemStats>(mem_stats)
1208 << "\n" << Dumpable<MemStats>(peak_stats);
1209 }
1210 }
1211 }
1212
1213 // TODO(Simulator): Check for $opt$ in method name and that such method is compiled.
1214 #ifndef ART_USE_RESTRICTED_MODE
1215 if (kIsDebugBuild &&
1216 compiler_options.CompileArtTest() &&
1217 IsInstructionSetSupported(compiler_options.GetInstructionSet())) {
1218 // For testing purposes, we put a special marker on method names
1219 // that should be compiled with this compiler (when the
1220 // instruction set is supported). This makes sure we're not
1221 // regressing.
1222 std::string method_name = dex_file.PrettyMethod(method_idx);
1223 bool shouldCompile = method_name.find("$opt$") != std::string::npos;
1224 DCHECK_IMPLIES(compiled_method == nullptr, !shouldCompile) << "Didn't compile " << method_name;
1225 }
1226 #endif // #ifndef ART_USE_RESTRICTED_MODE
1227
1228 return compiled_method;
1229 }
1230
CreateJniStackMap(ScopedArenaAllocator * allocator,const JniCompiledMethod & jni_compiled_method,size_t code_size,bool debuggable)1231 static ScopedArenaVector<uint8_t> CreateJniStackMap(ScopedArenaAllocator* allocator,
1232 const JniCompiledMethod& jni_compiled_method,
1233 size_t code_size,
1234 bool debuggable) {
1235 // StackMapStream is quite large, so allocate it using the ScopedArenaAllocator
1236 // to stay clear of the frame size limit.
1237 std::unique_ptr<StackMapStream> stack_map_stream(
1238 new (allocator) StackMapStream(allocator, jni_compiled_method.GetInstructionSet()));
1239 stack_map_stream->BeginMethod(jni_compiled_method.GetFrameSize(),
1240 jni_compiled_method.GetCoreSpillMask(),
1241 jni_compiled_method.GetFpSpillMask(),
1242 /* num_dex_registers= */ 0,
1243 /* baseline= */ false,
1244 debuggable);
1245 stack_map_stream->EndMethod(code_size);
1246 return stack_map_stream->Encode();
1247 }
1248
JniCompile(uint32_t access_flags,uint32_t method_idx,const DexFile & dex_file,Handle<mirror::DexCache> dex_cache) const1249 CompiledMethod* OptimizingCompiler::JniCompile(uint32_t access_flags,
1250 uint32_t method_idx,
1251 const DexFile& dex_file,
1252 Handle<mirror::DexCache> dex_cache) const {
1253 Runtime* runtime = Runtime::Current();
1254 ArenaAllocator allocator(runtime->GetArenaPool());
1255 ArenaStack arena_stack(runtime->GetArenaPool());
1256
1257 const CompilerOptions& compiler_options = GetCompilerOptions();
1258 if (compiler_options.IsBootImage()) {
1259 ScopedObjectAccess soa(Thread::Current());
1260 ArtMethod* method = runtime->GetClassLinker()->LookupResolvedMethod(
1261 method_idx, dex_cache.Get(), /*class_loader=*/ nullptr);
1262 // Try to compile a fully intrinsified implementation. Do not try to do this for
1263 // signature polymorphic methods as the InstructionBuilder cannot handle them;
1264 // and it would be useless as they always have a slow path for type conversions.
1265 if (method != nullptr && UNLIKELY(method->IsIntrinsic()) && !method->IsSignaturePolymorphic()) {
1266 VariableSizedHandleScope handles(soa.Self());
1267 ScopedNullHandle<mirror::ClassLoader> class_loader; // null means boot class path loader.
1268 Handle<mirror::Class> compiling_class = handles.NewHandle(method->GetDeclaringClass());
1269 DexCompilationUnit dex_compilation_unit(
1270 class_loader,
1271 runtime->GetClassLinker(),
1272 dex_file,
1273 /*code_item=*/ nullptr,
1274 /*class_def_idx=*/ DexFile::kDexNoIndex16,
1275 method_idx,
1276 access_flags,
1277 /*verified_method=*/ nullptr,
1278 dex_cache,
1279 compiling_class);
1280 // Go to native so that we don't block GC during compilation.
