• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "ssa_liveness_analysis.h"
18 
19 #include "base/bit_vector-inl.h"
20 #include "code_generator.h"
21 #include "linear_order.h"
22 #include "nodes.h"
23 
24 namespace art HIDDEN {
25 
Analyze()26 void SsaLivenessAnalysis::Analyze() {
27   // Compute the linear order directly in the graph's data structure
28   // (there are no more following graph mutations).
29   LinearizeGraph(graph_, &graph_->linear_order_);
30 
31   // Liveness analysis.
32   NumberInstructions();
33   ComputeLiveness();
34 }
35 
NumberInstructions()36 void SsaLivenessAnalysis::NumberInstructions() {
37   int ssa_index = 0;
38   size_t lifetime_position = 0;
39   // Each instruction gets a lifetime position, and a block gets a lifetime
40   // start and end position. Non-phi instructions have a distinct lifetime position than
41   // the block they are in. Phi instructions have the lifetime start of their block as
42   // lifetime position.
43   //
44   // Because the register allocator will insert moves in the graph, we need
45   // to differentiate between the start and end of an instruction. Adding 2 to
46   // the lifetime position for each instruction ensures the start of an
47   // instruction is different than the end of the previous instruction.
48   for (HBasicBlock* block : graph_->GetLinearOrder()) {
49     block->SetLifetimeStart(lifetime_position);
50 
51     for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
52       HInstruction* current = inst_it.Current();
53       codegen_->AllocateLocations(current);
54       LocationSummary* locations = current->GetLocations();
55       if (locations != nullptr && locations->Out().IsValid()) {
56         instructions_from_ssa_index_.push_back(current);
57         current->SetSsaIndex(ssa_index++);
58         current->SetLiveInterval(
59             LiveInterval::MakeInterval(allocator_, current->GetType(), current));
60       }
61       current->SetLifetimePosition(lifetime_position);
62     }
63     lifetime_position += 2;
64 
65     // Add a null marker to notify we are starting a block.
66     instructions_from_lifetime_position_.push_back(nullptr);
67 
68     for (HInstructionIterator inst_it(block->GetInstructions()); !inst_it.Done();
69          inst_it.Advance()) {
70       HInstruction* current = inst_it.Current();
71       codegen_->AllocateLocations(current);
72       LocationSummary* locations = current->GetLocations();
73       if (locations != nullptr && locations->Out().IsValid()) {
74         instructions_from_ssa_index_.push_back(current);
75         current->SetSsaIndex(ssa_index++);
76         current->SetLiveInterval(
77             LiveInterval::MakeInterval(allocator_, current->GetType(), current));
78       }
79       instructions_from_lifetime_position_.push_back(current);
80       current->SetLifetimePosition(lifetime_position);
81       lifetime_position += 2;
82     }
83 
84     block->SetLifetimeEnd(lifetime_position);
85   }
86   number_of_ssa_values_ = ssa_index;
87 }
88 
ComputeLiveness()89 void SsaLivenessAnalysis::ComputeLiveness() {
90   for (HBasicBlock* block : graph_->GetLinearOrder()) {
91     block_infos_[block->GetBlockId()] =
92         new (allocator_) BlockInfo(allocator_, *block, number_of_ssa_values_);
93   }
94 
95   // Compute the live ranges, as well as the initial live_in, live_out, and kill sets.
96   // This method does not handle backward branches for the sets, therefore live_in
97   // and live_out sets are not yet correct.
98   ComputeLiveRanges();
99 
100   // Do a fixed point calculation to take into account backward branches,
101   // that will update live_in of loop headers, and therefore live_out and live_in
102   // of blocks in the loop.
