1 /* 2 * Copyright (C) 2015 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_LIBELFFILE_ELF_ELF_BUILDER_H_ 18 #define ART_LIBELFFILE_ELF_ELF_BUILDER_H_ 19 20 #include <vector> 21 #include <deque> 22 23 #include "arch/instruction_set.h" 24 #include "base/array_ref.h" 25 #include "base/bit_utils.h" 26 #include "base/casts.h" 27 #include "base/leb128.h" 28 #include "base/unix_file/fd_file.h" 29 #include "elf/elf_utils.h" 30 #include "stream/error_delaying_output_stream.h" 31 32 namespace art { 33 34 // Writes ELF file. 35 // 36 // The basic layout of the elf file: 37 // Elf_Ehdr - The ELF header. 38 // Elf_Phdr[] - Program headers for the linker. 39 // .note.gnu.build-id - Optional build ID section (SHA-1 digest). 40 // .dynstr - Names for .dynsym. 41 // .dynsym - A few oat-specific dynamic symbols. 42 // .hash - Hash-table for .dynsym. 43 // .dynamic - Tags which let the linker locate .dynsym. 44 // .rodata - Oat metadata. 45 // .text - Compiled code. 46 // .bss - Zero-initialized writeable section. 47 // .dex - Reserved NOBITS space for dex-related data. 48 // .strtab - Names for .symtab. 49 // .symtab - Debug symbols. 50 // .debug_frame - Unwind information (CFI). 51 // .debug_info - Debug information. 52 // .debug_abbrev - Decoding information for .debug_info. 53 // .debug_str - Strings for .debug_info. 54 // .debug_line - Line number tables. 55 // .shstrtab - Names of ELF sections. 56 // Elf_Shdr[] - Section headers. 57 // 58 // Some section are optional (the debug sections in particular). 59 // 60 // To reduce the amount of padding necessary to page-align sections with 61 // different permissions (and thus reduce disk usage), we group most read-only 62 // data sections together at the start of the file. This includes .dynstr, 63 // .dynsym, .hash, and .dynamic, whose contents are dependent on other sections. 64 // Therefore, when building the ELF we initially just reserve space for them, 65 // and write their contents later. 66 // 67 // In the cases where we need to buffer, we write the larger section first 68 // and buffer the smaller one (e.g. .strtab is bigger than .symtab). 69 // 70 // The debug sections are written last for easier stripping. 71 // 72 template <typename ElfTypes> 73 class ElfBuilder final { 74 public: 75 static constexpr size_t kMaxProgramHeaders = 16; 76 // SHA-1 digest. Not using SHA_DIGEST_LENGTH from openssl/sha.h to avoid 77 // spreading this header dependency for just this single constant. 78 static constexpr size_t kBuildIdLen = 20; 79 80 using Elf_Addr = typename ElfTypes::Addr; 81 using Elf_Off = typename ElfTypes::Off; 82 using Elf_Word = typename ElfTypes::Word; 83 using Elf_Sword = typename ElfTypes::Sword; 84 using Elf_Ehdr = typename ElfTypes::Ehdr; 85 using Elf_Shdr = typename ElfTypes::Shdr; 86 using Elf_Sym = typename ElfTypes::Sym; 87 using Elf_Phdr = typename ElfTypes::Phdr; 88 using Elf_Dyn = typename ElfTypes::Dyn; 89 90 // Base class of all sections. 91 class Section : public OutputStream { 92 public: Section(ElfBuilder<ElfTypes> * owner,const std::string & name,Elf_Word type,Elf_Word flags,const Section * link,Elf_Word info,Elf_Word align,Elf_Word entsize)93 Section(ElfBuilder<ElfTypes>* owner, 94 const std::string& name, 95 Elf_Word type, 96 Elf_Word flags, 97 const Section* link, 98 Elf_Word info, 99 Elf_Word align, 100 Elf_Word entsize) 101 : OutputStream(name), 102 owner_(owner), 103 header_(), 104 section_index_(0), 105 name_(name), 106 link_(link), 107 phdr_flags_(PF_R), 108 phdr_type_(0) { 109 DCHECK_GE(align, 1u); 110 header_.sh_type = type; 111 header_.sh_flags = flags; 112 header_.sh_info = info; 113 header_.sh_addralign = align; 114 header_.sh_entsize = entsize; 115 } 116 117 // Allocate chunk of virtual memory for this section from the owning ElfBuilder. 118 // This must be done at the start for all SHF_ALLOC sections (i.e. mmaped by linker). 119 // It is fine to allocate section but never call Start/End() (e.g. the .bss section). AllocateVirtualMemory(Elf_Word size)120 void AllocateVirtualMemory(Elf_Word size) { 121 AllocateVirtualMemory(owner_->virtual_address_, size); 122 } 123 AllocateVirtualMemory(Elf_Addr addr,Elf_Word size)124 void AllocateVirtualMemory(Elf_Addr addr, Elf_Word size) { 125 CHECK_NE(header_.sh_flags & SHF_ALLOC, 0u); 126 Elf_Word align = AddSection(); 127 CHECK_EQ(header_.sh_addr, 0u); 128 header_.sh_addr = RoundUp(addr, align); 129 CHECK(header_.sh_size == 0u || header_.sh_size == size); 130 header_.sh_size = size; 131 CHECK_LE(owner_->virtual_address_, header_.sh_addr); 132 owner_->virtual_address_ = header_.sh_addr + header_.sh_size; 133 } 134 135 // Start writing file data of this section. Start()136 virtual void Start() { 137 CHECK(owner_->current_section_ == nullptr); 138 Elf_Word align = AddSection(); 139 CHECK_EQ(header_.sh_offset, 0u); 140 header_.sh_offset = owner_->AlignFileOffset(align); 141 owner_->current_section_ = this; 142 } 143 144 // Finish writing file data of this section. End()145 virtual void End() { 146 CHECK(owner_->current_section_ == this); 147 Elf_Word position = GetPosition(); 148 CHECK(header_.sh_size == 0u || header_.sh_size == position); 149 header_.sh_size = position; 150 owner_->current_section_ = nullptr; 151 } 152 153 // Get the number of bytes written so far. 154 // Only valid while writing the section. GetPosition()155 Elf_Word GetPosition() const { 156 CHECK(owner_->current_section_ == this); 157 off_t file_offset = owner_->stream_.Seek(0, kSeekCurrent); 