1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "concurrent_copying.h"
18
19 #include "art_field-inl.h"
20 #include "barrier.h"
21 #include "base/file_utils.h"
22 #include "base/histogram-inl.h"
23 #include "base/pointer_size.h"
24 #include "base/quasi_atomic.h"
25 #include "base/stl_util.h"
26 #include "base/systrace.h"
27 #include "class_root-inl.h"
28 #include "debugger.h"
29 #include "gc/accounting/atomic_stack.h"
30 #include "gc/accounting/heap_bitmap-inl.h"
31 #include "gc/accounting/mod_union_table-inl.h"
32 #include "gc/accounting/read_barrier_table.h"
33 #include "gc/accounting/space_bitmap-inl.h"
34 #include "gc/gc_pause_listener.h"
35 #include "gc/reference_processor.h"
36 #include "gc/space/image_space.h"
37 #include "gc/space/space-inl.h"
38 #include "gc/verification.h"
39 #include "intern_table.h"
40 #include "mirror/class-inl.h"
41 #include "mirror/object-inl.h"
42 #include "mirror/object-refvisitor-inl.h"
43 #include "mirror/object_reference.h"
44 #include "oat/image-inl.h"
45 #include "scoped_thread_state_change-inl.h"
46 #include "thread-inl.h"
47 #include "thread_list.h"
48 #include "well_known_classes.h"
49
50 namespace art HIDDEN {
51 namespace gc {
52 namespace collector {
53
54 static constexpr size_t kDefaultGcMarkStackSize = 2 * MB;
55 // If kFilterModUnionCards then we attempt to filter cards that don't need to be dirty in the mod
56 // union table. Disabled since it does not seem to help the pause much.
57 static constexpr bool kFilterModUnionCards = kIsDebugBuild;
58 // If kDisallowReadBarrierDuringScan is true then the GC aborts if there are any read barrier that
59 // occur during ConcurrentCopying::Scan in GC thread. May be used to diagnose possibly unnecessary
60 // read barriers. Only enabled for kIsDebugBuild to avoid performance hit.
61 static constexpr bool kDisallowReadBarrierDuringScan = kIsDebugBuild;
62 // Slow path mark stack size, increase this if the stack is getting full and it is causing
63 // performance problems.
64 static constexpr size_t kReadBarrierMarkStackSize = 512 * KB;
65 // Verify that there are no missing card marks.
66 static constexpr bool kVerifyNoMissingCardMarks = kIsDebugBuild;
67
ConcurrentCopying(Heap * heap,bool young_gen,bool use_generational_cc,const std::string & name_prefix,bool measure_read_barrier_slow_path)68 ConcurrentCopying::ConcurrentCopying(Heap* heap,
69 bool young_gen,
70 bool use_generational_cc,
71 const std::string& name_prefix,
72 bool measure_read_barrier_slow_path)
73 : GarbageCollector(heap,
74 name_prefix + (name_prefix.empty() ? "" : " ") +
75 "concurrent copying"),
76 region_space_(nullptr),
77 gc_barrier_(new Barrier(0)),
78 gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
79 kDefaultGcMarkStackSize,
80 kDefaultGcMarkStackSize)),
81 use_generational_cc_(use_generational_cc),
82 young_gen_(young_gen),
83 rb_mark_bit_stack_(accounting::ObjectStack::Create("rb copying gc mark stack",
84 kReadBarrierMarkStackSize,
85 kReadBarrierMarkStackSize)),
86 rb_mark_bit_stack_full_(false),
87 mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
88 thread_running_gc_(nullptr),
89 is_marking_(false),
90 is_using_read_barrier_entrypoints_(false),
91 is_active_(false),
92 is_asserting_to_space_invariant_(false),
93 region_space_bitmap_(nullptr),
94 heap_mark_bitmap_(nullptr),
95 live_stack_freeze_size_(0),
96 from_space_num_bytes_at_first_pause_(0),
97 mark_stack_mode_(kMarkStackModeOff),
98 weak_ref_access_enabled_(true),
99 copied_live_bytes_ratio_sum_(0.f),
100 gc_count_(0),
101 reclaimed_bytes_ratio_sum_(0.f),
102 cumulative_bytes_moved_(0),
103 skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
104 measure_read_barrier_slow_path_(measure_read_barrier_slow_path),
105 mark_from_read_barrier_measurements_(false),
106 rb_slow_path_ns_(0),
107 rb_slow_path_count_(0),
108 rb_slow_path_count_gc_(0),
109 rb_slow_path_histogram_lock_("Read barrier histogram lock"),
110 rb_slow_path_time_histogram_("Mutator time in read barrier slow path", 500, 32),
111 rb_slow_path_count_total_(0),
112 rb_slow_path_count_gc_total_(0),
113 rb_table_(heap_->GetReadBarrierTable()),
114 force_evacuate_all_(false),
115 gc_grays_immune_objects_(false),
116 immune_gray_stack_lock_("concurrent copying immune gray stack lock",
117 kMarkSweepMarkStackLock),
118 num_bytes_allocated_before_gc_(0) {
119 static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
120 "The region space size and the read barrier table region size must match");
121 CHECK(use_generational_cc_ || !young_gen_);
122 Thread* self = Thread::Current();
123 {
124 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
125 // Cache this so that we won't have to lock heap_bitmap_lock_ in
126 // Mark() which could cause a nested lock on heap_bitmap_lock_
127 // when GC causes a RB while doing GC or a lock order violation
128 // (class_linker_lock_ and heap_bitmap_lock_).
129 heap_mark_bitmap_ = heap->GetMarkBitmap();
130 }
131 {
132 MutexLock mu(self, mark_stack_lock_);
133 for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
134 accounting::AtomicStack<mirror::Object>* mark_stack =
135 accounting::AtomicStack<mirror::Object>::Create(
136 "thread local mark stack", GetMarkStackSize(), GetMarkStackSize());
137 pooled_mark_stacks_.push_back(mark_stack);
138 }
139 }
140 // Return type of these functions are different. And even though the base class
141 // is same, using ternary operator complains.
142 metrics::ArtMetrics* metrics = GetMetrics();
143 are_metrics_initialized_ = true;
144 if (young_gen_) {
145 gc_time_histogram_ = metrics->YoungGcCollectionTime();
146 metrics_gc_count_ = metrics->YoungGcCount();
147 metrics_gc_count_delta_ = metrics->YoungGcCountDelta();
148 gc_throughput_histogram_ = metrics->YoungGcThroughput();
149 gc_tracing_throughput_hist_ = metrics->YoungGcTracingThroughput();
150 gc_throughput_avg_ = metrics->YoungGcThroughputAvg();
151 gc_tracing_throughput_avg_ = metrics->YoungGcTracingThroughputAvg();
152 gc_scanned_bytes_ = metrics->YoungGcScannedBytes();
153 gc_scanned_bytes_delta_ = metrics->YoungGcScannedBytesDelta();
154 gc_freed_bytes_ = metrics->YoungGcFreedBytes();
155 gc_freed_bytes_delta_ = metrics->YoungGcFreedBytesDelta();
156 gc_duration_ = metrics->YoungGcDuration();
157 gc_duration_delta_ = metrics->YoungGcDurationDelta();
158 gc_app_slow_path_during_gc_duration_delta_ = metrics->AppSlowPathDuringYoungGcDurationDelta();
159 } else {
160 gc_time_histogram_ = metrics->FullGcCollectionTime();
161 metrics_gc_count_ = metrics->FullGcCount();
162 metrics_gc_count_delta_ = metrics->FullGcCountDelta();
163 gc_throughput_histogram_ = metrics->FullGcThroughput();
164 gc_tracing_throughput_hist_ = metrics->FullGcTracingThroughput();
165 gc_throughput_avg_ = metrics->FullGcThroughputAvg();
166 gc_tracing_throughput_avg_ = metrics->FullGcTracingThroughputAvg();
167 gc_scanned_bytes_ = metrics->FullGcScannedBytes();
168 gc_scanned_bytes_delta_ = metrics->FullGcScannedBytesDelta();
169 gc_freed_bytes_ = metrics->FullGcFreedBytes();
170 gc_freed_bytes_delta_ = metrics->FullGcFreedBytesDelta();
171 gc_duration_ = metrics->FullGcDuration();
172 gc_duration_delta_ = metrics->FullGcDurationDelta();
173 gc_app_slow_path_during_gc_duration_delta_ = metrics->AppSlowPathDuringFullGcDurationDelta();
174 }
175 }
176
MarkHeapReference(mirror::HeapReference<mirror::Object> * field,bool do_atomic_update)177 void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* field,
178 bool do_atomic_update) {
179 Thread* const self = Thread::Current();
180 if (UNLIKELY(do_atomic_update)) {
181 // Used to mark the referent in DelayReferenceReferent in transaction mode.
