• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_
18 #define ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_
19 
20 #include "card_table.h"
21 
22 #include <android-base/logging.h>
23 
24 #include "base/atomic.h"
25 #include "base/bit_utils.h"
26 #include "base/mem_map.h"
27 #include "space_bitmap.h"
28 
29 namespace art HIDDEN {
30 namespace gc {
31 namespace accounting {
32 
byte_cas(uint8_t old_value,uint8_t new_value,uint8_t * address)33 static inline bool byte_cas(uint8_t old_value, uint8_t new_value, uint8_t* address) {
34 #if defined(__i386__) || defined(__x86_64__)
35   Atomic<uint8_t>* byte_atomic = reinterpret_cast<Atomic<uint8_t>*>(address);
36   return byte_atomic->CompareAndSetWeakRelaxed(old_value, new_value);
37 #else
38   // Little endian means most significant byte is on the left.
39   const size_t shift_in_bytes = reinterpret_cast<uintptr_t>(address) % sizeof(uintptr_t);
40   // Align the address down.
41   address -= shift_in_bytes;
42   const size_t shift_in_bits = shift_in_bytes * kBitsPerByte;
43   Atomic<uintptr_t>* word_atomic = reinterpret_cast<Atomic<uintptr_t>*>(address);
44 
45   // Word with the byte we are trying to cas cleared.
46   const uintptr_t cur_word = word_atomic->load(std::memory_order_relaxed) &
47       ~(static_cast<uintptr_t>(0xFF) << shift_in_bits);
48   const uintptr_t old_word = cur_word | (static_cast<uintptr_t>(old_value) << shift_in_bits);
49   const uintptr_t new_word = cur_word | (static_cast<uintptr_t>(new_value) << shift_in_bits);
50   return word_atomic->CompareAndSetWeakRelaxed(old_word, new_word);
51 #endif
52 }
53 
54 template <bool kClearCard, typename Visitor, typename ModifyVisitor>
Scan(ContinuousSpaceBitmap * bitmap,uint8_t * const scan_begin,uint8_t * const scan_end,const Visitor & visitor,const ModifyVisitor & mod_visitor,const uint8_t minimum_age)55 inline size_t CardTable::Scan(ContinuousSpaceBitmap* bitmap,
56                               uint8_t* const scan_begin,
57                               uint8_t* const scan_end,
58                               const Visitor& visitor,
59                               const ModifyVisitor& mod_visitor,
60                               const uint8_t minimum_age) {
61   DCHECK_GE(scan_begin, reinterpret_cast<uint8_t*>(bitmap->HeapBegin()));
62   // scan_end is the byte after the last byte we scan.
63   DCHECK_LE(scan_end, reinterpret_cast<uint8_t*>(bitmap->HeapLimit()));
64   uint8_t* const card_begin = CardFromAddr(scan_begin);
65   uint8_t* const card_end = CardFromAddr(AlignUp(scan_end, kCardSize));
66   uint8_t* card_cur = card_begin;
67   CheckCardValid(card_cur);
68   CheckCardValid(card_end);
69   size_t cards_scanned = 0;
70 
71   // Handle any unaligned cards at the start.
72   while (!IsAligned<sizeof(intptr_t)>(card_cur) && card_cur < card_end) {
73     uint8_t cur_val = *card_cur;
74     if (cur_val >= minimum_age) {
75       uintptr_t start = reinterpret_cast<uintptr_t>(AddrFromCard(card_cur));
76       bitmap->VisitMarkedRange(start, start + kCardSize, visitor);
77       mod_visitor(card_cur, cur_val);
78       ++cards_scanned;
79     }
80     ++card_cur;
81   }
82 
83   if (card_cur < card_end) {
84     DCHECK_ALIGNED(card_cur, sizeof(intptr_t));
85     uint8_t* aligned_end = card_end -
86         (reinterpret_cast<uintptr_t>(card_end) & (sizeof(uintptr_t) - 1));
87     DCHECK_LE(card_cur, aligned_end);
88 
89     uintptr_t* word_end = reinterpret_cast<uintptr_t*>(aligned_end);
90     for (uintptr_t* word_cur = reinterpret_cast<uintptr_t*>(card_cur); word_cur < word_end;
91         ++word_cur) {
92       while (LIKELY(*word_cur == 0)) {
93         ++word_cur;
94         if (UNLIKELY(word_cur >= word_end)) {
95           goto exit_for;
96         }
97       }
98 
99       // Find the first dirty card.
100       uintptr_t start_word = *word_cur;
101       uintptr_t start =
102           reinterpret_cast<uintptr_t>(AddrFromCard(reinterpret_cast<uint8_t*>(word_cur)));
103       // TODO: Investigate if processing continuous runs of dirty cards with
104       // a single bitmap visit is more efficient.
105       for (size_t i = 0; i < sizeof(uintptr_t); ++i) {
106         uint8_t cur_val = static_cast<uint8_t>(start_word);
107         if (cur_val >= minimum_age) {
108           auto* card = reinterpret_cast<uint8_t*>(word_cur) + i;
109           DCHECK(*card == static_cast<uint8_t>(start_word) || *card == kCardDirty)
110               << "card " << static_cast<size_t>(*card) << " intptr_t " << cur_val;
111           bitmap->VisitMarkedRange(start, start + kCardSize, visitor);
112           mod_visitor(card, cur_val);
113           ++cards_scanned;
114         }
115         start_word >>= 8;
116         start += kCardSize;
117       }
118     }
119     exit_for:
120 
121     // Handle any unaligned cards at the end.