158 DCHECK_GE(file_offset, (off_t)header_.sh_offset); 159 return file_offset - header_.sh_offset; 160 } 161 162 // Get the location of this section in virtual memory. GetAddress()163 Elf_Addr GetAddress() const { 164 DCHECK_NE(header_.sh_flags & SHF_ALLOC, 0u); 165 DCHECK_NE(header_.sh_addr, 0u); 166 return header_.sh_addr; 167 } 168 169 // This function always succeeds to simplify code. 170 // Use builder's Good() to check the actual status. WriteFully(const void * buffer,size_t byte_count)171 bool WriteFully(const void* buffer, size_t byte_count) override { 172 CHECK(owner_->current_section_ == this); 173 return owner_->stream_.WriteFully(buffer, byte_count); 174 } 175 176 // This function always succeeds to simplify code. 177 // Use builder's Good() to check the actual status. Seek(off_t offset,Whence whence)178 off_t Seek(off_t offset, Whence whence) override { 179 // Forward the seek as-is and trust the caller to use it reasonably. 180 return owner_->stream_.Seek(offset, whence); 181 } 182 183 // This function flushes the output and returns whether it succeeded. 184 // If there was a previous failure, this does nothing and returns false, i.e. failed. Flush()185 bool Flush() override { 186 return owner_->stream_.Flush(); 187 } 188 GetSectionIndex()189 Elf_Word GetSectionIndex() const { 190 DCHECK_NE(section_index_, 0u); 191 return section_index_; 192 } 193 194 // Returns true if this section has been added. Exists()195 bool Exists() const { 196 return section_index_ != 0; 197 } 198 199 protected: 200 // Add this section to the list of generated ELF sections (if not there already). 201 // It also ensures the alignment is sufficient to generate valid program headers, 202 // since that depends on the previous section. It returns the required alignment. AddSection()203 Elf_Word AddSection() { 204 if (section_index_ == 0) { 205 std::vector<Section*>& sections = owner_->sections_; 206 Elf_Word last = sections.empty() ? PF_R : sections.back()->phdr_flags_; 207 if (phdr_flags_ != last) { 208 header_.sh_addralign = kElfSegmentAlignment; // Page-align if R/W/X flags changed. 209 } 210 sections.push_back(this); 211 section_index_ = sections.size(); // First ELF section has index 1. 212 } 213 return owner_->write_program_headers_ ? header_.sh_addralign : 1; 214 } 215 216 ElfBuilder<ElfTypes>* owner_; 217 Elf_Shdr header_; 218 Elf_Word section_index_; 219 const std::string name_; 220 const Section* const link_; 221 Elf_Word phdr_flags_; 222 Elf_Word phdr_type_; 223 224 friend class ElfBuilder; 225 226 DISALLOW_COPY_AND_ASSIGN(Section); 227 }; 228 229 class CachedSection : public Section { 230 public: CachedSection(ElfBuilder<ElfTypes> * owner,const std::string & name,Elf_Word type,Elf_Word flags,const Section * link,Elf_Word info,Elf_Word align,Elf_Word entsize)231 CachedSection(ElfBuilder<ElfTypes>* owner, 232 const std::string& name, 233 Elf_Word type, 234 Elf_Word flags, 235 const Section* link, 236 Elf_Word info, 237 Elf_Word align, 238 Elf_Word entsize) 239 : Section(owner, name, type, flags, link, info, align, entsize), cache_() { } 240 Add(const void * data,size_t length)241 Elf_Word Add(const void* data, size_t length) { 242 Elf_Word offset = cache_.size(); 243 const uint8_t* d = reinterpret_cast<const uint8_t*>(data); 244 cache_.insert(cache_.end(), d, d + length); 245 return offset; 246 } 247 GetCacheSize()248 Elf_Word GetCacheSize() { 249 return cache_.size(); 250 } 251 Write()252 void Write() { 253 this->WriteFully(cache_.data(), cache_.size()); 254 cache_.clear(); 255 cache_.shrink_to_fit(); 256 } 257 WriteCachedSection()258 void WriteCachedSection() { 259 this->Start(); 260 Write(); 261 this->End(); 262 } 263 264 private: 265 std::vector<uint8_t> cache_; 266 }; 267 268 // Writer of .dynstr section. 269 class CachedStringSection final : public CachedSection { 270 public: CachedStringSection(ElfBuilder<ElfTypes> * owner,const std::string & name,Elf_Word flags,Elf_Word align)271 CachedStringSection(ElfBuilder<ElfTypes>* owner, 272 const std::string& name, 273 Elf_Word flags, 274 Elf_Word align) 275 : CachedSection(owner, 276 name, 277 SHT_STRTAB, 278 flags, 279 /* link= */ nullptr, 280 /* info= */ 0, 281 align, 282 /* entsize= */ 0) { } 283 Add(const std::string & name)284 Elf_Word Add(const std::string& name) { 285 if (CachedSection::GetCacheSize() == 0u) { 286 DCHECK(name.empty()); 287 } 288 return CachedSection::Add(name.c_str(), name.length() + 1); 289 } 290 }; 291 292 // Writer of .strtab and .shstrtab sections. 293 class StringSection final : public Section { 294 public: StringSection(ElfBuilder<ElfTypes> * owner,const std::string & name,Elf_Word flags,Elf_Word align)295 StringSection(ElfBuilder<ElfTypes>* owner, 296 const std::string& name, 297 Elf_Word flags, 298 Elf_Word align) 299 : Section(owner, 300 name, 301 SHT_STRTAB, 302 flags, 303 /* link= */ nullptr, 304 /* info= */ 0, 305 align, 306 /* entsize= */ 0) { 307 Reset(); 308 } 309 Reset()310 void Reset() { 311 current_offset_ = 0; 312 last_name_ = ""; 313 last_offset_ = 0; 314 } 315 Start()316 void Start() { 317 Section::Start(); 318 Write(""); // ELF specification requires that the section starts with empty string. 319 } 320 Write(std::string_view name)321 Elf_Word Write(std::string_view name) { 322 if (current_offset_ == 0) { 323 DCHECK(name.empty()); 324 } else if (name == last_name_) { 325 return last_offset_; // Very simple string de-duplication. 