182 mirror::Object* from_ref = field->AsMirrorPtr();
183 if (from_ref == nullptr) {
184 return;
185 }
186 mirror::Object* to_ref = Mark(self, from_ref);
187 if (from_ref != to_ref) {
188 do {
189 if (field->AsMirrorPtr() != from_ref) {
190 // Concurrently overwritten by a mutator.
191 break;
192 }
193 } while (!field->CasWeakRelaxed(from_ref, to_ref));
194 // "Relaxed" is not technically sufficient by C++ rules. However, we use a "release"
195 // operation to originally store the forwarding pointer, or a constructor fence if we
196 // directly obtained to_ref from Copy(). We then count on the fact that all later accesses
197 // to the to_ref object are data/address-dependent on the forwarding pointer, and there is
198 // no reasonable way for the compiler to eliminate that depenency. This is very similar to
199 // the reasoning we must use for final fields in any case.
200 }
201 } else {
202 // Used for preserving soft references, should be OK to not have a CAS here since there should be
203 // no other threads which can trigger read barriers on the same referent during reference
204 // processing.
205 field->Assign(Mark(self, field->AsMirrorPtr()));
206 }
207 }
208
~ConcurrentCopying()209 ConcurrentCopying::~ConcurrentCopying() {
210 STLDeleteElements(&pooled_mark_stacks_);
211 }
212
RunPhases()213 void ConcurrentCopying::RunPhases() {
214 CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
215 CHECK(!is_active_);
216 is_active_ = true;
217 Thread* self = Thread::Current();
218 thread_running_gc_ = self;
219 Locks::mutator_lock_->AssertNotHeld(self);
220 {
221 ReaderMutexLock mu(self, *Locks::mutator_lock_);
222 InitializePhase();
223 // In case of forced evacuation, all regions are evacuated and hence no
224 // need to compute live_bytes.
225 if (use_generational_cc_ && !young_gen_ && !force_evacuate_all_) {
226 MarkingPhase();
227 }
228 }
229 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
230 // Switch to read barrier mark entrypoints before we gray the objects. This is required in case
231 // a mutator sees a gray bit and dispatches on the entrypoint. (b/37876887).
232 ActivateReadBarrierEntrypoints();
233 // Gray dirty immune objects concurrently to reduce GC pause times. We re-process gray cards in
234 // the pause.
235 ReaderMutexLock mu(self, *Locks::mutator_lock_);
236 GrayAllDirtyImmuneObjects();
237 }
238 FlipThreadRoots();
239 {
240 ReaderMutexLock mu(self, *Locks::mutator_lock_);
241 CopyingPhase();
242 }
243 // Verify no from space refs. This causes a pause.
244 if (kEnableNoFromSpaceRefsVerification) {
245 TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
246 ScopedPause pause(this, false);
247 CheckEmptyMarkStack();
248 if (kVerboseMode) {
249 LOG(INFO) << "Verifying no from-space refs";
250 }
251 VerifyNoFromSpaceReferences();
252 if (kVerboseMode) {
253 LOG(INFO) << "Done verifying no from-space refs";
254 }
255 CheckEmptyMarkStack();
256 }
257 {
258 ReaderMutexLock mu(self, *Locks::mutator_lock_);
259 ReclaimPhase();
260 }
261 FinishPhase();
262 CHECK(is_active_);
263 is_active_ = false;
264 thread_running_gc_ = nullptr;
265 }
266
267 class ConcurrentCopying::ActivateReadBarrierEntrypointsCheckpoint : public Closure {
268 public:
ActivateReadBarrierEntrypointsCheckpoint(ConcurrentCopying * concurrent_copying)269 explicit ActivateReadBarrierEntrypointsCheckpoint(ConcurrentCopying* concurrent_copying)
270 : concurrent_copying_(concurrent_copying) {}
271
Run(Thread * thread)272 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
273 // Note: self is not necessarily equal to thread since thread may be suspended.
274 Thread* self = Thread::Current();
275 DCHECK(thread == self ||
276 thread->IsSuspended() ||
277 thread->GetState() == ThreadState::kWaitingPerformingGc)
278 << thread->GetState() << " thread " << thread << " self " << self;
279 // Switch to the read barrier entrypoints.
280 thread->SetReadBarrierEntrypoints();
281 // If thread is a running mutator, then act on behalf of the garbage collector.
282 // See the code in ThreadList::RunCheckpoint.
283 concurrent_copying_->GetBarrier().Pass(self);
284 }
285
286 private:
287 ConcurrentCopying* const concurrent_copying_;
288 };
289
290 class ConcurrentCopying::ActivateReadBarrierEntrypointsCallback : public Closure {
291 public:
ActivateReadBarrierEntrypointsCallback(ConcurrentCopying * concurrent_copying)292 explicit ActivateReadBarrierEntrypointsCallback(ConcurrentCopying* concurrent_copying)
293 : concurrent_copying_(concurrent_copying) {}
294
Run(Thread * self)295 void Run([[maybe_unused]] Thread* self) override REQUIRES(Locks::thread_list_lock_) {
296 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
297 // to avoid a race with ThreadList::Register().
298 CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
299 concurrent_copying_->is_using_read_barrier_entrypoints_ = true;
300 }
301
302 private:
303 ConcurrentCopying* const concurrent_copying_;
304 };
305
ActivateReadBarrierEntrypoints()306 void ConcurrentCopying::ActivateReadBarrierEntrypoints() {
307 Thread* const self = Thread::Current();
308 ActivateReadBarrierEntrypointsCheckpoint checkpoint(this);
309 ThreadList* thread_list = Runtime::Current()->GetThreadList();
310 gc_barrier_->Init(self, 0);
311 ActivateReadBarrierEntrypointsCallback callback(this);
312 const size_t barrier_count = thread_list->RunCheckpoint(&checkpoint, &callback);
313 // If there are no threads to wait which implies that all the checkpoint functions are finished,
314 // then no need to release the mutator lock.
315 if (barrier_count == 0) {
316 return;
317 }
318 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
319 gc_barrier_->Increment(self, barrier_count);
320 }
321
CreateInterRegionRefBitmaps()322 void ConcurrentCopying::CreateInterRegionRefBitmaps() {
323 DCHECK(use_generational_cc_);
324 DCHECK(!region_space_inter_region_bitmap_.IsValid());
325 DCHECK(!non_moving_space_inter_region_bitmap_.IsValid());
326 DCHECK(region_space_ != nullptr);
327 DCHECK(heap_->non_moving_space_ != nullptr);
328 // Region-space
329 region_space_inter_region_bitmap_ = accounting::ContinuousSpaceBitmap::Create(
330 "region-space inter region ref bitmap",
331 reinterpret_cast<uint8_t*>(region_space_->Begin()),
332 region_space_->Limit() - region_space_->Begin());
333 CHECK(region_space_inter_region_bitmap_.IsValid())
334 << "Couldn't allocate region-space inter region ref bitmap";
335
336 // non-moving-space
337 non_moving_space_inter_region_bitmap_ = accounting::ContinuousSpaceBitmap::Create(
338 "non-moving-space inter region ref bitmap",
339 reinterpret_cast<uint8_t*>(heap_->non_moving_space_->Begin()),
340 heap_->non_moving_space_->Limit() - heap_->non_moving_space_->Begin());
341 CHECK(non_moving_space_inter_region_bitmap_.IsValid())
342 << "Couldn't allocate non-moving-space inter region ref bitmap";
343 }
344
BindBitmaps()345 void ConcurrentCopying::BindBitmaps() {
346 Thread* self = Thread::Current();
347 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
348 // Mark all of the spaces we never collect as immune.
349 for (const auto& space : heap_->GetContinuousSpaces()) {
350 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
351 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
352 CHECK(space->IsZygoteSpace() || space->IsImageSpace());
353 immune_spaces_.AddSpace(space);
354 } else {
355 CHECK(!space->IsZygoteSpace());
356 CHECK(!space->IsImageSpace());
357 CHECK(space == region_space_ || space == heap_->non_moving_space_);
358 if (use_generational_cc_) {
359 if (space == region_space_) {
360 region_space_bitmap_ = region_space_->GetMarkBitmap();
361 } else if (young_gen_ && space->IsContinuousMemMapAllocSpace()) {
362 DCHECK_EQ(space->GetGcRetentionPolicy(), space::kGcRetentionPolicyAlwaysCollect);
363 space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
364 }
365 if (young_gen_) {
366 // Age all of the cards for the region space so that we know which evac regions to scan.