1281 ScopedThreadSuspension sts(soa.Self(), ThreadState::kNative);
1282 std::unique_ptr<CodeGenerator> codegen(
1283 TryCompileIntrinsic(&allocator,
1284 &arena_stack,
1285 dex_compilation_unit,
1286 method,
1287 &handles));
1288 if (codegen != nullptr) {
1289 return Emit(&allocator, codegen.get(), /*is_intrinsic=*/ true, /*item=*/ nullptr);
1290 }
1291 }
1292 }
1293
1294 JniCompiledMethod jni_compiled_method = ArtQuickJniCompileMethod(
1295 compiler_options, dex_file.GetMethodShortyView(method_idx), access_flags, &allocator);
1296 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kCompiledNativeStub);
1297
1298 ScopedArenaAllocator stack_map_allocator(&arena_stack); // Will hold the stack map.
1299 ScopedArenaVector<uint8_t> stack_map =
1300 CreateJniStackMap(&stack_map_allocator,
1301 jni_compiled_method,
1302 jni_compiled_method.GetCode().size(),
1303 compiler_options.GetDebuggable() && compiler_options.IsJitCompiler());
1304 return GetCompiledCodeStorage()->CreateCompiledMethod(
1305 jni_compiled_method.GetInstructionSet(),
1306 jni_compiled_method.GetCode(),
1307 ArrayRef<const uint8_t>(stack_map),
1308 jni_compiled_method.GetCfi(),
1309 /*patches=*/ ArrayRef<const linker::LinkerPatch>(),
1310 /*is_intrinsic=*/ false);
1311 }
1312
CreateOptimizingCompiler(const CompilerOptions & compiler_options,CompiledCodeStorage * storage)1313 Compiler* CreateOptimizingCompiler(const CompilerOptions& compiler_options,
1314 CompiledCodeStorage* storage) {
1315 return new OptimizingCompiler(compiler_options, storage);
1316 }
1317
EncodeArtMethodInInlineInfo(ArtMethod * method)1318 bool EncodeArtMethodInInlineInfo([[maybe_unused]] ArtMethod* method) {
1319 // Note: the runtime is null only for unit testing.
1320 return Runtime::Current() == nullptr || !Runtime::Current()->IsAotCompiler();
1321 }
1322
JitCompile(Thread * self,jit::JitCodeCache * code_cache,jit::JitMemoryRegion * region,ArtMethod * method,CompilationKind compilation_kind,jit::JitLogger * jit_logger)1323 bool OptimizingCompiler::JitCompile(Thread* self,
1324 jit::JitCodeCache* code_cache,
1325 jit::JitMemoryRegion* region,
1326 ArtMethod* method,
1327 CompilationKind compilation_kind,
1328 jit::JitLogger* jit_logger) {
1329 const CompilerOptions& compiler_options = GetCompilerOptions();
1330 DCHECK(compiler_options.IsJitCompiler());
1331 DCHECK_EQ(compiler_options.IsJitCompilerForSharedCode(), code_cache->IsSharedRegion(*region));
1332 StackHandleScope<3> hs(self);
1333 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
1334 method->GetDeclaringClass()->GetClassLoader()));
1335 Handle<mirror::DexCache> dex_cache(hs.NewHandle(method->GetDexCache()));
1336 DCHECK(method->IsCompilable());
1337
1338 const DexFile* dex_file = method->GetDexFile();
1339 const uint16_t class_def_idx = method->GetClassDefIndex();
1340 const dex::CodeItem* code_item = method->GetCodeItem();
1341 const uint32_t method_idx = method->GetDexMethodIndex();
1342 const uint32_t access_flags = method->GetAccessFlags();
1343
1344 Runtime* runtime = Runtime::Current();
1345 ArenaAllocator allocator(runtime->GetJitArenaPool());
1346
1347 std::vector<uint8_t> debug_info;
1348
1349 auto create_method_debug_info = [&]() {
1350 debug::MethodDebugInfo method_debug_info = {};
1351 DCHECK(method_debug_info.custom_name.empty());
1352 method_debug_info.dex_file = dex_file;
1353 method_debug_info.class_def_index = class_def_idx;
1354 method_debug_info.dex_method_index = method_idx;
1355 method_debug_info.access_flags = access_flags;
1356 method_debug_info.code_item = code_item;
1357 method_debug_info.isa = compiler_options.GetInstructionSet();
1358 method_debug_info.deduped = false;
1359 method_debug_info.is_native_debuggable = compiler_options.GetNativeDebuggable();
1360 method_debug_info.is_code_address_text_relative = false;
1361 method_debug_info.is_optimized = true;
1362 return method_debug_info;
1363 };
1364
1365 if (UNLIKELY(method->IsNative())) {
1366 // Use GenericJniTrampoline for critical native methods in debuggable runtimes. We don't
1367 // support calling method entry / exit hooks for critical native methods yet.
1368 // TODO(mythria): Add support for calling method entry / exit hooks in JITed stubs for critical
1369 // native methods too.