326 } 327 last_name_ = name; 328 last_offset_ = current_offset_; 329 this->WriteFully(name.data(), name.length()); 330 char null_terminator = '\0'; 331 this->WriteFully(&null_terminator, sizeof(null_terminator)); 332 current_offset_ += name.length() + 1; 333 return last_offset_; 334 } 335 336 private: 337 Elf_Word current_offset_; 338 std::string last_name_; 339 Elf_Word last_offset_; 340 }; 341 342 // Writer of .dynsym and .symtab sections. 343 class SymbolSection final : public Section { 344 public: SymbolSection(ElfBuilder<ElfTypes> * owner,const std::string & name,Elf_Word type,Elf_Word flags,Section * strtab)345 SymbolSection(ElfBuilder<ElfTypes>* owner, 346 const std::string& name, 347 Elf_Word type, 348 Elf_Word flags, 349 Section* strtab) 350 : Section(owner, 351 name, 352 type, 353 flags, 354 strtab, 355 /* info= */ 1, 356 sizeof(Elf_Off), 357 sizeof(Elf_Sym)) { 358 syms_.push_back(Elf_Sym()); // The symbol table always has to start with NULL symbol. 359 } 360 361 // Buffer symbol for this section. It will be written later. Add(Elf_Word name,const Section * section,Elf_Addr addr,Elf_Word size,uint8_t binding,uint8_t type)362 void Add(Elf_Word name, 363 const Section* section, 364 Elf_Addr addr, 365 Elf_Word size, 366 uint8_t binding, 367 uint8_t type) { 368 Elf_Sym sym = Elf_Sym(); 369 sym.st_name = name; 370 sym.st_value = addr; 371 sym.st_size = size; 372 sym.st_other = 0; 373 sym.st_info = (binding << 4) + (type & 0xf); 374 Add(sym, section); 375 } 376 377 // Buffer symbol for this section. It will be written later. Add(Elf_Sym sym,const Section * section)378 void Add(Elf_Sym sym, const Section* section) { 379 if (section != nullptr) { 380 DCHECK_LE(section->GetAddress(), sym.st_value); 381 DCHECK_LE(sym.st_value, section->GetAddress() + section->header_.sh_size); 382 sym.st_shndx = section->GetSectionIndex(); 383 } else { 384 sym.st_shndx = SHN_UNDEF; 385 } 386 syms_.push_back(sym); 387 } 388 GetCacheSize()389 Elf_Word GetCacheSize() { return syms_.size() * sizeof(Elf_Sym); } 390 WriteCachedSection()391 void WriteCachedSection() { 392 auto is_local = [](const Elf_Sym& sym) { return ELF_ST_BIND(sym.st_info) == STB_LOCAL; }; 393 auto less_then = [is_local](const Elf_Sym& a, const Elf_Sym b) { 394 auto tuple_a = std::make_tuple(!is_local(a), a.st_value, a.st_name); 395 auto tuple_b = std::make_tuple(!is_local(b), b.st_value, b.st_name); 396 return tuple_a < tuple_b; // Locals first, then sort by address and name offset. 397 }; 398 if (!std::is_sorted(syms_.begin(), syms_.end(), less_then)) { 399 std::sort(syms_.begin(), syms_.end(), less_then); 400 } 401 auto locals_end = std::partition_point(syms_.begin(), syms_.end(), is_local); 402 this->header_.sh_info = locals_end - syms_.begin(); // Required by the spec. 403 404 this->Start(); 405 for (; !syms_.empty(); syms_.pop_front()) { 406 this->WriteFully(&syms_.front(), sizeof(Elf_Sym)); 407 } 408 this->End(); 409 } 410 411 private: 412 std::deque<Elf_Sym> syms_; // Buffered/cached content of the whole section. 413 }; 414 415 class BuildIdSection final : public Section { 416 public: BuildIdSection(ElfBuilder<ElfTypes> * owner,const std::string & name,Elf_Word type,Elf_Word flags,const Section * link,Elf_Word info,Elf_Word align,Elf_Word entsize)417 BuildIdSection(ElfBuilder<ElfTypes>* owner, 418 const std::string& name, 419 Elf_Word type, 420 Elf_Word flags, 421 const Section* link, 422 Elf_Word info, 423 Elf_Word align, 424 Elf_Word entsize) 425 : Section(owner, name, type, flags, link, info, align, entsize), 426 digest_start_(-1) { 427 } 428 GetSize()429 Elf_Word GetSize() { 430 return 16 + kBuildIdLen; 431 } 432 Write()433 void Write() { 434 // The size fields are 32-bit on both 32-bit and 64-bit systems, confirmed 435 // with the 64-bit linker and libbfd code. The size of name and desc must 436 // be a multiple of 4 and it currently is. 437 this->WriteUint32(4); // namesz. 438 this->WriteUint32(kBuildIdLen); // descsz. 439 this->WriteUint32(3); // type = NT_GNU_BUILD_ID. 440 this->WriteFully("GNU", 4); // name. 441 digest_start_ = this->Seek(0, kSeekCurrent); 442 static_assert(kBuildIdLen % 4 == 0, "expecting a mutliple of 4 for build ID length"); 443 this->WriteFully(std::string(kBuildIdLen, '\0').c_str(), kBuildIdLen); // desc. 444 DCHECK_EQ(this->GetPosition(), GetSize()); 445 } 446 GetDigestStart()447 off_t GetDigestStart() { 448 CHECK_GT(digest_start_, 0); 449 return digest_start_; 450 } 451 452 private: WriteUint32(uint32_t v)453 bool WriteUint32(uint32_t v) { 454 return this->WriteFully(&v, sizeof(v)); 455 } 456 457 // File offset where the build ID digest starts. 458 // Populated with zeros first, then updated with the actual value as the 459 // very last thing in the output file creation. 