367 heap_->GetCardTable()->ModifyCardsAtomic(space->Begin(),
368 space->End(),
369 AgeCardVisitor(),
370 VoidFunctor());
371 } else {
372 // In a full-heap GC cycle, the card-table corresponding to region-space and
373 // non-moving space can be cleared, because this cycle only needs to
374 // capture writes during the marking phase of this cycle to catch
375 // objects that skipped marking due to heap mutation. Furthermore,
376 // if the next GC is a young-gen cycle, then it only needs writes to
377 // be captured after the thread-flip of this GC cycle, as that is when
378 // the young-gen for the next GC cycle starts getting populated.
379 heap_->GetCardTable()->ClearCardRange(space->Begin(), space->Limit());
380 }
381 } else {
382 if (space == region_space_) {
383 // It is OK to clear the bitmap with mutators running since the only place it is read is
384 // VisitObjects which has exclusion with CC.
385 region_space_bitmap_ = region_space_->GetMarkBitmap();
386 region_space_bitmap_->Clear(ShouldEagerlyReleaseMemoryToOS());
387 }
388 }
389 }
390 }
391 if (use_generational_cc_ && young_gen_) {
392 for (const auto& space : GetHeap()->GetDiscontinuousSpaces()) {
393 CHECK(space->IsLargeObjectSpace());
394 space->AsLargeObjectSpace()->CopyLiveToMarked();
395 }
396 }
397 }
398
InitializePhase()399 void ConcurrentCopying::InitializePhase() {
400 TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
401 num_bytes_allocated_before_gc_ = static_cast<int64_t>(heap_->GetBytesAllocated());
402 if (kVerboseMode) {
403 LOG(INFO) << "GC InitializePhase";
404 LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
405 << reinterpret_cast<void*>(region_space_->Limit());
406 }
407 CheckEmptyMarkStack();
408 rb_mark_bit_stack_full_ = false;
409 mark_from_read_barrier_measurements_ = measure_read_barrier_slow_path_;
410 if (measure_read_barrier_slow_path_) {
411 rb_slow_path_ns_.store(0, std::memory_order_relaxed);
412 rb_slow_path_count_.store(0, std::memory_order_relaxed);
413 rb_slow_path_count_gc_.store(0, std::memory_order_relaxed);
414 }
415 app_slow_path_start_time_ = 0;
416
417 immune_spaces_.Reset();
418 bytes_moved_.store(0, std::memory_order_relaxed);
419 objects_moved_.store(0, std::memory_order_relaxed);
420 bytes_moved_gc_thread_ = 0;
421 objects_moved_gc_thread_ = 0;
422 bytes_scanned_ = 0;
423 GcCause gc_cause = GetCurrentIteration()->GetGcCause();
424
425 force_evacuate_all_ = false;
426 if (!use_generational_cc_ || !young_gen_) {
427 if (gc_cause == kGcCauseExplicit ||
428 gc_cause == kGcCauseCollectorTransition ||
429 GetCurrentIteration()->GetClearSoftReferences()) {
430 force_evacuate_all_ = true;
431 }
432 }
433 if (kUseBakerReadBarrier) {
434 updated_all_immune_objects_.store(false, std::memory_order_relaxed);
435 // GC may gray immune objects in the thread flip.
436 gc_grays_immune_objects_ = true;
437 if (kIsDebugBuild) {
438 MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
439 DCHECK(immune_gray_stack_.empty());
440 }
441 }
442 if (use_generational_cc_) {
443 done_scanning_.store(false, std::memory_order_release);
444 }
445 BindBitmaps();
446 if (kVerboseMode) {
447 LOG(INFO) << "young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha;
448 LOG(INFO) << "force_evacuate_all=" << std::boolalpha << force_evacuate_all_ << std::noboolalpha;
449 LOG(INFO) << "Largest immune region: " << immune_spaces_.GetLargestImmuneRegion().Begin()
450 << "-" << immune_spaces_.GetLargestImmuneRegion().End();
451 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
452 LOG(INFO) << "Immune space: " << *space;
453 }
454 LOG(INFO) << "GC end of InitializePhase";
455 }
456 if (use_generational_cc_ && !young_gen_) {
457 region_space_bitmap_->Clear(ShouldEagerlyReleaseMemoryToOS());
458 }
459 mark_stack_mode_.store(ConcurrentCopying::kMarkStackModeThreadLocal, std::memory_order_release);
460 // Mark all of the zygote large objects without graying them.
461 MarkZygoteLargeObjects();
462 }
463
464 // Used to switch the thread roots of a thread from from-space refs to to-space refs.
465 class ConcurrentCopying::ThreadFlipVisitor : public Closure, public RootVisitor {
466 public:
ThreadFlipVisitor(ConcurrentCopying * concurrent_copying,bool use_tlab)467 ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
468 : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
469 }
470
Run(Thread * thread)471 void Run(Thread* thread) override REQUIRES_SHARED(Locks::mutator_lock_) {
472 // We are either running this in the target thread, or the target thread will wait for us
473 // before switching back to runnable.
474 Thread* self = Thread::Current();
475 CHECK(thread == self || thread->GetState() != ThreadState::kRunnable)
476 << thread->GetState() << " thread " << thread << " self " << self;
477 thread->SetIsGcMarkingAndUpdateEntrypoints(true);
478 if (use_tlab_ && thread->HasTlab()) {
479 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread, /*reuse=*/ false);
480 }
481 if (kUseThreadLocalAllocationStack) {
482 thread->RevokeThreadLocalAllocationStack();
483 }
484 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
485 // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
486 // only.
487 thread->VisitRoots(this, kVisitRootFlagAllRoots);
488 }
489
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info)490 void VisitRoots(mirror::Object*** roots,
491 size_t count,
492 [[maybe_unused]] const RootInfo& info) override
493 REQUIRES_SHARED(Locks::mutator_lock_) {
494 Thread* self = Thread::Current();
495 for (size_t i = 0; i < count; ++i) {
496 mirror::Object** root = roots[i];
497 mirror::Object* ref = *root;
498 if (ref != nullptr) {
499 mirror::Object* to_ref = concurrent_copying_->Mark(self, ref);
500 if (to_ref != ref) {
501 *root = to_ref;
502 }
503 }
504 }
505 }
506
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info)507 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
508 size_t count,
509 [[maybe_unused]] const RootInfo& info) override
510 REQUIRES_SHARED(Locks::mutator_lock_) {
511 Thread* self = Thread::Current();
512 for (size_t i = 0; i < count; ++i) {
513 mirror::CompressedReference<mirror::Object>* const root = roots[i];
514 if (!root->IsNull()) {
515 mirror::Object* ref = root->AsMirrorPtr();
516 mirror::Object* to_ref = concurrent_copying_->Mark(self, ref);
517 if (to_ref != ref) {
518 root->Assign(to_ref);
519 }
520 }
521 }
522 }
523
524 private:
525 ConcurrentCopying* const concurrent_copying_;
526 const bool use_tlab_;
527 };
528
529 // Called back from Runtime::FlipThreadRoots() during a pause.
530 class ConcurrentCopying::FlipCallback : public Closure {
531 public:
FlipCallback(ConcurrentCopying * concurrent_copying)532 explicit FlipCallback(ConcurrentCopying* concurrent_copying)
533 : concurrent_copying_(concurrent_copying) {
534 }
535
Run(Thread * thread)536 void Run(Thread* thread) override REQUIRES(Locks::mutator_lock_) {
537 ConcurrentCopying* cc = concurrent_copying_;
538 TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
539 // Note: self is not necessarily equal to thread since thread may be suspended.
540 Thread* self = Thread::Current();
541 if (kVerifyNoMissingCardMarks && cc->young_gen_) {
542 cc->VerifyNoMissingCardMarks();
543 }
544 CHECK_EQ(thread, self);
545 Locks::mutator_lock_->AssertExclusiveHeld(self);
546 space::RegionSpace::EvacMode evac_mode = space::RegionSpace::kEvacModeLivePercentNewlyAllocated;
547 if (cc->young_gen_) {
548 CHECK(!cc->force_evacuate_all_);
549 evac_mode = space::RegionSpace::kEvacModeNewlyAllocated;
550 } else if (cc->force_evacuate_all_) {
551 evac_mode = space::RegionSpace::kEvacModeForceAll;
552 }
553 {
554 TimingLogger::ScopedTiming split2("(Paused)SetFromSpace", cc->GetTimings());
555 // Only change live bytes for 1-phase full heap CC, that is if we are either not running in
556 // generational-mode, or it's an 'evacuate-all' mode GC.