1370 if (compiler_options.GetDebuggable() && method->IsCriticalNative()) {
1371 DCHECK(compiler_options.IsJitCompiler());
1372 return false;
1373 }
1374 // Java debuggable runtimes should set compiler options to debuggable, so that we either
1375 // generate method entry / exit hooks or skip JITing. For critical native methods we don't
1376 // generate method entry / exit hooks so we shouldn't JIT them in debuggable runtimes.
1377 DCHECK_IMPLIES(method->IsCriticalNative(), !runtime->IsJavaDebuggable());
1378
1379 JniCompiledMethod jni_compiled_method = ArtQuickJniCompileMethod(
1380 compiler_options, dex_file->GetMethodShortyView(method_idx), access_flags, &allocator);
1381 std::vector<Handle<mirror::Object>> roots;
1382 ArenaSet<ArtMethod*, std::less<ArtMethod*>> cha_single_implementation_list(
1383 allocator.Adapter(kArenaAllocCHA));
1384 ArenaStack arena_stack(runtime->GetJitArenaPool());
1385 // StackMapStream is large and it does not fit into this frame, so we need helper method.
1386 ScopedArenaAllocator stack_map_allocator(&arena_stack); // Will hold the stack map.
1387 ScopedArenaVector<uint8_t> stack_map =
1388 CreateJniStackMap(&stack_map_allocator,
1389 jni_compiled_method,
1390 jni_compiled_method.GetCode().size(),
1391 compiler_options.GetDebuggable() && compiler_options.IsJitCompiler());
1392
1393 ArrayRef<const uint8_t> reserved_code;
1394 ArrayRef<const uint8_t> reserved_data;
1395 if (!code_cache->Reserve(self,
1396 region,
1397 jni_compiled_method.GetCode().size(),
1398 stack_map.size(),
1399 /* number_of_roots= */ 0,
1400 method,
1401 /*out*/ &reserved_code,
1402 /*out*/ &reserved_data)) {
1403 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kJitOutOfMemoryForCommit);
1404 return false;
1405 }
1406 const uint8_t* code = reserved_code.data() + OatQuickMethodHeader::InstructionAlignedSize();
1407
1408 // Add debug info after we know the code location but before we update entry-point.
1409 if (compiler_options.GenerateAnyDebugInfo()) {
1410 debug::MethodDebugInfo method_debug_info = create_method_debug_info();
1411 // Simpleperf relies on art_jni_trampoline to detect jni methods.
1412 method_debug_info.custom_name = "art_jni_trampoline";
1413 method_debug_info.code_address = reinterpret_cast<uintptr_t>(code);
1414 method_debug_info.code_size = jni_compiled_method.GetCode().size();
1415 method_debug_info.frame_size_in_bytes = jni_compiled_method.GetFrameSize();
1416 method_debug_info.code_info = nullptr;
1417 method_debug_info.cfi = jni_compiled_method.GetCfi();
1418 debug_info = GenerateJitDebugInfo(method_debug_info);
1419 }
1420
1421 if (!code_cache->Commit(self,
1422 region,
1423 method,
1424 reserved_code,
1425 jni_compiled_method.GetCode(),
1426 reserved_data,
1427 roots,
1428 ArrayRef<const uint8_t>(stack_map),
1429 debug_info,
1430 /* is_full_debug_info= */ compiler_options.GetGenerateDebugInfo(),
1431 compilation_kind,
1432 cha_single_implementation_list)) {
1433 code_cache->Free(self, region, reserved_code.data(), reserved_data.data());
1434 return false;
1435 }
1436
1437 Runtime::Current()->GetJit()->AddMemoryUsage(method, allocator.BytesUsed());
1438 if (jit_logger != nullptr) {
1439 jit_logger->WriteLog(code, jni_compiled_method.GetCode().size(), method);
1440 }
1441 return true;
1442 }
1443
1444 ArenaStack arena_stack(runtime->GetJitArenaPool());
1445 VariableSizedHandleScope handles(self);
1446
1447 std::unique_ptr<CodeGenerator> codegen;
1448 std::unique_ptr<FastCompiler> fast_compiler;
1449 Handle<mirror::Class> compiling_class = handles.NewHandle(method->GetDeclaringClass());
1450 DexCompilationUnit dex_compilation_unit(
1451 class_loader,
1452 runtime->GetClassLinker(),
1453 *dex_file,
1454 code_item,
1455 class_def_idx,
1456 method_idx,
1457 access_flags,
1458 /*verified_method=*/ nullptr,
1459 dex_cache,
1460 compiling_class);
1461 {
1462 // Go to native so that we don't block GC during compilation.