103   ComputeLiveInAndLiveOutSets();
104 }
105 
RecursivelyProcessInputs(HInstruction * current,HInstruction * actual_user,BitVectorView<size_t> live_in)106 void SsaLivenessAnalysis::RecursivelyProcessInputs(HInstruction* current,
107                                                    HInstruction* actual_user,
108                                                    BitVectorView<size_t> live_in) {
109   HInputsRef inputs = current->GetInputs();
110   for (size_t i = 0; i < inputs.size(); ++i) {
111     HInstruction* input = inputs[i];
112     bool has_in_location = current->GetLocations()->InAt(i).IsValid();
113     bool has_out_location = input->GetLocations()->Out().IsValid();
114 
115     if (has_in_location) {
116       DCHECK(has_out_location)
117           << "Instruction " << current->DebugName() << current->GetId()
118           << " expects an input value at index " << i << " but "
119           << input->DebugName() << input->GetId() << " does not produce one.";
120       DCHECK(input->HasSsaIndex());
121       // `input` generates a result used by `current`. Add use and update
122       // the live-in set.
123       input->GetLiveInterval()->AddUse(current, /* environment= */ nullptr, i, actual_user);
124       live_in.SetBit(input->GetSsaIndex());
125     } else if (has_out_location) {
126       // `input` generates a result but it is not used by `current`.
127     } else {
128       // `input` is inlined into `current`. Walk over its inputs and record
129       // uses at `current`.
130       DCHECK(input->IsEmittedAtUseSite());
131       // Check that the inlined input is not a phi. Recursing on loop phis could
132       // lead to an infinite loop.
133       DCHECK(!input->IsPhi());
134       DCHECK(!input->HasEnvironment());
135       RecursivelyProcessInputs(input, actual_user, live_in);
136     }
137   }
138 }
139 
ProcessEnvironment(HInstruction * current,HInstruction * actual_user,BitVectorView<size_t> live_in)140 void SsaLivenessAnalysis::ProcessEnvironment(HInstruction* current,
141                                              HInstruction* actual_user,
142                                              BitVectorView<size_t> live_in) {
143   for (HEnvironment* environment = current->GetEnvironment();
144        environment != nullptr;
145        environment = environment->GetParent()) {
146     // Handle environment uses. See statements (b) and (c) of the
147     // SsaLivenessAnalysis.
148     for (size_t i = 0, e = environment->Size(); i < e; ++i) {
149       HInstruction* instruction = environment->GetInstructionAt(i);
150       if (instruction == nullptr) {
151         continue;
152       }
153       bool should_be_live = ShouldBeLiveForEnvironment(current, instruction);
154       // If this environment use does not keep the instruction live, it does not
155       // affect the live range of that instruction.
156       if (should_be_live) {
157         CHECK(instruction->HasSsaIndex()) << instruction->DebugName();
158         live_in.SetBit(instruction->GetSsaIndex());
159         instruction->GetLiveInterval()->AddUse(current,
160                                                environment,
161                                                i,
162                                                actual_user);
163       }
164     }
165   }
166 }
167 
ComputeLiveRanges()168 void SsaLivenessAnalysis::ComputeLiveRanges() {
169   // Do a post order visit, adding inputs of instructions live in the block where
170   // that instruction is defined, and killing instructions that are being visited.
171   for (HBasicBlock* block : ReverseRange(graph_->GetLinearOrder())) {
172     BitVectorView kill = GetKillSet(*block);
173     BitVectorView live_in = GetLiveInSet(*block);
174 
175     // Set phi inputs of successors of this block corresponding to this block
176     // as live_in.
177     for (HBasicBlock* successor : block->GetSuccessors()) {
178       live_in.Union(GetLiveInSet(*successor));
179       if (successor->IsCatchBlock()) {
180         // Inputs of catch phis will be kept alive through their environment
181         // uses, allowing the runtime to copy their values to the corresponding
182         // catch phi spill slots when an exception is thrown.
183         // The only instructions which may not be recorded in the environments
184         // are constants created by the SSA builder as typed equivalents of
185         // untyped constants from the bytecode, or phis with only such constants
186         // as inputs (verified by GraphChecker). Their raw binary value must
187         // therefore be the same and we only need to keep alive one.