557 cc->region_space_->SetFromSpace(
558 cc->rb_table_,
559 evac_mode,
560 /*clear_live_bytes=*/ !cc->use_generational_cc_ || cc->force_evacuate_all_);
561 }
562 cc->SwapStacks();
563 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
564 cc->RecordLiveStackFreezeSize(self);
565 cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
566 }
567 cc->is_marking_ = true;
568 cc->app_slow_path_start_time_ = MilliTime();
569 if (kIsDebugBuild && !cc->use_generational_cc_) {
570 cc->region_space_->AssertAllRegionLiveBytesZeroOrCleared();
571 }
572 Runtime* runtime = Runtime::Current();
573 if (UNLIKELY(runtime->IsActiveTransaction())) {
574 CHECK(runtime->IsAotCompiler());
575 TimingLogger::ScopedTiming split3("(Paused)VisitTransactionRoots", cc->GetTimings());
576 runtime->GetClassLinker()->VisitTransactionRoots(cc);
577 }
578 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
579 cc->GrayAllNewlyDirtyImmuneObjects();
580 if (kIsDebugBuild) {
581 // Check that all non-gray immune objects only reference immune objects.
582 cc->VerifyGrayImmuneObjects();
583 }
584 }
585 ObjPtr<mirror::Class> java_lang_Object =
586 GetClassRoot<mirror::Object, kWithoutReadBarrier>(runtime->GetClassLinker());
587 DCHECK(java_lang_Object != nullptr);
588 cc->java_lang_Object_ = down_cast<mirror::Class*>(cc->Mark(thread, java_lang_Object.Ptr()));
589 }
590
591 private:
592 ConcurrentCopying* const concurrent_copying_;
593 };
594
595 class ConcurrentCopying::VerifyGrayImmuneObjectsVisitor {
596 public:
VerifyGrayImmuneObjectsVisitor(ConcurrentCopying * collector)597 explicit VerifyGrayImmuneObjectsVisitor(ConcurrentCopying* collector)
598 : collector_(collector) {}
599
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool) const600 void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool /* is_static */)
601 const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
602 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
603 CheckReference(obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset),
604 obj, offset);
605 }
606
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const607 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
608 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
609 CHECK(klass->IsTypeOfReferenceClass());
610 CheckReference(ref->GetReferent<kWithoutReadBarrier>(),
611 ref,
612 mirror::Reference::ReferentOffset());
613 }
614
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const615 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
616 ALWAYS_INLINE
617 REQUIRES_SHARED(Locks::mutator_lock_) {
618 if (!root->IsNull()) {
619 VisitRoot(root);
620 }
621 }
622
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const623 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
624 ALWAYS_INLINE
625 REQUIRES_SHARED(Locks::mutator_lock_) {
626 CheckReference(root->AsMirrorPtr(), nullptr, MemberOffset(0));
627 }
628
629 private:
630 ConcurrentCopying* const collector_;
631
CheckReference(ObjPtr<mirror::Object> ref,ObjPtr<mirror::Object> holder,MemberOffset offset) const632 void CheckReference(ObjPtr<mirror::Object> ref,
633 ObjPtr<mirror::Object> holder,
634 MemberOffset offset) const
635 REQUIRES_SHARED(Locks::mutator_lock_) {
636 if (ref != nullptr) {
637 if (!collector_->immune_spaces_.ContainsObject(ref.Ptr())) {
638 // Not immune, must be a zygote large object.
639 space::LargeObjectSpace* large_object_space =
640 Runtime::Current()->GetHeap()->GetLargeObjectsSpace();
641 CHECK(large_object_space->Contains(ref.Ptr()) &&
642 large_object_space->IsZygoteLargeObject(Thread::Current(), ref.Ptr()))
643 << "Non gray object references non immune, non zygote large object "<< ref << " "
644 << mirror::Object::PrettyTypeOf(ref) << " in holder " << holder << " "
645 << mirror::Object::PrettyTypeOf(holder) << " offset=" << offset.Uint32Value();
646 } else {
647 // Make sure the large object class is immune since we will never scan the large object.
648 CHECK(collector_->immune_spaces_.ContainsObject(
649 ref->GetClass<kVerifyNone, kWithoutReadBarrier>()));
650 }
651 }
652 }
653 };
654
VerifyGrayImmuneObjects()655 void ConcurrentCopying::VerifyGrayImmuneObjects() {
656 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
657 for (auto& space : immune_spaces_.GetSpaces()) {
658 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
659 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
660 VerifyGrayImmuneObjectsVisitor visitor(this);
661 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
662 reinterpret_cast<uintptr_t>(space->Limit()),
663 [&visitor](mirror::Object* obj)
664 REQUIRES_SHARED(Locks::mutator_lock_) {
665 // If an object is not gray, it should only have references to things in the immune spaces.
666 if (obj->GetReadBarrierState() != ReadBarrier::GrayState()) {
667 obj->VisitReferences</*kVisitNativeRoots=*/true,
668 kDefaultVerifyFlags,
669 kWithoutReadBarrier>(visitor, visitor);
670 }
671 });
672 }
673 }
674
675 class ConcurrentCopying::VerifyNoMissingCardMarkVisitor {
676 public:
VerifyNoMissingCardMarkVisitor(ConcurrentCopying * cc,ObjPtr<mirror::Object> holder)677 VerifyNoMissingCardMarkVisitor(ConcurrentCopying* cc, ObjPtr<mirror::Object> holder)
678 : cc_(cc),
679 holder_(holder) {}
680
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const681 void operator()(ObjPtr<mirror::Object> obj,
682 MemberOffset offset,
683 [[maybe_unused]] bool is_static) const
684 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
685 if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
686 CheckReference(obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(
687 offset), offset.Uint32Value());
688 }
689 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const690 void operator()(ObjPtr<mirror::Class> klass,
691 ObjPtr<mirror::Reference> ref) const
692 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
693 CHECK(klass->IsTypeOfReferenceClass());
694 this->operator()(ref, mirror::Reference::ReferentOffset(), false);
695 }
696
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const697 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
698 REQUIRES_SHARED(Locks::mutator_lock_) {
699 if (!root->IsNull()) {
700 VisitRoot(root);
701 }
702 }
703
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const704 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
705 REQUIRES_SHARED(Locks::mutator_lock_) {
706 CheckReference(root->AsMirrorPtr());
707 }
708
CheckReference(mirror::Object * ref,int32_t offset=-1) const709 void CheckReference(mirror::Object* ref, int32_t offset = -1) const
710 REQUIRES_SHARED(Locks::mutator_lock_) {
711 if (ref != nullptr && cc_->region_space_->IsInNewlyAllocatedRegion(ref)) {
712 LOG(FATAL_WITHOUT_ABORT)
713 << holder_->PrettyTypeOf() << "(" << holder_.Ptr() << ") references object "
714 << ref->PrettyTypeOf() << "(" << ref << ") in newly allocated region at offset=" << offset;
715 LOG(FATAL_WITHOUT_ABORT) << "time=" << cc_->region_space_->Time();
716 constexpr const char* kIndent = " ";
717 LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(holder_.Ptr(), "holder_", kIndent);
718 LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(ref, "ref", kIndent);
719 LOG(FATAL) << "Unexpected reference to newly allocated region.";
720 }
721 }
722
723 private:
724 ConcurrentCopying* const cc_;
725 const ObjPtr<mirror::Object> holder_;
726 };
727
VerifyNoMissingCardMarks()728 void ConcurrentCopying::VerifyNoMissingCardMarks() {
729 auto visitor = [&](mirror::Object* obj)
730 REQUIRES(Locks::mutator_lock_)
731 REQUIRES(!mark_stack_lock_) {
732 // Objects on clean cards should never have references to newly allocated regions. Note
733 // that aged cards are also not clean.
734 if (heap_->GetCardTable()->GetCard(obj) == gc::accounting::CardTable::kCardClean) {
735 VerifyNoMissingCardMarkVisitor internal_visitor(this, /*holder=*/ obj);
736 obj->VisitReferences</*kVisitNativeRoots=*/true, kVerifyNone, kWithoutReadBarrier>(
737 internal_visitor, internal_visitor);
738 }
739 };
740 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
741 region_space_->Walk(visitor);
742 {
743 ReaderMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
744 heap_->GetLiveBitmap()->Visit(visitor);
745 }
746 }
747
748 // Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
FlipThreadRoots()749 void ConcurrentCopying::FlipThreadRoots() {
750 TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
751 if (kVerboseMode || heap_->dump_region_info_before_gc_) {
752 LOG(INFO) << "time=" << region_space_->Time();
753 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
754 }
755 Thread* self = Thread::Current();
756 Locks::mutator_lock_->AssertNotHeld(self);
757 ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
758 FlipCallback flip_callback(this);
759
760 Runtime::Current()->GetThreadList()->FlipThreadRoots(
761 &thread_flip_visitor, &flip_callback, this, GetHeap()->GetGcPauseListener());
762
763 is_asserting_to_space_invariant_ = true;
764 QuasiAtomic::ThreadFenceForConstructor(); // TODO: Remove?
765 if (kVerboseMode) {
766 LOG(INFO) << "time=" << region_space_->Time();
767 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
768 LOG(INFO) << "GC end of FlipThreadRoots";
769 }
770 }
771
772 template <bool kConcurrent>
773 class ConcurrentCopying::GrayImmuneObjectVisitor {
774 public:
GrayImmuneObjectVisitor(Thread * self)775 explicit GrayImmuneObjectVisitor(Thread* self) : self_(self) {}
776
operator ()(mirror::Object * obj) const777 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
778 if (kUseBakerReadBarrier && obj->GetReadBarrierState() == ReadBarrier::NonGrayState()) {
779 if (kConcurrent) {
780 Locks::mutator_lock_->AssertSharedHeld(self_);
781 obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState());
782 // Mod union table VisitObjects may visit the same object multiple times so we can't check
783 // the result of the atomic set.