1463 ScopedThreadSuspension sts(self, ThreadState::kNative);
1464 if (com::android::art::flags::fast_baseline_compiler() &&
1465 compilation_kind == CompilationKind::kBaseline &&
1466 !compiler_options.GetDebuggable()) {
1467 fast_compiler = FastCompiler::Compile(method,
1468 &allocator,
1469 &arena_stack,
1470 &handles,
1471 compiler_options,
1472 dex_compilation_unit);
1473 }
1474 if (fast_compiler == nullptr) {
1475 codegen.reset(
1476 TryCompile(&allocator,
1477 &arena_stack,
1478 dex_compilation_unit,
1479 method,
1480 compilation_kind,
1481 &handles));
1482 if (codegen.get() == nullptr) {
1483 return false;
1484 }
1485 }
1486 }
1487
1488 if (fast_compiler != nullptr) {
1489 ArrayRef<const uint8_t> reserved_code;
1490 ArrayRef<const uint8_t> reserved_data;
1491 ScopedArenaVector<uint8_t> stack_maps = fast_compiler->BuildStackMaps();
1492 if (!code_cache->Reserve(self,
1493 region,
1494 fast_compiler->GetCode().size(),
1495 stack_maps.size(),
1496 fast_compiler->GetNumberOfJitRoots(),
1497 method,
1498 /*out*/ &reserved_code,
1499 /*out*/ &reserved_data)) {
1500 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kJitOutOfMemoryForCommit);
1501 return false;
1502 }
1503 const uint8_t* code = reserved_code.data() + OatQuickMethodHeader::InstructionAlignedSize();
1504 if (compiler_options.GenerateAnyDebugInfo()) {
1505 debug::MethodDebugInfo method_debug_info = create_method_debug_info();
1506 method_debug_info.code_address = reinterpret_cast<uintptr_t>(code);
1507 method_debug_info.code_size = fast_compiler->GetCode().size();
1508 method_debug_info.frame_size_in_bytes = fast_compiler->GetFrameSize();
1509 method_debug_info.code_info = stack_maps.size() == 0 ? nullptr : stack_maps.data();
1510 method_debug_info.cfi = ArrayRef<const uint8_t>(fast_compiler->GetCfiData());
1511 debug_info = GenerateJitDebugInfo(method_debug_info);
1512 }
1513
1514 const uint8_t* roots_data = reserved_data.data();
1515 std::vector<Handle<mirror::Object>> roots;
1516 fast_compiler->EmitJitRoots(const_cast<uint8_t*>(fast_compiler->GetCode().data()),
1517 roots_data,
1518 &roots);
1519 // The root Handle<>s filled by the codegen reference entries in the VariableSizedHandleScope.
1520 DCHECK(std::all_of(roots.begin(),
1521 roots.end(),
1522 [&handles](Handle<mirror::Object> root){
1523 return handles.Contains(root.GetReference());
1524 }));
1525 ArenaSet<ArtMethod*> cha_single_implementation_list(allocator.Adapter(kArenaAllocCHA));
1526 if (!code_cache->Commit(self,
1527 region,
1528 method,
1529 reserved_code,
1530 fast_compiler->GetCode(),
1531 reserved_data,
1532 roots,
1533 ArrayRef<const uint8_t>(stack_maps),
1534 debug_info,
1535 /* is_full_debug_info= */ compiler_options.GetGenerateDebugInfo(),
1536 compilation_kind,
1537 cha_single_implementation_list)) {
1538 code_cache->Free(self, region, reserved_code.data(), reserved_data.data());
1539 return false;
1540 }
1541 if (jit_logger != nullptr) {
1542 jit_logger->WriteLog(code, fast_compiler->GetCode().size(), method);
1543 }
1544 VLOG(jit) << "Fast compiled " << method->PrettyMethod();
1545 } else {
1546 ScopedArenaVector<uint8_t> stack_map = codegen->BuildStackMaps(code_item);
1547 ArrayRef<const uint8_t> reserved_code;
1548 ArrayRef<const uint8_t> reserved_data;
1549 if (!code_cache->Reserve(self,
1550 region,
1551 codegen->GetAssembler()->CodeSize(),
1552 stack_map.size(),
1553 /*number_of_roots=*/codegen->GetNumberOfJitRoots(),
1554 method,
1555 /*out*/ &reserved_code,
1556 /*out*/ &reserved_data)) {
1557 MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kJitOutOfMemoryForCommit);
1558 return false;
1559 }
1560 const uint8_t* code = reserved_code.data() + OatQuickMethodHeader::InstructionAlignedSize();
1561 const uint8_t* roots_data = reserved_data.data();
1562
1563 std::vector<Handle<mirror::Object>> roots;
1564 codegen->EmitJitRoots(const_cast<uint8_t*>(codegen->GetAssembler()->CodeBufferBaseAddress()),
1565 roots_data,
1566 &roots);
1567 // The root Handle<>s filled by the codegen reference entries in the VariableSizedHandleScope.