122     card_cur = reinterpret_cast<uint8_t*>(word_end);
123     while (card_cur < card_end) {
124       uint8_t cur_val = *card_cur;
125       if (cur_val >= minimum_age) {
126         uintptr_t start = reinterpret_cast<uintptr_t>(AddrFromCard(card_cur));
127         bitmap->VisitMarkedRange(start, start + kCardSize, visitor);
128         mod_visitor(card_cur, cur_val);
129         ++cards_scanned;
130       }
131       ++card_cur;
132     }
133   }
134 
135   if (kClearCard) {
136     ClearCardRange(scan_begin, scan_end);
137   }
138 
139   return cards_scanned;
140 }
141 
142 template <typename Visitor, typename ModifiedVisitor>
ModifyCardsAtomic(uint8_t * scan_begin,uint8_t * scan_end,const Visitor & visitor,const ModifiedVisitor & modified)143 inline void CardTable::ModifyCardsAtomic(uint8_t* scan_begin,
144                                          uint8_t* scan_end,
145                                          const Visitor& visitor,
146                                          const ModifiedVisitor& modified) {
147   uint8_t* card_cur = CardFromAddr(scan_begin);
148   uint8_t* card_end = CardFromAddr(AlignUp(scan_end, kCardSize));
149   CheckCardValid(card_cur);
150   CheckCardValid(card_end);
151   DCHECK(visitor(kCardClean) == kCardClean);
152 
153   // Handle any unaligned cards at the start.
154   while (!IsAligned<sizeof(intptr_t)>(card_cur) && card_cur < card_end) {
155     uint8_t expected, new_value;
156     do {
157       expected = *card_cur;
158       new_value = visitor(expected);
159     } while (expected != new_value && UNLIKELY(!byte_cas(expected, new_value, card_cur)));
160     if (expected != new_value) {
161       modified(card_cur, expected, new_value);
162     }
163     ++card_cur;
164   }
165 
166   // Handle unaligned cards at the end.
167   while (!IsAligned<sizeof(intptr_t)>(card_end) && card_end > card_cur) {
168     --card_end;
169     uint8_t expected, new_value;
170     do {
171       expected = *card_end;
172       new_value = visitor(expected);
173     } while (expected != new_value && UNLIKELY(!byte_cas(expected, new_value, card_end)));
174     if (expected != new_value) {
175       modified(card_end, expected, new_value);
176     }
177   }
178 
179   // Now we have the words, we can process words in parallel.
180   uintptr_t* word_cur = reinterpret_cast<uintptr_t*>(card_cur);
181   uintptr_t* word_end = reinterpret_cast<uintptr_t*>(card_end);
182   // TODO: This is not big endian safe.
183   union {
184     uintptr_t expected_word;
185     uint8_t expected_bytes[sizeof(uintptr_t)];
186   };
187   union {
188     uintptr_t new_word;
189     uint8_t new_bytes[sizeof(uintptr_t)];
190   };
191 
192   // TODO: Parallelize.
193   while (word_cur < word_end) {
194     while (true) {
195       expected_word = *word_cur;
196       static_assert(kCardClean == 0);
197       if (LIKELY(expected_word == 0 /* All kCardClean */ )) {
198         break;
199       }
200       for (size_t i = 0; i < sizeof(uintptr_t); ++i) {
201         new_bytes[i] = visitor(expected_bytes[i]);
202       }
203       Atomic<uintptr_t>* atomic_word = reinterpret_cast<Atomic<uintptr_t>*>(word_cur);
204       if (LIKELY(atomic_word->CompareAndSetWeakRelaxed(expected_word, new_word))) {
205         for (size_t i = 0; i < sizeof(uintptr_t); ++i) {
206           const uint8_t expected_byte = expected_bytes[i];
207           const uint8_t new_byte = new_bytes[i];
208           if (expected_byte != new_byte) {
209             modified(reinterpret_cast<uint8_t*>(word_cur) + i, expected_byte, new_byte);
210           }
211         }
212         break;
213       }
214     }
215     ++word_cur;
216   }
217 }
218 
AddrFromCard(const uint8_t * card_addr)219 inline void* CardTable::AddrFromCard(const uint8_t *card_addr) const {
220   DCHECK(IsValidCard(card_addr))
221     << " card_addr: " << reinterpret_cast<const void*>(card_addr)
222     << " begin: " << reinterpret_cast<void*>(mem_map_.Begin() + offset_)
223     << " end: " << reinterpret_cast<void*>(mem_map_.End());
224   uintptr_t offset = card_addr - biased_begin_;
225   return reinterpret_cast<void*>(offset << kCardShift);
226 }
227 
CardFromAddr(const void * addr)228 inline uint8_t* CardTable::CardFromAddr(const void *addr) const {
229   uint8_t *card_addr = biased_begin_ + (reinterpret_cast<uintptr_t>(addr) >> kCardShift);
230   // Check that the caller was asking for an address covered by the card table.
231   DCHECK(IsValidCard(card_addr)) << "addr: " << addr
232       << " card_addr: " << reinterpret_cast<void*>(card_addr);
233   return card_addr;
234 }
235 
IsValidCard(const uint8_t * card_addr)236 inline bool CardTable::IsValidCard(const uint8_t* card_addr) const {
237   uint8_t* begin = mem_map_.Begin() + offset_;
238   uint8_t* end = mem_map_.End();
239   return card_addr >= begin && card_addr < end;
240 }
241 
CheckCardValid(uint8_t * card)242 inline void CardTable::CheckCardValid(uint8_t* card) const {
243   DCHECK(IsValidCard(card))
244       << " card_addr: " << reinterpret_cast<const void*>(card)
245       << " begin: " << reinterpret_cast<void*>(mem_map_.Begin() + offset_)
246       << " end: " << reinterpret_cast<void*>(mem_map_.End());
247 }
248 
249 }  // namespace accounting
250 }  // namespace gc
251 }  // namespace art
252 
253 #endif  // ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_
254