784 } else {
785 Locks::mutator_lock_->AssertExclusiveHeld(self_);
786 obj->SetReadBarrierState(ReadBarrier::GrayState());
787 }
788 }
789 }
790
Callback(mirror::Object * obj,void * arg)791 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
792 reinterpret_cast<GrayImmuneObjectVisitor<kConcurrent>*>(arg)->operator()(obj);
793 }
794
795 private:
796 Thread* const self_;
797 };
798
GrayAllDirtyImmuneObjects()799 void ConcurrentCopying::GrayAllDirtyImmuneObjects() {
800 TimingLogger::ScopedTiming split("GrayAllDirtyImmuneObjects", GetTimings());
801 accounting::CardTable* const card_table = heap_->GetCardTable();
802 Thread* const self = Thread::Current();
803 using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent= */ true>;
804 VisitorType visitor(self);
805 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
806 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
807 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
808 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
809 // Mark all the objects on dirty cards since these may point to objects in other space.
810 // Once these are marked, the GC will eventually clear them later.
811 // Table is non null for boot image and zygote spaces. It is only null for application image
812 // spaces.
813 if (table != nullptr) {
814 table->ProcessCards();
815 table->VisitObjects(&VisitorType::Callback, &visitor);
816 // Don't clear cards here since we need to rescan in the pause. If we cleared the cards here,
817 // there would be races with the mutator marking new cards.
818 } else {
819 // Keep cards aged if we don't have a mod-union table since we may need to scan them in future
820 // GCs. This case is for app images.
821 card_table->ModifyCardsAtomic(
822 space->Begin(),
823 space->End(),
824 [](uint8_t card) {
825 return (card != gc::accounting::CardTable::kCardClean)
826 ? gc::accounting::CardTable::kCardAged
827 : card;
828 },
829 /* card modified visitor */ VoidFunctor());
830 card_table->Scan</*kClearCard=*/ false>(space->GetMarkBitmap(),
831 space->Begin(),
832 space->End(),
833 visitor,
834 gc::accounting::CardTable::kCardAged);
835 }
836 }
837 }
838
GrayAllNewlyDirtyImmuneObjects()839 void ConcurrentCopying::GrayAllNewlyDirtyImmuneObjects() {
840 TimingLogger::ScopedTiming split("(Paused)GrayAllNewlyDirtyImmuneObjects", GetTimings());
841 accounting::CardTable* const card_table = heap_->GetCardTable();
842 using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent= */ false>;
843 Thread* const self = Thread::Current();
844 VisitorType visitor(self);
845 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
846 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
847 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
848 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
849
850 // Don't need to scan aged cards since we did these before the pause. Note that scanning cards
851 // also handles the mod-union table cards.
852 card_table->Scan</*kClearCard=*/ false>(space->GetMarkBitmap(),
853 space->Begin(),
854 space->End(),
855 visitor,
856 gc::accounting::CardTable::kCardDirty);
857 if (table != nullptr) {
858 // Add the cards to the mod-union table so that we can clear cards to save RAM.
859 table->ProcessCards();
860 TimingLogger::ScopedTiming split2("(Paused)ClearCards", GetTimings());
861 card_table->ClearCardRange(space->Begin(),
862 AlignDown(space->End(), accounting::CardTable::kCardSize));
863 }
864 }
865 // Since all of the objects that may point to other spaces are gray, we can avoid all the read
866 // barriers in the immune spaces.
867 updated_all_immune_objects_.store(true, std::memory_order_relaxed);
868 }
869
SwapStacks()870 void ConcurrentCopying::SwapStacks() {
871 heap_->SwapStacks();
872 }
873
RecordLiveStackFreezeSize(Thread * self)874 void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
875 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
876 live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
877 }
878
879 // Used to visit objects in the immune spaces.
ScanImmuneObject(mirror::Object * obj)880 inline void ConcurrentCopying::ScanImmuneObject(mirror::Object* obj) {
881 DCHECK(obj != nullptr);
882 DCHECK(immune_spaces_.ContainsObject(obj));
883 // Update the fields without graying it or pushing it onto the mark stack.
884 if (use_generational_cc_ && young_gen_) {
885 // Young GC does not care about references to unevac space. It is safe to not gray these as
886 // long as scan immune objects happens after scanning the dirty cards.
887 Scan<true>(obj);
888 } else {
889 Scan<false>(obj);
890 }
891 }
892
893 class ConcurrentCopying::ImmuneSpaceScanObjVisitor {
894 public:
ImmuneSpaceScanObjVisitor(ConcurrentCopying * cc)895 explicit ImmuneSpaceScanObjVisitor(ConcurrentCopying* cc)
896 : collector_(cc) {}
897
operator ()(mirror::Object * obj) const898 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
899 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
900 // Only need to scan gray objects.
901 if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) {
902 collector_->ScanImmuneObject(obj);
903 // Done scanning the object, go back to black (non-gray). Release order
904 // required to ensure that stores of to-space references done by
905 // ScanImmuneObject() are visible before state change.
906 bool success = obj->AtomicSetReadBarrierState(
907 ReadBarrier::GrayState(), ReadBarrier::NonGrayState(), std::memory_order_release);
908 CHECK(success)
909 << Runtime::Current()->GetHeap()->GetVerification()->DumpObjectInfo(obj, "failed CAS");
910 }
911 } else {
912 collector_->ScanImmuneObject(obj);
913 }
914 }
915
Callback(mirror::Object * obj,void * arg)916 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
917 reinterpret_cast<ImmuneSpaceScanObjVisitor*>(arg)->operator()(obj);
918 }
919
920 private:
921 ConcurrentCopying* const collector_;
922 };
923
924 template <bool kAtomicTestAndSet>
925 class ConcurrentCopying::CaptureRootsForMarkingVisitor : public RootVisitor {
926 public:
CaptureRootsForMarkingVisitor(ConcurrentCopying * cc,Thread * self)927 explicit CaptureRootsForMarkingVisitor(ConcurrentCopying* cc, Thread* self)
928 : collector_(cc), self_(self) {}
929
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info)930 void VisitRoots(mirror::Object*** roots,
931 size_t count,
932 [[maybe_unused]] const RootInfo& info) override
933 REQUIRES_SHARED(Locks::mutator_lock_) {
934 for (size_t i = 0; i < count; ++i) {
935 mirror::Object** root = roots[i];
936 mirror::Object* ref = *root;
937 if (ref != nullptr && !collector_->TestAndSetMarkBitForRef<kAtomicTestAndSet>(ref)) {
938 collector_->PushOntoMarkStack(self_, ref);
939 }
940 }
941 }
942
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info)943 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
944 size_t count,
945 [[maybe_unused]] const RootInfo& info) override
946 REQUIRES_SHARED(Locks::mutator_lock_) {
947 for (size_t i = 0; i < count; ++i) {
948 mirror::CompressedReference<mirror::Object>* const root = roots[i];
949 if (!root->IsNull()) {
950 mirror::Object* ref = root->AsMirrorPtr();
951 if (!collector_->TestAndSetMarkBitForRef<kAtomicTestAndSet>(ref)) {
952 collector_->PushOntoMarkStack(self_, ref);
953 }
954 }
955 }
956 }
957
958 private:
959 ConcurrentCopying* const collector_;
960 Thread* const self_;
961 };
962
963 class ConcurrentCopying::RevokeThreadLocalMarkStackCheckpoint : public Closure {
964 public:
RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying * concurrent_copying,bool disable_weak_ref_access)965 RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
966 bool disable_weak_ref_access)
967 : concurrent_copying_(concurrent_copying),
968 disable_weak_ref_access_(disable_weak_ref_access) {
969 }
970
Run(Thread * thread)971 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
972 // Note: self is not necessarily equal to thread since thread may be suspended.