460 off_t digest_start_; 461 }; 462 ElfBuilder(InstructionSet isa,OutputStream * output)463 ElfBuilder(InstructionSet isa, OutputStream* output) 464 : isa_(isa), 465 stream_(output), 466 rodata_(this, ".rodata", SHT_PROGBITS, SHF_ALLOC, nullptr, 0, 4u, 0), 467 text_(this, ".text", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR, nullptr, 0, 468 kElfSegmentAlignment, 0), 469 data_img_rel_ro_(this, ".data.img.rel.ro", SHT_PROGBITS, SHF_ALLOC, nullptr, 0, 470 kElfSegmentAlignment, 0), 471 bss_(this, ".bss", SHT_NOBITS, SHF_ALLOC, nullptr, 0, kElfSegmentAlignment, 0), 472 dex_(this, ".dex", SHT_NOBITS, SHF_ALLOC, nullptr, 0, kElfSegmentAlignment, 0), 473 dynstr_(this, ".dynstr", SHF_ALLOC, 1), 474 dynsym_(this, ".dynsym", SHT_DYNSYM, SHF_ALLOC, &dynstr_), 475 hash_(this, ".hash", SHT_HASH, SHF_ALLOC, &dynsym_, 0, sizeof(Elf_Word), sizeof(Elf_Word)), 476 dynamic_(this, ".dynamic", SHT_DYNAMIC, SHF_ALLOC, &dynstr_, 0, sizeof(Elf_Addr), 477 sizeof(Elf_Dyn)), 478 strtab_(this, ".strtab", 0, 1), 479 symtab_(this, ".symtab", SHT_SYMTAB, 0, &strtab_), 480 debug_frame_(this, ".debug_frame", SHT_PROGBITS, 0, nullptr, 0, sizeof(Elf_Addr), 0), 481 debug_frame_hdr_( 482 this, ".debug_frame_hdr.android", SHT_PROGBITS, 0, nullptr, 0, sizeof(Elf_Addr), 0), 483 debug_info_(this, ".debug_info", SHT_PROGBITS, 0, nullptr, 0, 1, 0), 484 debug_line_(this, ".debug_line", SHT_PROGBITS, 0, nullptr, 0, 1, 0), 485 shstrtab_(this, ".shstrtab", 0, 1), 486 build_id_(this, ".note.gnu.build-id", SHT_NOTE, SHF_ALLOC, nullptr, 0, 4, 0), 487 current_section_(nullptr), 488 started_(false), 489 finished_(false), 490 write_program_headers_(false), 491 loaded_size_(0u), 492 virtual_address_(0), 493 dynamic_sections_start_(0), 494 dynamic_sections_reserved_size_(0u) { 495 text_.phdr_flags_ = PF_R | PF_X; 496 data_img_rel_ro_.phdr_flags_ = PF_R | PF_W; // Shall be made read-only at run time. 497 bss_.phdr_flags_ = PF_R | PF_W; 498 dex_.phdr_flags_ = PF_R; 499 dynamic_.phdr_flags_ = PF_R; 500 dynamic_.phdr_type_ = PT_DYNAMIC; 501 build_id_.phdr_type_ = PT_NOTE; 502 } ~ElfBuilder()503 ~ElfBuilder() {} 504 GetIsa()505 InstructionSet GetIsa() { return isa_; } GetBuildId()506 BuildIdSection* GetBuildId() { return &build_id_; } GetRoData()507 Section* GetRoData() { return &rodata_; } GetText()508 Section* GetText() { return &text_; } GetDataImgRelRo()509 Section* GetDataImgRelRo() { return &data_img_rel_ro_; } GetBss()510 Section* GetBss() { return &bss_; } GetDex()511 Section* GetDex() { return &dex_; } GetStrTab()512 StringSection* GetStrTab() { return &strtab_; } GetSymTab()513 SymbolSection* GetSymTab() { return &symtab_; } GetDebugFrame()514 Section* GetDebugFrame() { return &debug_frame_; } GetDebugFrameHdr()515 Section* GetDebugFrameHdr() { return &debug_frame_hdr_; } GetDebugInfo()516 Section* GetDebugInfo() { return &debug_info_; } GetDebugLine()517 Section* GetDebugLine() { return &debug_line_; } 518 WriteSection(const char * name,const std::vector<uint8_t> * buffer)519 void WriteSection(const char* name, const std::vector<uint8_t>* buffer) { 520 std::unique_ptr<Section> s(new Section(this, name, SHT_PROGBITS, 0, nullptr, 0, 1, 0)); 521 s->Start(); 522 s->WriteFully(buffer->data(), buffer->size()); 523 s->End(); 524 other_sections_.push_back(std::move(s)); 525 } 526 527 // Reserve space for ELF header and program headers. 528 // We do not know the number of headers until later, so 529 // it is easiest to just reserve a fixed amount of space. 530 // Program headers are required for loading by the linker. 531 // It is possible to omit them for ELF files used for debugging. 532 void Start(bool write_program_headers = true) { 533 int size = sizeof(Elf_Ehdr); 534 if (write_program_headers) { 535 size += sizeof(Elf_Phdr) * kMaxProgramHeaders; 536 } 537 stream_.Seek(size, kSeekSet); 538 started_ = true; 539 virtual_address_ += size; 540 write_program_headers_ = write_program_headers; 541 } 542 End()543 off_t End() { 544 DCHECK(started_); 545 DCHECK(!finished_); 546 finished_ = true; 547 548 // Note: loaded_size_ == 0 for tests that don't write .rodata, .text, .bss, 549 // .dynstr, dynsym, .hash and .dynamic. These tests should not read loaded_size_. 550 CHECK(loaded_size_ == 0 || loaded_size_ == RoundUp(virtual_address_, kElfSegmentAlignment)) 551 << loaded_size_ << " " << virtual_address_; 552 553 // Write section names and finish the section headers. 554 shstrtab_.Start(); 555 shstrtab_.Write(""); 556 for (auto* section : sections_) { 557 section->header_.sh_name = shstrtab_.Write(section->name_); 558 if (section->link_ != nullptr) { 559 section->header_.sh_link = section->link_->GetSectionIndex(); 560 } 561 if (section->header_.sh_offset == 0) { 562 section->header_.sh_type = SHT_NOBITS; 563 } 564 } 565 shstrtab_.End(); 566 567 // Write section headers at the end of the ELF file. 568 std::vector<Elf_Shdr> shdrs; 569 shdrs.reserve(1u + sections_.size()); 570 shdrs.push_back(Elf_Shdr()); // NULL at index 0. 571 for (auto* section : sections_) { 572 shdrs.push_back(section->header_); 573 } 574 Elf_Off section_headers_offset; 575 section_headers_offset = AlignFileOffset(sizeof(Elf_Off)); 576 stream_.WriteFully(shdrs.data(), shdrs.size() * sizeof(shdrs[0])); 577 off_t file_size = stream_.Seek(0, kSeekCurrent); 578 579 // Flush everything else before writing the program headers. This should prevent 580 // the OS from reordering writes, so that we don't end up with valid headers 581 // and partially written data if we suddenly lose power, for example. 582 stream_.Flush(); 583 584 // The main ELF header. 585 Elf_Ehdr elf_header = MakeElfHeader(isa_); 586 elf_header.e_shoff = section_headers_offset; 587 elf_header.e_shnum = shdrs.size(); 588 elf_header.e_shstrndx = shstrtab_.GetSectionIndex(); 589 590 // Program headers (i.e. mmap instructions). 591 std::vector<Elf_Phdr> phdrs; 592 if (write_program_headers_) { 593 phdrs = MakeProgramHeaders(); 594 CHECK_LE(phdrs.size(), kMaxProgramHeaders); 595 elf_header.e_phoff = sizeof(Elf_Ehdr); 596 elf_header.e_phnum = phdrs.size(); 597 } 598 599 stream_.Seek(0, kSeekSet); 600 stream_.WriteFully(&elf_header, sizeof(elf_header)); 601 stream_.WriteFully(phdrs.data(), phdrs.size() * sizeof(phdrs[0])); 602 stream_.Flush(); 603 604 return file_size; 605 } 606 607 // This has the same effect as running the "strip" command line tool. 608 // It removes all debugging sections (but it keeps mini-debug-info). 