188       } else {
189         size_t phi_input_index = successor->GetPredecessorIndexOf(block);
190         for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
191           HInstruction* phi = phi_it.Current();
192           HInstruction* input = phi->InputAt(phi_input_index);
193           input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
194           // A phi input whose last user is the phi dies at the end of the predecessor block,
195           // and not at the phi's lifetime position.
196           live_in.SetBit(input->GetSsaIndex());
197         }
198       }
199     }
200 
201     // Add a range that covers this block to all instructions live_in because of successors.
202     // Instructions defined in this block will have their start of the range adjusted.
203     for (uint32_t idx : live_in.Indexes()) {
204       HInstruction* current = GetInstructionFromSsaIndex(idx);
205       current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd());
206     }
207 
208     for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done();
209          back_it.Advance()) {
210       HInstruction* current = back_it.Current();
211       if (current->HasSsaIndex()) {
212         // Kill the instruction and shorten its interval.
213         kill.SetBit(current->GetSsaIndex());
214         live_in.ClearBit(current->GetSsaIndex());
215         current->GetLiveInterval()->SetFrom(current->GetLifetimePosition());
216       }
217 
218       // Process inputs of instructions.
219       if (current->IsEmittedAtUseSite()) {
220         if (kIsDebugBuild) {
221           DCHECK(!current->GetLocations()->Out().IsValid());
222           for (const HUseListNode<HInstruction*>& use : current->GetUses()) {
223             HInstruction* user = use.GetUser();
224             size_t index = use.GetIndex();
225             DCHECK(!user->GetLocations()->InAt(index).IsValid());
226           }
227           DCHECK(!current->HasEnvironmentUses());
228         }
229       } else {
230         // Process the environment first, because we know their uses come after
231         // or at the same liveness position of inputs.
232         ProcessEnvironment(current, current, live_in);
233 
234         // Special case implicit null checks. We want their environment uses to be
235         // emitted at the instruction doing the actual null check.
236         HNullCheck* check = current->GetImplicitNullCheck();
237         if (check != nullptr) {
238           ProcessEnvironment(check, current, live_in);
239         }
240         RecursivelyProcessInputs(current, current, live_in);
241       }
242     }
243 
244     // Kill phis defined in this block.
245     for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
246       HInstruction* current = inst_it.Current();
247       if (current->HasSsaIndex()) {
248         kill.SetBit(current->GetSsaIndex());
249         live_in.ClearBit(current->GetSsaIndex());
250         LiveInterval* interval = current->GetLiveInterval();
251         DCHECK((interval->GetFirstRange() == nullptr)
252                || (interval->GetStart() == current->GetLifetimePosition()));
253         interval->SetFrom(current->GetLifetimePosition());
254       }
255     }
256 
257     if (block->IsLoopHeader()) {
258       if (kIsDebugBuild) {
259         CheckNoLiveInIrreducibleLoop(*block);
260       }
261       size_t last_position = block->GetLoopInformation()->GetLifetimeEnd();
262       // For all live_in instructions at the loop header, we need to create a range
263       // that covers the full loop.
264       for (uint32_t idx : live_in.Indexes()) {
265         HInstruction* current = GetInstructionFromSsaIndex(idx);
266         current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(), last_position);
267       }
268     }
269   }
270 }
271 
ComputeLiveInAndLiveOutSets()272 void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
273   bool changed;
274   do {
275     changed = false;
276 
277     for (const HBasicBlock* block : graph_->GetPostOrder()) {
278       // The live_in set depends on the kill set (which does not
279       // change in this loop), and the live_out set.  If the live_out
280       // set does not change, there is no need to update the live_in set.