973 Thread* const self = Thread::Current();
974 CHECK(thread == self ||
975 thread->IsSuspended() ||
976 thread->GetState() == ThreadState::kWaitingPerformingGc)
977 << thread->GetState() << " thread " << thread << " self " << self;
978 // Revoke thread local mark stacks.
979 {
980 MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
981 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
982 if (tl_mark_stack != nullptr) {
983 concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
984 thread->SetThreadLocalMarkStack(nullptr);
985 }
986 }
987 // Disable weak ref access.
988 if (disable_weak_ref_access_) {
989 thread->SetWeakRefAccessEnabled(false);
990 }
991 // If thread is a running mutator, then act on behalf of the garbage collector.
992 // See the code in ThreadList::RunCheckpoint.
993 concurrent_copying_->GetBarrier().Pass(self);
994 }
995
996 protected:
997 ConcurrentCopying* const concurrent_copying_;
998
999 private:
1000 const bool disable_weak_ref_access_;
1001 };
1002
1003 class ConcurrentCopying::CaptureThreadRootsForMarkingAndCheckpoint :
1004 public RevokeThreadLocalMarkStackCheckpoint {
1005 public:
CaptureThreadRootsForMarkingAndCheckpoint(ConcurrentCopying * cc)1006 explicit CaptureThreadRootsForMarkingAndCheckpoint(ConcurrentCopying* cc) :
1007 RevokeThreadLocalMarkStackCheckpoint(cc, /* disable_weak_ref_access */ false) {}
1008
Run(Thread * thread)1009 void Run(Thread* thread) override
1010 REQUIRES_SHARED(Locks::mutator_lock_) {
1011 Thread* const self = Thread::Current();
1012 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1013 // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
1014 // only.
1015 CaptureRootsForMarkingVisitor</*kAtomicTestAndSet*/ true> visitor(concurrent_copying_, self);
1016 thread->VisitRoots(&visitor, kVisitRootFlagAllRoots);
1017 // If thread_running_gc_ performed the root visit then its thread-local
1018 // mark-stack should be null as we directly push to gc_mark_stack_.
1019 CHECK(self == thread || self->GetThreadLocalMarkStack() == nullptr);
1020 // Barrier handling is done in the base class' Run() below.
1021 RevokeThreadLocalMarkStackCheckpoint::Run(thread);
1022 }
1023 };
1024
CaptureThreadRootsForMarking()1025 void ConcurrentCopying::CaptureThreadRootsForMarking() {
1026 TimingLogger::ScopedTiming split("CaptureThreadRootsForMarking", GetTimings());
1027 if (kVerboseMode) {
1028 LOG(INFO) << "time=" << region_space_->Time();
1029 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
1030 }
1031 Thread* const self = Thread::Current();
1032 CaptureThreadRootsForMarkingAndCheckpoint check_point(this);
1033 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1034 gc_barrier_->Init(self, 0);
1035 size_t barrier_count = thread_list->RunCheckpoint(&check_point, /* callback */ nullptr);
1036 // If there are no threads to wait which implys that all the checkpoint functions are finished,
1037 // then no need to release the mutator lock.
1038 if (barrier_count == 0) {
1039 return;
1040 }
1041 Locks::mutator_lock_->SharedUnlock(self);
1042 {
1043 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
1044 gc_barrier_->Increment(self, barrier_count);
1045 }
1046 Locks::mutator_lock_->SharedLock(self);
1047 if (kVerboseMode) {
1048 LOG(INFO) << "time=" << region_space_->Time();
1049 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
1050 LOG(INFO) << "GC end of CaptureThreadRootsForMarking";
1051 }
1052 }
1053
1054 // Used to scan ref fields of an object.
1055 template <bool kHandleInterRegionRefs>
1056 class ConcurrentCopying::ComputeLiveBytesAndMarkRefFieldsVisitor {
1057 public:
ComputeLiveBytesAndMarkRefFieldsVisitor(ConcurrentCopying * collector,size_t obj_region_idx)1058 explicit ComputeLiveBytesAndMarkRefFieldsVisitor(ConcurrentCopying* collector,
1059 size_t obj_region_idx)
1060 : collector_(collector),
1061 obj_region_idx_(obj_region_idx),
1062 contains_inter_region_idx_(false) {}
1063
operator ()(mirror::Object * obj,MemberOffset offset,bool) const1064 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1065 ALWAYS_INLINE
1066 REQUIRES_SHARED(Locks::mutator_lock_)
1067 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
1068 DCHECK_EQ(collector_->RegionSpace()->RegionIdxForRef(obj), obj_region_idx_);
1069 DCHECK(kHandleInterRegionRefs || collector_->immune_spaces_.ContainsObject(obj));
1070 mirror::Object* ref =
1071 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
1072 // TODO(lokeshgidra): Remove the following condition once b/173676071 is fixed.
1073 if (UNLIKELY(ref == nullptr && offset == mirror::Object::ClassOffset())) {
1074 // It has been verified as a race condition (see b/173676071)! After a small
1075 // wait when we reload the class pointer, it turns out to be a valid class
1076 // object. So as a workaround, we can continue execution and log an error
1077 // that this happened.
1078 for (size_t i = 0; i < 1000; i++) {
1079 // Wait for 1ms at a time. Don't wait for more than 1 second in total.
1080 usleep(1000);
1081 ref = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
1082 if (ref != nullptr) {
1083 LOG(ERROR) << "klass pointer for obj: "
1084 << obj << " (" << mirror::Object::PrettyTypeOf(obj)
1085 << ") found to be null first. Reloading after a small wait fetched klass: "
1086 << ref << " (" << mirror::Object::PrettyTypeOf(ref) << ")";
1087 break;
1088 }
1089 }
1090
1091 if (UNLIKELY(ref == nullptr)) {
1092 // It must be heap corruption. Remove memory protection and dump data.
1093 collector_->region_space_->Unprotect();
1094 LOG(FATAL_WITHOUT_ABORT) << "klass pointer for ref: " << obj << " found to be null.";
1095 collector_->heap_->GetVerification()->LogHeapCorruption(obj, offset, ref, /* fatal */ true);
1096 }
1097 }
1098 CheckReference(ref);
1099 }
1100
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1101 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
1102 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1103 DCHECK(klass->IsTypeOfReferenceClass());
1104 // If the referent is not null, then we must re-visit the object during
1105 // copying phase to enqueue it for delayed processing and setting
1106 // read-barrier state to gray to ensure that call to GetReferent() triggers
1107 // the read-barrier. We use same data structure that is used to remember
1108 // objects with inter-region refs for this purpose too.
1109 if (kHandleInterRegionRefs
1110 && !contains_inter_region_idx_
1111 && ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr) {
1112 contains_inter_region_idx_ = true;
1113 }
1114 }
1115
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1116 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1117 ALWAYS_INLINE
1118 REQUIRES_SHARED(Locks::mutator_lock_) {
1119 if (!root->IsNull()) {
1120 VisitRoot(root);
1121 }
1122 }
1123
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1124 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1125 ALWAYS_INLINE
1126 REQUIRES_SHARED(Locks::mutator_lock_) {
1127 CheckReference(root->AsMirrorPtr());
1128 }
1129
ContainsInterRegionRefs() const1130 bool ContainsInterRegionRefs() const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) {
1131 return contains_inter_region_idx_;
1132 }
1133
1134 private:
CheckReference(mirror::Object * ref) const1135 void CheckReference(mirror::Object* ref) const
1136 REQUIRES_SHARED(Locks::mutator_lock_) {
1137 if (ref == nullptr) {
1138 // Nothing to do.
1139 return;
1140 }
1141 if (!collector_->TestAndSetMarkBitForRef(ref)) {
1142 collector_->PushOntoLocalMarkStack(ref);
1143 }
1144 if (kHandleInterRegionRefs && !contains_inter_region_idx_) {
1145 size_t ref_region_idx = collector_->RegionSpace()->RegionIdxForRef(ref);
1146 // If a region-space object refers to an outside object, we will have a
1147 // mismatch of region idx, but the object need not be re-visited in
1148 // copying phase.