609 // It returns the ELF file size (as the caller needs to truncate it). Strip()610 off_t Strip() { 611 DCHECK(finished_); 612 finished_ = false; 613 Elf_Off end = 0; 614 std::vector<Section*> non_debug_sections; 615 for (Section* section : sections_) { 616 if (section == &shstrtab_ || // Section names will be recreated. 617 section == &symtab_ || 618 section == &strtab_ || 619 section->name_.find(".debug_") == 0) { 620 section->header_.sh_offset = 0; 621 section->header_.sh_size = 0; 622 section->section_index_ = 0; 623 } else { 624 if (section->header_.sh_type != SHT_NOBITS) { 625 DCHECK_LE(section->header_.sh_offset, end + kElfSegmentAlignment) 626 << "Large gap between sections"; 627 end = std::max<off_t>(end, section->header_.sh_offset + section->header_.sh_size); 628 } 629 non_debug_sections.push_back(section); 630 } 631 } 632 shstrtab_.Reset(); 633 // Write the non-debug section headers, program headers, and ELF header again. 634 sections_ = std::move(non_debug_sections); 635 stream_.Seek(end, kSeekSet); 636 return End(); 637 } 638 639 // Reserve space for: .dynstr, .dynsym, .hash and .dynamic. 640 // 641 // Dynamic section content is dependent on subsequent sections. Here, reserve enough 642 // space for it. We will write the content later (in PrepareDynamicSection). ReserveSpaceForDynamicSection(const std::string & elf_file_path)643 void ReserveSpaceForDynamicSection(const std::string& elf_file_path) { 644 CHECK_EQ(dynamic_sections_start_, 0); 645 CHECK_EQ(dynamic_sections_reserved_size_, 0u); 646 CHECK(!rodata_.Exists()); 647 648 off_t offset = stream_.Seek(0, kSeekCurrent); 649 dynamic_sections_start_ = offset; 650 651 dynstr_.AddSection(); 652 // We don't expect that .dynstr section can have any alignment requirements. 653 DCHECK_EQ(dynstr_.header_.sh_addralign, 1u); 654 offset += []() consteval { 655 size_t size = 0; 656 for (size_t i = 0; i < kDynamicSymbolCount; i++) { 657 DynamicSymbol sym = static_cast<DynamicSymbol>(i); 658 size += GetDynamicSymbolName(sym).length() + 1; 659 } 660 return size; 661 }(); 662 offset += GetSoname(elf_file_path).length() + 1; 663 664 dynsym_.AddSection(); 665 offset = RoundUp(offset, dynsym_.header_.sh_addralign); 666 offset += kDynamicSymbolCount * sizeof(Elf_Sym); 667 668 hash_.AddSection(); 669 offset = RoundUp(offset, hash_.header_.sh_addralign); 670 offset += PrepareDynamicSymbolHashtable(kDynamicSymbolCount, /*hashtable=*/ nullptr); 671 672 dynamic_.AddSection(); 673 offset = RoundUp(offset, dynamic_.header_.sh_addralign); 674 offset += kDynamicEntriesCount * sizeof(Elf_Dyn); 675 676 dynamic_sections_reserved_size_ = offset - dynamic_sections_start_; 677 678 stream_.Seek(offset, kSeekSet); 679 } 680 681 // The running program does not have access to section headers 682 // and the loader is not supposed to use them either. 683 // The dynamic sections therefore replicates some of the layout 684 // information like the address and size of .rodata and .text. 685 // It also contains other metadata like the SONAME. 686 // The .dynamic section is found using the PT_DYNAMIC program header. PrepareDynamicSection(const std::string & elf_file_path,Elf_Word rodata_size,Elf_Word text_size,Elf_Word data_img_rel_ro_size,Elf_Word data_img_rel_ro_app_image_offset,Elf_Word bss_size,Elf_Word bss_methods_offset,Elf_Word bss_roots_offset,Elf_Word dex_size)687 void PrepareDynamicSection(const std::string& elf_file_path, 688 Elf_Word rodata_size, 689 Elf_Word text_size, 690 Elf_Word data_img_rel_ro_size, 691 Elf_Word data_img_rel_ro_app_image_offset, 692 Elf_Word bss_size, 693 Elf_Word bss_methods_offset, 694 Elf_Word bss_roots_offset, 695 Elf_Word dex_size) { 696 CHECK_NE(dynamic_sections_reserved_size_, 0u); 697 698 // Skip over the reserved memory for dynamic sections - we prepare them later 699 // due to dependencies. 700 Elf_Addr dynamic_sections_address = virtual_address_; 701 virtual_address_ += dynamic_sections_reserved_size_; 702 703 rodata_.AllocateVirtualMemory(rodata_size); 704 text_.AllocateVirtualMemory(text_size); 705 if (data_img_rel_ro_size != 0) { 706 data_img_rel_ro_.AllocateVirtualMemory(data_img_rel_ro_size); 707 } 708 if (bss_size != 0) { 709 bss_.AllocateVirtualMemory(bss_size); 710 } 711 if (dex_size != 0) { 712 dex_.AllocateVirtualMemory(dex_size); 713 } 714 715 // Cache .dynstr, .dynsym and .hash data. 716 dynstr_.Add(""); // dynstr should start with empty string. 717 Elf_Word oatdata = dynstr_.Add(GetDynamicSymbolName(DynamicSymbol::kOatData)); 718 dynsym_.Add(oatdata, &rodata_, rodata_.GetAddress(), rodata_size, STB_GLOBAL, STT_OBJECT); 719 if (text_size != 0u) { 720 // The runtime does not care about the size of this symbol (it uses the "lastword" symbol). 721 // We use size 0 (meaning "unknown size" in ELF) to prevent overlap with the debug symbols. 