281       if (UpdateLiveOut(*block) && UpdateLiveIn(*block)) {
282         if (kIsDebugBuild) {
283           CheckNoLiveInIrreducibleLoop(*block);
284         }
285         changed = true;
286       }
287     }
288   } while (changed);
289 }
290 
UpdateLiveOut(const HBasicBlock & block)291 bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
292   BitVectorView<size_t> live_out = GetLiveOutSet(block);
293   bool changed = false;
294   // The live_out set of a block is the union of live_in sets of its successors.
295   for (HBasicBlock* successor : block.GetSuccessors()) {
296     if (live_out.Union(GetLiveInSet(*successor))) {
297       changed = true;
298     }
299   }
300   return changed;
301 }
302 
UpdateLiveIn(const HBasicBlock & block)303 bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
304   BitVectorView<size_t> live_out = GetLiveOutSet(block);
305   BitVectorView<size_t> kill = GetKillSet(block);
306   BitVectorView<size_t> live_in = GetLiveInSet(block);
307   // If live_out is updated (because of backward branches), we need to make
308   // sure instructions in live_out are also in live_in, unless they are killed
309   // by this block.
310   return live_in.UnionIfNotIn(live_out, kill);
311 }
312 
DoCheckNoLiveInIrreducibleLoop(const HBasicBlock & block) const313 void SsaLivenessAnalysis::DoCheckNoLiveInIrreducibleLoop(const HBasicBlock& block) const {
314   DCHECK(block.IsLoopHeader());
315   DCHECK(block.GetLoopInformation()->IsIrreducible());
316   BitVectorView<size_t> live_in = GetLiveInSet(block);
317   // To satisfy our liveness algorithm, we need to ensure loop headers of
318   // irreducible loops do not have any live-in instructions, except constants
319   // and the current method, which can be trivially re-materialized.
320   for (uint32_t idx : live_in.Indexes()) {
321     HInstruction* instruction = GetInstructionFromSsaIndex(idx);
322     DCHECK(instruction->GetBlock()->IsEntryBlock()) << instruction->DebugName();
323     DCHECK(!instruction->IsParameterValue());
324     DCHECK(instruction->IsCurrentMethod() || instruction->IsConstant())
325         << instruction->DebugName();
326   }
327 }
328 
DumpWithContext(std::ostream & stream,const CodeGenerator & codegen) const329 void LiveInterval::DumpWithContext(std::ostream& stream,
330                                    const CodeGenerator& codegen) const {
331   Dump(stream);
332   if (IsFixed()) {
333     stream << ", register:" << GetRegister() << "(";
334     if (IsFloatingPoint()) {
335       codegen.DumpFloatingPointRegister(stream, GetRegister());
336     } else {
337       codegen.DumpCoreRegister(stream, GetRegister());
338     }
339     stream << ")";
340   } else {
341     stream << ", spill slot:" << GetSpillSlot();
342   }
343   stream << ", requires_register:" << (GetDefinedBy() != nullptr && RequiresRegister());
344   if (GetParent()->GetDefinedBy() != nullptr) {
345     stream << ", defined_by:" << GetParent()->GetDefinedBy()->GetKind();
346     stream << "(" << GetParent()->GetDefinedBy()->GetLifetimePosition() << ")";
347   }
348 }
349 
RegisterOrLowRegister(Location location)350 static int RegisterOrLowRegister(Location location) {
351   return location.IsPair() ? location.low() : location.reg();
352 }
353 
FindFirstRegisterHint(size_t * free_until,const SsaLivenessAnalysis & liveness) const354 int LiveInterval::FindFirstRegisterHint(size_t* free_until,
355                                         const SsaLivenessAnalysis& liveness) const {
356   DCHECK(!IsHighInterval());
357   if (IsTemp()) return kNoRegister;
358 
359   if (GetParent() == this && defined_by_ != nullptr) {
360     // This is the first interval for the instruction. Try to find
361     // a register based on its definition.