1149 if (ref_region_idx != static_cast<size_t>(-1) && obj_region_idx_ != ref_region_idx) {
1150 contains_inter_region_idx_ = true;
1151 }
1152 }
1153 }
1154
1155 ConcurrentCopying* const collector_;
1156 const size_t obj_region_idx_;
1157 mutable bool contains_inter_region_idx_;
1158 };
1159
AddLiveBytesAndScanRef(mirror::Object * ref)1160 void ConcurrentCopying::AddLiveBytesAndScanRef(mirror::Object* ref) {
1161 DCHECK(ref != nullptr);
1162 DCHECK(!immune_spaces_.ContainsObject(ref));
1163 DCHECK(TestMarkBitmapForRef(ref));
1164 size_t obj_region_idx = static_cast<size_t>(-1);
1165 if (LIKELY(region_space_->HasAddress(ref))) {
1166 obj_region_idx = region_space_->RegionIdxForRefUnchecked(ref);
1167 // Add live bytes to the corresponding region
1168 if (!region_space_->IsRegionNewlyAllocated(obj_region_idx)) {
1169 // Newly Allocated regions are always chosen for evacuation. So no need
1170 // to update live_bytes_.
1171 size_t obj_size = ref->SizeOf<kDefaultVerifyFlags>();
1172 size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1173 region_space_->AddLiveBytes(ref, alloc_size);
1174 }
1175 }
1176 ComputeLiveBytesAndMarkRefFieldsVisitor</*kHandleInterRegionRefs*/ true>
1177 visitor(this, obj_region_idx);
1178 ref->VisitReferences</*kVisitNativeRoots=*/ true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1179 visitor, visitor);
1180 // Mark the corresponding card dirty if the object contains any
1181 // inter-region reference.
1182 if (visitor.ContainsInterRegionRefs()) {
1183 if (obj_region_idx == static_cast<size_t>(-1)) {
1184 // If an inter-region ref has been found in a non-region-space, then it
1185 // must be non-moving-space. This is because this function cannot be
1186 // called on a immune-space object, and a large-object-space object has
1187 // only class object reference, which is either in some immune-space, or
1188 // in non-moving-space.
1189 DCHECK(heap_->non_moving_space_->HasAddress(ref));
1190 non_moving_space_inter_region_bitmap_.Set(ref);
1191 } else {
1192 region_space_inter_region_bitmap_.Set(ref);
1193 }
1194 }
1195 }
1196
1197 template <bool kAtomic>
TestAndSetMarkBitForRef(mirror::Object * ref)1198 bool ConcurrentCopying::TestAndSetMarkBitForRef(mirror::Object* ref) {
1199 accounting::ContinuousSpaceBitmap* bitmap = nullptr;
1200 accounting::LargeObjectBitmap* los_bitmap = nullptr;
1201 if (LIKELY(region_space_->HasAddress(ref))) {
1202 bitmap = region_space_bitmap_;
1203 } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) {
1204 bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
1205 } else if (immune_spaces_.ContainsObject(ref)) {
1206 // References to immune space objects are always live.
1207 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref));
1208 return true;
1209 } else {
1210 // Should be a large object. Must be aligned and the LOS must exist.
1211 if (kIsDebugBuild && (!IsAlignedParam(ref, space::LargeObjectSpace::ObjectAlignment()) ||
1212 heap_->GetLargeObjectsSpace() == nullptr)) {
1213 // It must be heap corruption. Remove memory protection and dump data.
1214 region_space_->Unprotect();
1215 heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
1216 MemberOffset(0),
1217 ref,
1218 /* fatal */ true);
1219 }
1220 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
1221 }
1222 if (kAtomic) {
1223 return (bitmap != nullptr) ? bitmap->AtomicTestAndSet(ref) : los_bitmap->AtomicTestAndSet(ref);
1224 } else {
1225 return (bitmap != nullptr) ? bitmap->Set(ref) : los_bitmap->Set(ref);
1226 }
1227 }
1228
TestMarkBitmapForRef(mirror::Object * ref)1229 bool ConcurrentCopying::TestMarkBitmapForRef(mirror::Object* ref) {
1230 if (LIKELY(region_space_->HasAddress(ref))) {
1231 return region_space_bitmap_->Test(ref);
1232 } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) {
1233 return heap_->GetNonMovingSpace()->GetMarkBitmap()->Test(ref);
1234 } else if (immune_spaces_.ContainsObject(ref)) {
1235 // References to immune space objects are always live.
1236 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref));
1237 return true;
1238 } else {
1239 // Should be a large object. Must be aligned and the LOS must exist.
1240 if (kIsDebugBuild && (!IsAlignedParam(ref, space::LargeObjectSpace::ObjectAlignment()) ||
1241 heap_->GetLargeObjectsSpace() == nullptr)) {
1242 // It must be heap corruption. Remove memory protection and dump data.
1243 region_space_->Unprotect();
1244 heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
1245 MemberOffset(0),
1246 ref,
1247 /* fatal */ true);
1248 }
1249 return heap_->GetLargeObjectsSpace()->GetMarkBitmap()->Test(ref);
1250 }
1251 }
1252
PushOntoLocalMarkStack(mirror::Object * ref)1253 void ConcurrentCopying::PushOntoLocalMarkStack(mirror::Object* ref) {
1254 if (kIsDebugBuild) {
1255 Thread *self = Thread::Current();
1256 DCHECK_EQ(thread_running_gc_, self);
1257 DCHECK(self->GetThreadLocalMarkStack() == nullptr);
1258 }
1259 DCHECK_EQ(mark_stack_mode_.load(std::memory_order_relaxed), kMarkStackModeThreadLocal);
1260 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1261 ExpandGcMarkStack();
1262 }
1263 gc_mark_stack_->PushBack(ref);
1264 }
1265
ProcessMarkStackForMarkingAndComputeLiveBytes()1266 void ConcurrentCopying::ProcessMarkStackForMarkingAndComputeLiveBytes() {
1267 // Process thread-local mark stack containing thread roots
1268 ProcessThreadLocalMarkStacks(/* disable_weak_ref_access */ false,
1269 /* checkpoint_callback */ nullptr,
1270 [this] (mirror::Object* ref)
1271 REQUIRES_SHARED(Locks::mutator_lock_) {
1272 AddLiveBytesAndScanRef(ref);
1273 });
1274 {
1275 MutexLock mu(thread_running_gc_, mark_stack_lock_);
1276 CHECK(revoked_mark_stacks_.empty());
1277 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
1278 }
1279
1280 while (!gc_mark_stack_->IsEmpty()) {
1281 mirror::Object* ref = gc_mark_stack_->PopBack();
1282 AddLiveBytesAndScanRef(ref);
1283 }
1284 }
1285
1286 class ConcurrentCopying::ImmuneSpaceCaptureRefsVisitor {
1287 public:
ImmuneSpaceCaptureRefsVisitor(ConcurrentCopying * cc)1288 explicit ImmuneSpaceCaptureRefsVisitor(ConcurrentCopying* cc) : collector_(cc) {}
1289
operator ()(mirror::Object * obj) const1290 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
1291 ComputeLiveBytesAndMarkRefFieldsVisitor</*kHandleInterRegionRefs*/ false>
1292 visitor(collector_, /*obj_region_idx*/ static_cast<size_t>(-1));
1293 obj->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1294 visitor, visitor);
1295 }
1296
Callback(mirror::Object * obj,void * arg)1297 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
1298 reinterpret_cast<ImmuneSpaceCaptureRefsVisitor*>(arg)->operator()(obj);
1299 }
1300
1301 private:
1302 ConcurrentCopying* const collector_;
1303 };
1304
1305 /* Invariants for two-phase CC
1306 * ===========================
1307 * A) Definitions
1308 * ---------------
1309 * 1) Black: marked in bitmap, rb_state is non-gray, and not in mark stack
1310 * 2) Black-clean: marked in bitmap, and corresponding card is clean/aged
1311 * 3) Black-dirty: marked in bitmap, and corresponding card is dirty
1312 * 4) Gray: marked in bitmap, and exists in mark stack
1313 * 5) Gray-dirty: marked in bitmap, rb_state is gray, corresponding card is
1314 * dirty, and exists in mark stack
1315 * 6) White: unmarked in bitmap, rb_state is non-gray, and not in mark stack
1316 *
1317 * B) Before marking phase
1318 * -----------------------
1319 * 1) All objects are white
1320 * 2) Cards are either clean or aged (cannot be asserted without a STW pause)
1321 * 3) Mark bitmap is cleared
1322 * 4) Mark stack is empty
1323 *
1324 * C) During marking phase
1325 * ------------------------
1326 * 1) If a black object holds an inter-region or white reference, then its
1327 * corresponding card is dirty. In other words, it changes from being
1328 * black-clean to black-dirty
1329 * 2) No black-clean object points to a white object
1330 *
1331 * D) After marking phase
1332 * -----------------------
1333 * 1) There are no gray objects
1334 * 2) All newly allocated objects are in from space
1335 * 3) No white object can be reachable, directly or otherwise, from a
1336 * black-clean object
1337 *
1338 * E) During copying phase
1339 * ------------------------
1340 * 1) Mutators cannot observe white and black-dirty objects
1341 * 2) New allocations are in to-space (newly allocated regions are part of to-space)
1342 * 3) An object in mark stack must have its rb_state = Gray
1343 *
1344 * F) During card table scan
1345 * --------------------------
1346 * 1) Referents corresponding to root references are gray or in to-space
1347 * 2) Every path from an object that is read or written by a mutator during
1348 * this period to a dirty black object goes through some gray object.