722 Elf_Word oatexec = dynstr_.Add(GetDynamicSymbolName(DynamicSymbol::kOatExec)); 723 dynsym_.Add(oatexec, &text_, text_.GetAddress(), /* size= */ 0, STB_GLOBAL, STT_OBJECT); 724 Elf_Word oatlastword = dynstr_.Add(GetDynamicSymbolName(DynamicSymbol::kOatLastWord)); 725 Elf_Word oatlastword_address = text_.GetAddress() + text_size - 4; 726 dynsym_.Add(oatlastword, &text_, oatlastword_address, 4, STB_GLOBAL, STT_OBJECT); 727 } else if (rodata_size != 0) { 728 // rodata_ can be size 0 for dwarf_test. 729 Elf_Word oatlastword = dynstr_.Add(GetDynamicSymbolName(DynamicSymbol::kOatLastWord)); 730 Elf_Word oatlastword_address = rodata_.GetAddress() + rodata_size - 4; 731 dynsym_.Add(oatlastword, &rodata_, oatlastword_address, 4, STB_GLOBAL, STT_OBJECT); 732 } 733 DCHECK_LE(data_img_rel_ro_app_image_offset, data_img_rel_ro_size); 734 if (data_img_rel_ro_size != 0u) { 735 Elf_Word oatdataimgrelro = dynstr_.Add(GetDynamicSymbolName(DynamicSymbol::kOatDataImgRelRo)); 736 dynsym_.Add(oatdataimgrelro, 737 &data_img_rel_ro_, 738 data_img_rel_ro_.GetAddress(), 739 data_img_rel_ro_size, 740 STB_GLOBAL, 741 STT_OBJECT); 742 Elf_Word oatdataimgrelrolastword = 743 dynstr_.Add(GetDynamicSymbolName(DynamicSymbol::kOatDataImgRelRoLastWord)); 744 dynsym_.Add(oatdataimgrelrolastword, 745 &data_img_rel_ro_, 746 data_img_rel_ro_.GetAddress() + data_img_rel_ro_size - 4, 747 4, 748 STB_GLOBAL, 749 STT_OBJECT); 750 if (data_img_rel_ro_app_image_offset != data_img_rel_ro_size) { 751 Elf_Word oatdataimgrelroappimage = 752 dynstr_.Add(GetDynamicSymbolName(DynamicSymbol::kOatDataImgRelRoAppImage)); 753 dynsym_.Add(oatdataimgrelroappimage, 754 &data_img_rel_ro_, 755 data_img_rel_ro_.GetAddress() + data_img_rel_ro_app_image_offset, 756 data_img_rel_ro_app_image_offset, 757 STB_GLOBAL, 758 STT_OBJECT); 759 } 760 } 761 DCHECK_LE(bss_roots_offset, bss_size); 762 if (bss_size != 0u) { 763 Elf_Word oatbss = dynstr_.Add(GetDynamicSymbolName(DynamicSymbol::kOatBss)); 764 dynsym_.Add(oatbss, &bss_, bss_.GetAddress(), bss_roots_offset, STB_GLOBAL, STT_OBJECT); 765 DCHECK_LE(bss_methods_offset, bss_roots_offset); 766 DCHECK_LE(bss_roots_offset, bss_size); 767 // Add a symbol marking the start of the methods part of the .bss, if not empty. 768 if (bss_methods_offset != bss_roots_offset) { 769 Elf_Word bss_methods_address = bss_.GetAddress() + bss_methods_offset; 770 Elf_Word bss_methods_size = bss_roots_offset - bss_methods_offset; 771 Elf_Word oatbssroots = dynstr_.Add(GetDynamicSymbolName(DynamicSymbol::kOatBssMethods)); 772 dynsym_.Add( 773 oatbssroots, &bss_, bss_methods_address, bss_methods_size, STB_GLOBAL, STT_OBJECT); 774 } 775 // Add a symbol marking the start of the GC roots part of the .bss, if not empty. 776 if (bss_roots_offset != bss_size) { 777 Elf_Word bss_roots_address = bss_.GetAddress() + bss_roots_offset; 778 Elf_Word bss_roots_size = bss_size - bss_roots_offset; 779 Elf_Word oatbssroots = dynstr_.Add(GetDynamicSymbolName(DynamicSymbol::kOatBssRoots)); 780 dynsym_.Add( 781 oatbssroots, &bss_, bss_roots_address, bss_roots_size, STB_GLOBAL, STT_OBJECT); 782 } 783 Elf_Word oatbsslastword = dynstr_.Add(GetDynamicSymbolName(DynamicSymbol::kOatBssLastWord)); 784 Elf_Word bsslastword_address = bss_.GetAddress() + bss_size - 4; 785 dynsym_.Add(oatbsslastword, &bss_, bsslastword_address, 4, STB_GLOBAL, STT_OBJECT); 786 } 787 if (dex_size != 0u) { 788 Elf_Word oatdex = dynstr_.Add(GetDynamicSymbolName(DynamicSymbol::kOatDex)); 789 dynsym_.Add(oatdex, &dex_, dex_.GetAddress(), /* size= */ 0, STB_GLOBAL, STT_OBJECT); 790 Elf_Word oatdexlastword = dynstr_.Add(GetDynamicSymbolName(DynamicSymbol::kOatDexLastWord)); 791 Elf_Word oatdexlastword_address = dex_.GetAddress() + dex_size - 4; 792 dynsym_.Add(oatdexlastword, &dex_, oatdexlastword_address, 4, STB_GLOBAL, STT_OBJECT); 793 } 794 795 Elf_Word soname_offset = dynstr_.Add(GetSoname(elf_file_path)); 796 797 // We do not really need a hash-table since there is so few entries. 798 // However, the hash-table is the only way the linker can actually 799 // determine the number of symbols in .dynsym so it is required. 800 int count = dynsym_.GetCacheSize() / sizeof(Elf_Sym); // Includes NULL. 801 std::vector<Elf_Word> hash; 802 PrepareDynamicSymbolHashtable(count, &hash); 803 hash_.Add(hash.data(), hash.size() * sizeof(hash[0])); 804 805 Elf_Addr current_virtual_address = virtual_address_; 806 virtual_address_ = dynamic_sections_address; 807 808 // Allocate all remaining sections. 809 dynstr_.AllocateVirtualMemory(dynstr_.GetCacheSize()); 810 dynsym_.AllocateVirtualMemory(dynsym_.GetCacheSize()); 811 hash_.AllocateVirtualMemory(hash_.GetCacheSize()); 812 813 Elf_Dyn dyns[] = { 814 { .d_tag = DT_HASH, .d_un = { .d_ptr = hash_.GetAddress() }, }, 815 { .d_tag = DT_STRTAB, .d_un = { .d_ptr = dynstr_.GetAddress() }, }, 816 { .d_tag = DT_SYMTAB, .d_un = { .d_ptr = dynsym_.GetAddress() }, }, 817 { .d_tag = DT_SYMENT, .d_un = { .d_ptr = sizeof(Elf_Sym) }, }, 818 { .d_tag = DT_STRSZ, .d_un = { .d_ptr = dynstr_.GetCacheSize() }, }, 819 { .d_tag = DT_SONAME, .d_un = { .d_ptr = soname_offset }, }, 820 { .d_tag = DT_NULL, .d_un = { .d_ptr = 0 }, }, 821 }; 822 static_assert(sizeof(dyns) == kDynamicEntriesCount * sizeof(dyns[0])); 823 824 dynamic_.Add(&dyns, sizeof(dyns)); 825 dynamic_.AllocateVirtualMemory(dynamic_.GetCacheSize()); 826 827 CHECK_LE(virtual_address_, rodata_.GetAddress()); 828 virtual_address_ = current_virtual_address; 829 830 loaded_size_ = RoundUp(virtual_address_, kElfSegmentAlignment); 831 } 832 WriteDynamicSection()833 void WriteDynamicSection() { 834 CHECK_NE(dynamic_sections_start_, 0); 835 CHECK_NE(dynamic_sections_reserved_size_, 0u); 836 837 off_t current_offset = stream_.Seek(0, kSeekCurrent); 838 stream_.Seek(dynamic_sections_start_, kSeekSet); 839 840 dynstr_.WriteCachedSection(); 841 dynsym_.WriteCachedSection(); 842 hash_.WriteCachedSection(); 843 dynamic_.WriteCachedSection(); 844 845 DCHECK_LE(stream_.Seek(0, kSeekCurrent), 846 static_cast<off_t>(dynamic_sections_start_ + dynamic_sections_reserved_size_)); 847 stream_.Seek(current_offset, kSeekSet); 848 } 849 GetLoadedSize()850 Elf_Word GetLoadedSize() { 851 CHECK_NE(loaded_size_, 0u); 852 return loaded_size_; 853 } 854 WriteBuildIdSection()855 void WriteBuildIdSection() { 856 build_id_.Start(); 857 build_id_.Write(); 858 build_id_.End(); 859 } 860 WriteBuildId(uint8_t build_id[kBuildIdLen])861 void WriteBuildId(uint8_t build_id[kBuildIdLen]) { 862 stream_.Seek(build_id_.GetDigestStart(), kSeekSet); 863 stream_.WriteFully(build_id, kBuildIdLen); 864 stream_.Flush(); 865 } 866 867 // Returns true if all writes and seeks on the output stream succeeded. Good()868 bool Good() { 869 return stream_.Good(); 870 } 871 872 // Returns the builder's internal stream. GetStream()873 OutputStream* GetStream() { 874 return &stream_; 875 } 876 AlignFileOffset(size_t alignment)877 off_t AlignFileOffset(size_t alignment) { 878 return stream_.Seek(RoundUp(stream_.Seek(0, kSeekCurrent), alignment), kSeekSet); 879 } 880 GetIsaFromHeader(const Elf_Ehdr & header)881 static InstructionSet GetIsaFromHeader(const Elf_Ehdr& header) { 882 switch (header.e_machine) { 883 case EM_ARM: 884 return InstructionSet::kThumb2; 885 case EM_AARCH64: 886 return InstructionSet::kArm64; 887 case EM_RISCV: 888 return InstructionSet::kRiscv64; 889 case EM_386: 890 return InstructionSet::kX86; 891 case EM_X86_64: 892 return InstructionSet::kX86_64; 893 } 894 LOG(FATAL) << "Unknown architecture: " << header.e_machine; 895 UNREACHABLE(); 896 } 897 898 private: MakeElfHeader(InstructionSet isa)899 static Elf_Ehdr MakeElfHeader(InstructionSet isa) { 900 Elf_Ehdr elf_header = Elf_Ehdr(); 901 switch (isa) { 902 case InstructionSet::kArm: 903 // Fall through. 904 case InstructionSet::kThumb2: { 905 elf_header.e_machine = EM_ARM; 906 elf_header.e_flags = EF_ARM_EABI_VER5; 907 break; 908 } 909 case InstructionSet::kArm64: { 910 elf_header.e_machine = EM_AARCH64; 911 elf_header.e_flags = 0; 912 break; 913 } 914 case InstructionSet::kRiscv64: { 915 elf_header.e_machine = EM_RISCV; 916 elf_header.e_flags = EF_RISCV_RVC | EF_RISCV_FLOAT_ABI_DOUBLE; 917 break; 918 } 919 case InstructionSet::kX86: { 920 elf_header.e_machine = EM_386; 921 elf_header.e_flags = 0; 922 break; 923 } 924 case InstructionSet::kX86_64: { 925 elf_header.e_machine = EM_X86_64; 926 elf_header.e_flags = 0; 927 break; 928 } 929 case InstructionSet::kNone: { 930 LOG(FATAL) << "No instruction set"; 931 break; 932 } 933 default: { 934 LOG(FATAL) << "Unknown instruction set " << isa; 935 } 936 } 937 DCHECK_EQ(GetIsaFromHeader(elf_header), 938 (isa == InstructionSet::kArm) ? InstructionSet::kThumb2 : isa); 939 940 elf_header.e_ident[EI_MAG0] = ELFMAG0; 941 elf_header.e_ident[EI_MAG1] = ELFMAG1; 942 elf_header.e_ident[EI_MAG2] = ELFMAG2; 943 elf_header.e_ident[EI_MAG3] = ELFMAG3; 944 elf_header.e_ident[EI_CLASS] = (sizeof(Elf_Addr) == sizeof(Elf32_Addr)) 945 ? ELFCLASS32 : ELFCLASS64; 946 elf_header.e_ident[EI_DATA] = ELFDATA2LSB; 947 elf_header.e_ident[EI_VERSION] = EV_CURRENT; 948 elf_header.e_ident[EI_OSABI] = ELFOSABI_LINUX; 949 elf_header.e_ident[EI_ABIVERSION] = 0; 950 elf_header.e_type = ET_DYN; 951 elf_header.e_version = 1; 952 elf_header.e_entry = 0; 953 elf_header.e_ehsize = sizeof(Elf_Ehdr); 954 elf_header.e_phentsize = sizeof(Elf_Phdr); 955 elf_header.e_shentsize = sizeof(Elf_Shdr); 956 return elf_header; 957 } 958 959 // Create program headers based on written sections. MakeProgramHeaders()960 std::vector<Elf_Phdr> MakeProgramHeaders() { 961 CHECK(!sections_.empty()); 962 std::vector<Elf_Phdr> phdrs; 963 { 964 // The program headers must start with PT_PHDR which is used in 965 // loaded process to determine the number of program headers. 966 Elf_Phdr phdr = Elf_Phdr(); 967 phdr.p_type = PT_PHDR; 968 phdr.p_flags = PF_R; 969 phdr.p_offset = phdr.p_vaddr = phdr.p_paddr = sizeof(Elf_Ehdr); 970 phdr.p_filesz = phdr.p_memsz = 0; // We need to fill this later. 971 phdr.p_align = sizeof(Elf_Off); 972 phdrs.push_back(phdr); 973 // Tell the linker to mmap the start of file to memory. 974 Elf_Phdr load = Elf_Phdr(); 975 load.p_type = PT_LOAD; 976 load.p_flags = PF_R; 977 load.p_offset = load.p_vaddr = load.p_paddr = 0; 978 load.p_filesz = load.p_memsz = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * kMaxProgramHeaders; 979 load.p_align = kElfSegmentAlignment; 980 phdrs.push_back(load); 981 } 982 // Create program headers for sections. 983 for (auto* section : sections_) { 984 const Elf_Shdr& shdr = section->header_; 985 if ((shdr.sh_flags & SHF_ALLOC) != 0 && shdr.sh_size != 0) { 986 DCHECK(shdr.sh_addr != 0u) << "Allocate virtual memory for the section"; 987 // PT_LOAD tells the linker to mmap part of the file. 988 // The linker can only mmap page-aligned sections. 989 // Single PT_LOAD may contain several ELF sections. 990 Elf_Phdr& prev = phdrs.back(); 991 Elf_Phdr load = Elf_Phdr(); 992 load.p_type = PT_LOAD; 993 load.p_flags = section->phdr_flags_; 994 load.p_offset = shdr.sh_offset; 995 load.p_vaddr = load.p_paddr = shdr.sh_addr; 996 load.p_filesz = (shdr.sh_type != SHT_NOBITS ? shdr.sh_size : 0u); 997 load.p_memsz = shdr.sh_size; 998 load.p_align = shdr.sh_addralign; 999 if (prev.p_type == load.p_type && 1000 prev.p_flags == load.p_flags && 1001 prev.p_filesz == prev.p_memsz && // Do not merge .bss 1002 load.p_filesz == load.p_memsz) { // Do not merge .bss 1003 // Merge this PT_LOAD with the previous one. 1004 Elf_Word size = shdr.sh_offset + shdr.sh_size - prev.p_offset; 1005 prev.p_filesz = size; 1006 prev.p_memsz = size; 1007 } else { 1008 // If we are adding new load, it must be aligned. 