362     DCHECK_EQ(defined_by_->GetLiveInterval(), this);
363     int hint = FindHintAtDefinition();
364     if (hint != kNoRegister && free_until[hint] > GetStart()) {
365       return hint;
366     }
367   }
368 
369   if (IsSplit() && liveness.IsAtBlockBoundary(GetStart() / 2)) {
370     // If the start of this interval is at a block boundary, we look at the
371     // location of the interval in blocks preceding the block this interval
372     // starts at. If one location is a register we return it as a hint. This
373     // will avoid a move between the two blocks.
374     HBasicBlock* block = liveness.GetBlockFromPosition(GetStart() / 2);
375     size_t next_register_use = FirstRegisterUse();
376     for (HBasicBlock* predecessor : block->GetPredecessors()) {
377       size_t position = predecessor->GetLifetimeEnd() - 1;
378       // We know positions above GetStart() do not have a location yet.
379       if (position < GetStart()) {
380         LiveInterval* existing = GetParent()->GetSiblingAt(position);
381         if (existing != nullptr
382             && existing->HasRegister()
383             // It's worth using that register if it is available until
384             // the next use.
385             && (free_until[existing->GetRegister()] >= next_register_use)) {
386           return existing->GetRegister();
387         }
388       }
389     }
390   }
391 
392   size_t start = GetStart();
393   size_t end = GetEnd();
394   for (const UsePosition& use : GetUses()) {
395     size_t use_position = use.GetPosition();
396     if (use_position > end) {
397       break;
398     }
399     if (use_position >= start && !use.IsSynthesized()) {
400       HInstruction* user = use.GetUser();
401       size_t input_index = use.GetInputIndex();
402       if (user->IsPhi()) {
403         // If the phi has a register, try to use the same.
404         Location phi_location = user->GetLiveInterval()->ToLocation();
405         if (phi_location.IsRegisterKind()) {
406           DCHECK(SameRegisterKind(phi_location));
407           int reg = RegisterOrLowRegister(phi_location);
408           if (free_until[reg] >= use_position) {
409             return reg;
410           }
411         }
412         // If the instruction dies at the phi assignment, we can try having the
413         // same register.
414         if (end == user->GetBlock()->GetPredecessors()[input_index]->GetLifetimeEnd()) {
415           HInputsRef inputs = user->GetInputs();
416           for (size_t i = 0; i < inputs.size(); ++i) {
417             if (i == input_index) {
418               continue;
419             }
420             Location location = inputs[i]->GetLiveInterval()->GetLocationAt(
421                 user->GetBlock()->GetPredecessors()[i]->GetLifetimeEnd() - 1);
422             if (location.IsRegisterKind()) {
423               int reg = RegisterOrLowRegister(location);
424               if (free_until[reg] >= use_position) {
425                 return reg;
426               }
427             }
428           }
429         }
430       } else {
431         // If the instruction is expected in a register, try to use it.
432         LocationSummary* locations = user->GetLocations();
433         Location expected = locations->InAt(use.GetInputIndex());
434         // We use the user's lifetime position - 1 (and not `use_position`) because the
435         // register is blocked at the beginning of the user.
436         size_t position = user->GetLifetimePosition() - 1;
437         if (expected.IsRegisterKind()) {
438           DCHECK(SameRegisterKind(expected));
439           int reg = RegisterOrLowRegister(expected);
440           if (free_until[reg] >= position) {
441             return reg;
442           }
443         }
444       }
445     }
446   }
447 
448   return kNoRegister;
449 }
450 
FindHintAtDefinition() const451 int LiveInterval::FindHintAtDefinition() const {
452   if (defined_by_->IsPhi()) {
453     // Try to use the same register as one of the inputs.
454     const ArenaVector<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors();
455     HInputsRef inputs = defined_by_->GetInputs();
456     for (size_t i = 0; i < inputs.size(); ++i) {
457       size_t end = predecessors[i]->GetLifetimeEnd();
458       LiveInterval* input_interval = inputs[i]->GetLiveInterval()->GetSiblingAt(end - 1);
459       if (input_interval->GetEnd() == end) {
460         // If the input dies at the end of the predecessor, we know its register can
461         // be reused.