1568 DCHECK(std::all_of(roots.begin(),
1569 roots.end(),
1570 [&handles](Handle<mirror::Object> root){
1571 return handles.Contains(root.GetReference());
1572 }));
1573
1574 // Add debug info after we know the code location but before we update entry-point.
1575 if (compiler_options.GenerateAnyDebugInfo()) {
1576 debug::MethodDebugInfo method_debug_info = create_method_debug_info();
1577 method_debug_info.code_address = reinterpret_cast<uintptr_t>(code);
1578 method_debug_info.code_size = codegen->GetAssembler()->CodeSize();
1579 method_debug_info.frame_size_in_bytes = codegen->GetFrameSize();
1580 method_debug_info.code_info = stack_map.size() == 0 ? nullptr : stack_map.data();
1581 method_debug_info.cfi = ArrayRef<const uint8_t>(*codegen->GetAssembler()->cfi().data());
1582 debug_info = GenerateJitDebugInfo(method_debug_info);
1583 }
1584
1585 if (compilation_kind == CompilationKind::kBaseline &&
1586 !codegen->GetGraph()->IsUsefulOptimizing()) {
1587 // The baseline compilation detected that it has done all the optimizations
1588 // that the full compiler would do. Therefore we set the compilation kind to
1589 // be `kOptimized`
1590 compilation_kind = CompilationKind::kOptimized;
1591 }
1592
1593 if (!code_cache->Commit(self,
1594 region,
1595 method,
1596 reserved_code,
1597 codegen->GetCode(),
1598 reserved_data,
1599 roots,
1600 ArrayRef<const uint8_t>(stack_map),
1601 debug_info,
1602 /* is_full_debug_info= */ compiler_options.GetGenerateDebugInfo(),
1603 compilation_kind,
1604 codegen->GetGraph()->GetCHASingleImplementationList())) {
1605 CHECK_EQ(CodeInfo::HasShouldDeoptimizeFlag(stack_map.data()),
1606 codegen->GetGraph()->HasShouldDeoptimizeFlag());
1607 code_cache->Free(self, region, reserved_code.data(), reserved_data.data());
1608 return false;
1609 }
1610
1611 if (jit_logger != nullptr) {
1612 jit_logger->WriteLog(code, codegen->GetAssembler()->CodeSize(), method);
1613 }
1614 }
1615
1616 Runtime::Current()->GetJit()->AddMemoryUsage(method, allocator.BytesUsed());
1617
1618 if (kArenaAllocatorCountAllocations) {
1619 codegen.reset(); // Release codegen's ScopedArenaAllocator for memory accounting.
1620 size_t total_allocated = allocator.BytesAllocated() + arena_stack.PeakBytesAllocated();
1621 if (total_allocated > kArenaAllocatorMemoryReportThreshold) {
1622 MemStats mem_stats(allocator.GetMemStats());
1623 MemStats peak_stats(arena_stack.GetPeakStats());
1624 LOG(INFO) << "Used " << total_allocated << " bytes of arena memory for compiling "
1625 << dex_file->PrettyMethod(method_idx)
1626 << "\n" << Dumpable<MemStats>(mem_stats)
1627 << "\n" << Dumpable<MemStats>(peak_stats);
1628 }
1629 }
1630
1631 return true;
1632 }
1633
GenerateJitDebugInfo(const debug::MethodDebugInfo & info)1634 std::vector<uint8_t> OptimizingCompiler::GenerateJitDebugInfo(const debug::MethodDebugInfo& info) {
1635 const CompilerOptions& compiler_options = GetCompilerOptions();
1636 if (compiler_options.GenerateAnyDebugInfo()) {
1637 // If both flags are passed, generate full debug info.
1638 const bool mini_debug_info = !compiler_options.GetGenerateDebugInfo();
1639
1640 // Create entry for the single method that we just compiled.
1641 InstructionSet isa = compiler_options.GetInstructionSet();
1642 const InstructionSetFeatures* features = compiler_options.GetInstructionSetFeatures();
1643 return debug::MakeElfFileForJIT(isa, features, mini_debug_info, info);
1644 }
1645 return std::vector<uint8_t>();
1646 }
1647
1648 } // namespace art
1649