1009 CHECK_EQ(shdr.sh_addralign, (Elf_Word)kElfSegmentAlignment); 1010 phdrs.push_back(load); 1011 } 1012 } 1013 } 1014 for (auto* section : sections_) { 1015 const Elf_Shdr& shdr = section->header_; 1016 if ((shdr.sh_flags & SHF_ALLOC) != 0 && shdr.sh_size != 0) { 1017 // Other PT_* types allow the program to locate interesting 1018 // parts of memory at runtime. They must overlap with PT_LOAD. 1019 if (section->phdr_type_ != 0) { 1020 Elf_Phdr phdr = Elf_Phdr(); 1021 phdr.p_type = section->phdr_type_; 1022 phdr.p_flags = section->phdr_flags_; 1023 phdr.p_offset = shdr.sh_offset; 1024 phdr.p_vaddr = phdr.p_paddr = shdr.sh_addr; 1025 phdr.p_filesz = phdr.p_memsz = shdr.sh_size; 1026 phdr.p_align = shdr.sh_addralign; 1027 phdrs.push_back(phdr); 1028 } 1029 } 1030 } 1031 // Set the size of the initial PT_PHDR. 1032 CHECK_EQ(phdrs[0].p_type, (Elf_Word)PT_PHDR); 1033 phdrs[0].p_filesz = phdrs[0].p_memsz = phdrs.size() * sizeof(Elf_Phdr); 1034 1035 return phdrs; 1036 } 1037 1038 enum class DynamicSymbol { 1039 kNull, 1040 kOatData, 1041 kOatExec, 1042 kOatLastWord, 1043 kOatDataImgRelRo, 1044 kOatDataImgRelRoLastWord, 1045 kOatDataImgRelRoAppImage, 1046 kOatBss, 1047 kOatBssMethods, 1048 kOatBssRoots, 1049 kOatBssLastWord, 1050 kOatDex, 1051 kOatDexLastWord, 1052 kLast = kOatDexLastWord 1053 }; 1054 1055 static constexpr size_t kDynamicSymbolCount = static_cast<size_t>(DynamicSymbol::kLast) + 1; 1056 static constexpr size_t kDynamicEntriesCount = 7; 1057 GetDynamicSymbolName(DynamicSymbol sym)1058 static constexpr std::string GetDynamicSymbolName(DynamicSymbol sym) { 1059 switch (sym) { 1060 case DynamicSymbol::kNull: 1061 return ""; 1062 case DynamicSymbol::kOatData: 1063 return "oatdata"; 1064 case DynamicSymbol::kOatExec: 1065 return "oatexec"; 1066 case DynamicSymbol::kOatLastWord: 1067 return "oatlastword"; 1068 case DynamicSymbol::kOatDataImgRelRo: 1069 return "oatdataimgrelro"; 1070 case DynamicSymbol::kOatDataImgRelRoLastWord: 1071 return "oatdataimgrelrolastword"; 1072 case DynamicSymbol::kOatDataImgRelRoAppImage: 1073 return "oatdataimgrelroappimage"; 1074 case DynamicSymbol::kOatBss: 1075 return "oatbss"; 1076 case DynamicSymbol::kOatBssMethods: 1077 return "oatbssmethods"; 1078 case DynamicSymbol::kOatBssRoots: 1079 return "oatbssroots"; 1080 case DynamicSymbol::kOatBssLastWord: 1081 return "oatbsslastword"; 1082 case DynamicSymbol::kOatDex: 1083 return "oatdex"; 1084 case DynamicSymbol::kOatDexLastWord: 1085 return "oatdexlastword"; 1086 } 1087 } 1088 1089 // This method builds a hashtable for dynamic symbols using `hashtable` as a storage. 1090 // If `hashtable` is nullptr, it just calculate its size in bytes and returns it. PrepareDynamicSymbolHashtable(size_t count,std::vector<Elf_Word> * hashtable)1091 static size_t PrepareDynamicSymbolHashtable(size_t count, std::vector<Elf_Word> *hashtable) { 1092 size_t size = 0; 1093 auto write = [&size, hashtable](Elf_Word value) { 1094 if (hashtable) { 1095 hashtable->push_back(value); 1096 } 1097 size += sizeof(value); 1098 }; 1099 1100 write(1); // Number of buckets. 1101 write(count); // Number of chains. 1102 // Buckets. Having just one makes it linear search. 1103 write(1); // Point to first non-NULL symbol. 1104 // Chains. This creates linked list of symbols. 1105 write(0); // Placeholder entry for the NULL symbol. 1106 for (size_t i = 1; i < count - 1; i++) { 1107 write(i + 1); // Each symbol points to the next one. 1108 } 1109 write(0); // Last symbol terminates the chain. 1110 1111 return size; 1112 } 1113 GetSoname(const std::string & elf_file_path)1114 static std::string GetSoname(const std::string& elf_file_path) { 1115 std::string soname(elf_file_path); 1116 size_t directory_separator_pos = soname.rfind('/'); 1117 if (directory_separator_pos != std::string::npos) { 1118 soname = soname.substr(directory_separator_pos + 1); 1119 } 1120 return soname; 1121 } 1122 1123 InstructionSet isa_; 1124 1125 ErrorDelayingOutputStream stream_; 1126 1127 Section rodata_; 1128 Section text_; 1129 Section data_img_rel_ro_; 1130 Section bss_; 1131 Section dex_; 1132 CachedStringSection dynstr_; 1133 SymbolSection dynsym_; 1134 CachedSection hash_; 1135 CachedSection dynamic_; 1136 StringSection strtab_; 1137 SymbolSection symtab_; 1138 Section debug_frame_; 1139 Section debug_frame_hdr_; 1140 Section debug_info_; 1141 Section debug_line_; 1142 StringSection shstrtab_; 1143 BuildIdSection build_id_; 1144 std::vector<std::unique_ptr<Section>> other_sections_; 1145 1146 // List of used section in the order in which they were written. 1147 std::vector<Section*> sections_; 1148 Section* current_section_; // The section which is currently being written. 1149 1150 bool started_; 1151 bool finished_; 1152 bool write_program_headers_; 1153 1154 // The size of the memory taken by the ELF file when loaded. 1155 size_t loaded_size_; 1156 1157 // Used for allocation of virtual address space. 1158 Elf_Addr virtual_address_; 1159 1160 // Offset in the ELF where the first dynamic section is written (.dynstr). 1161 off_t dynamic_sections_start_; 1162 1163 // Size reserved for dynamic sections: .dynstr, .dynsym, .hash and .dynamic. 1164 size_t dynamic_sections_reserved_size_; 1165 1166 DISALLOW_COPY_AND_ASSIGN(ElfBuilder); 1167 }; 1168 1169 } // namespace art 1170 1171 #endif // ART_LIBELFFILE_ELF_ELF_BUILDER_H_ 1172