462         Location input_location = input_interval->ToLocation();
463         if (input_location.IsRegisterKind()) {
464           DCHECK(SameRegisterKind(input_location));
465           return RegisterOrLowRegister(input_location);
466         }
467       }
468     }
469   } else {
470     LocationSummary* locations = GetDefinedBy()->GetLocations();
471     Location out = locations->Out();
472     if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) {
473       // Try to use the same register as the first input.
474       LiveInterval* input_interval =
475           GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetSiblingAt(GetStart() - 1);
476       if (input_interval->GetEnd() == GetStart()) {
477         // If the input dies at the start of this instruction, we know its register can
478         // be reused.
479         Location location = input_interval->ToLocation();
480         if (location.IsRegisterKind()) {
481           DCHECK(SameRegisterKind(location));
482           return RegisterOrLowRegister(location);
483         }
484       }
485     }
486   }
487   return kNoRegister;
488 }
489 
SameRegisterKind(Location other) const490 bool LiveInterval::SameRegisterKind(Location other) const {
491   if (IsFloatingPoint()) {
492     if (IsLowInterval() || IsHighInterval()) {
493       return other.IsFpuRegisterPair();
494     } else {
495       return other.IsFpuRegister();
496     }
497   } else {
498     if (IsLowInterval() || IsHighInterval()) {
499       return other.IsRegisterPair();
500     } else {
501       return other.IsRegister();
502     }
503   }
504 }
505 
NumberOfSpillSlotsNeeded() const506 size_t LiveInterval::NumberOfSpillSlotsNeeded() const {
507   // For a SIMD operation, compute the number of needed spill slots.
508   // TODO: do through vector type?
509   HInstruction* definition = GetParent()->GetDefinedBy();
510   if (definition != nullptr && HVecOperation::ReturnsSIMDValue(definition)) {
511     if (definition->IsPhi()) {
512       definition = definition->InputAt(1);  // SIMD always appears on back-edge
513     }
514     return definition->AsVecOperation()->GetVectorNumberOfBytes() / kVRegSize;
515   }
516   // Return number of needed spill slots based on type.
517   return (type_ == DataType::Type::kInt64 || type_ == DataType::Type::kFloat64) ? 2 : 1;
518 }
519 
ToLocation() const520 Location LiveInterval::ToLocation() const {
521   DCHECK(!IsHighInterval());
522   if (HasRegister()) {
523     if (IsFloatingPoint()) {
524       if (HasHighInterval()) {
525         return Location::FpuRegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
526       } else {
527         return Location::FpuRegisterLocation(GetRegister());
528       }
529     } else {
530       if (HasHighInterval()) {
531         return Location::RegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
532       } else {
533         return Location::RegisterLocation(GetRegister());
534       }
535     }
536   } else {
537     HInstruction* defined_by = GetParent()->GetDefinedBy();
538     if (defined_by->IsConstant()) {
539       return defined_by->GetLocations()->Out();
540     } else if (GetParent()->HasSpillSlot()) {
541       return Location::StackSlotByNumOfSlots(NumberOfSpillSlotsNeeded(),
542                                              GetParent()->GetSpillSlot());
543     } else {
544       return Location();
545     }
546   }
547 }
548 
GetLocationAt(size_t position)549 Location LiveInterval::GetLocationAt(size_t position) {
550   LiveInterval* sibling = GetSiblingAt(position);
551   DCHECK(sibling != nullptr);
552   return sibling->ToLocation();
553 }
554 
GetSiblingAt(size_t position)555 LiveInterval* LiveInterval::GetSiblingAt(size_t position) {
556   LiveInterval* current = this;
557   while (current != nullptr && !current->IsDefinedAt(position)) {
558     current = current->GetNextSibling();
559   }
560   return current;
561 }
562 
563 }  // namespace art
564