1349 * Mutators preserve this by graying black objects as needed during this
1350 * period. Ensures that a mutator never encounters a black dirty object.
1351 *
1352 * G) After card table scan
1353 * ------------------------
1354 * 1) There are no black-dirty objects
1355 * 2) Referents corresponding to root references are gray, black-clean or in
1356 * to-space
1357 *
1358 * H) After copying phase
1359 * -----------------------
1360 * 1) Mark stack is empty
1361 * 2) No references into evacuated from-space
1362 * 3) No reference to an object which is unmarked and is also not in newly
1363 * allocated region. In other words, no reference to white objects.
1364 */
1365
MarkingPhase()1366 void ConcurrentCopying::MarkingPhase() {
1367 TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
1368 if (kVerboseMode) {
1369 LOG(INFO) << "GC MarkingPhase";
1370 }
1371 accounting::CardTable* const card_table = heap_->GetCardTable();
1372 Thread* const self = Thread::Current();
1373 CHECK_EQ(self, thread_running_gc_);
1374 // Clear live_bytes_ of every non-free region, except the ones that are newly
1375 // allocated.
1376 region_space_->SetAllRegionLiveBytesZero();
1377 if (kIsDebugBuild) {
1378 region_space_->AssertAllRegionLiveBytesZeroOrCleared();
1379 }
1380 // Scan immune spaces
1381 {
1382 TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
1383 for (auto& space : immune_spaces_.GetSpaces()) {
1384 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
1385 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1386 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
1387 ImmuneSpaceCaptureRefsVisitor visitor(this);
1388 if (table != nullptr) {
1389 table->VisitObjects(ImmuneSpaceCaptureRefsVisitor::Callback, &visitor);
1390 } else {
1391 WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1392 card_table->Scan<false>(
1393 live_bitmap,
1394 space->Begin(),
1395 space->Limit(),
1396 visitor,
1397 accounting::CardTable::kCardDirty - 1);
1398 }
1399 }
1400 }
1401 // Scan runtime roots
1402 {
1403 TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
1404 CaptureRootsForMarkingVisitor visitor(this, self);
1405 Runtime::Current()->VisitConcurrentRoots(&visitor, kVisitRootFlagAllRoots);
1406 }
1407 {
1408 // TODO: don't visit the transaction roots if it's not active.
1409 TimingLogger::ScopedTiming split2("VisitNonThreadRoots", GetTimings());
1410 CaptureRootsForMarkingVisitor visitor(this, self);
1411 Runtime::Current()->VisitNonThreadRoots(&visitor);
1412 }
1413 // Capture thread roots
1414 CaptureThreadRootsForMarking();
1415 // Process mark stack
1416 ProcessMarkStackForMarkingAndComputeLiveBytes();
1417
1418 if (kVerboseMode) {
1419 LOG(INFO) << "GC end of MarkingPhase";
1420 }
1421 }
1422
1423 template <bool kNoUnEvac>
ScanDirtyObject(mirror::Object * obj)1424 void ConcurrentCopying::ScanDirtyObject(mirror::Object* obj) {
1425 Scan<kNoUnEvac>(obj);
1426 // Set the read-barrier state of a reference-type object to gray if its
1427 // referent is not marked yet. This is to ensure that if GetReferent() is
1428 // called, it triggers the read-barrier to process the referent before use.
1429 if (UNLIKELY((obj->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass()))) {
1430 mirror::Object* referent =
1431 obj->AsReference<kVerifyNone, kWithoutReadBarrier>()->GetReferent<kWithoutReadBarrier>();
1432 if (referent != nullptr && !IsInToSpace(referent)) {
1433 obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState());
1434 }
1435 }
1436 }
1437
1438 // Concurrently mark roots that are guarded by read barriers and process the mark stack.
CopyingPhase()1439 void ConcurrentCopying::CopyingPhase() {
1440 TimingLogger::ScopedTiming split("CopyingPhase", GetTimings());
1441 if (kVerboseMode) {
1442 LOG(INFO) << "GC CopyingPhase";
1443 }
1444 Thread* self = Thread::Current();
1445 accounting::CardTable* const card_table = heap_->GetCardTable();
1446 if (kIsDebugBuild) {
1447 MutexLock mu(self, *Locks::thread_list_lock_);
1448 CHECK(weak_ref_access_enabled_);
1449 }
1450
1451 // Scan immune spaces.
1452 // Update all the fields in the immune spaces first without graying the objects so that we
1453 // minimize dirty pages in the immune spaces. Note mutators can concurrently access and gray some
1454 // of the objects.
1455 if (kUseBakerReadBarrier) {
1456 gc_grays_immune_objects_ = false;
1457 }
1458 if (use_generational_cc_) {
1459 if (kVerboseMode) {
1460 LOG(INFO) << "GC ScanCardsForSpace";
1461 }
1462 TimingLogger::ScopedTiming split2("ScanCardsForSpace", GetTimings());
1463 WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1464 CHECK(!done_scanning_.load(std::memory_order_relaxed));
1465 if (kIsDebugBuild) {
1466 // Leave some time for mutators to race ahead to try and find races between the GC card
1467 // scanning and mutators reading references.
1468 usleep(10 * 1000);
1469 }
1470 for (space::ContinuousSpace* space : GetHeap()->GetContinuousSpaces()) {
1471 if (space->IsImageSpace() || space->IsZygoteSpace()) {
1472 // Image and zygote spaces are already handled since we gray the objects in the pause.
1473 continue;
1474 }
1475 // Scan all of the objects on dirty cards in unevac from space, and non moving space. These
1476 // are from previous GCs (or from marking phase of 2-phase full GC) and may reference things
1477 // in the from space.
1478 //
1479 // Note that we do not need to process the large-object space (the only discontinuous space)
1480 // as it contains only large string objects and large primitive array objects, that have no
1481 // reference to other objects, except their class. There is no need to scan these large
1482 // objects, as the String class and the primitive array classes are expected to never move
1483 // during a collection:
1484 // - In the case where we run with a boot image, these classes are part of the image space,
1485 // which is an immune space.
1486 // - In the case where we run without a boot image, these classes are allocated in the
1487 // non-moving space (see art::ClassLinker::InitWithoutImage).
1488 card_table->Scan<false>(
1489 space->GetMarkBitmap(),
1490 space->Begin(),
1491 space->End(),
1492 [this, space](mirror::Object* obj)
1493 REQUIRES(Locks::heap_bitmap_lock_)
1494 REQUIRES_SHARED(Locks::mutator_lock_) {
1495 // TODO: This code may be refactored to avoid scanning object while
1496 // done_scanning_ is false by setting rb_state to gray, and pushing the
1497 // object on mark stack. However, it will also require clearing the
1498 // corresponding mark-bit and, for region space objects,
1499 // decrementing the object's size from the corresponding region's
1500 // live_bytes.
1501 if (young_gen_) {
1502 // Don't push or gray unevac refs.
1503 if (kIsDebugBuild && space == region_space_) {
1504 // We may get unevac large objects.
1505 if (!region_space_->IsInUnevacFromSpace(obj)) {
1506 CHECK(region_space_bitmap_->Test(obj));
1507 region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj);
1508 LOG(FATAL) << "Scanning " << obj << " not in unevac space";
1509 }
1510 }
1511 ScanDirtyObject</*kNoUnEvac*/ true>(obj);
1512 } else if (space != region_space_) {
1513 DCHECK(space == heap_->non_moving_space_);
1514 // We need to process un-evac references as they may be unprocessed,
1515 // if they skipped the marking phase due to heap mutation.
1516 ScanDirtyObject</*kNoUnEvac*/ false>(obj);
1517 non_moving_space_inter_region_bitmap_.Clear(obj);
1518 } else if (region_space_->IsInUnevacFromSpace(obj)) {
1519 ScanDirtyObject</*kNoUnEvac*/ false>(obj);
1520 region_space_inter_region_bitmap_.Clear(obj);
1521 }
1522 },
1523 accounting::CardTable::kCardAged);
1524
1525 if (!young_gen_) {
1526 auto visitor = [this](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1527 // We don't need to process un-evac references as any unprocessed
1528 // ones will be taken care of in the card-table scan above.
1529 ScanDirtyObject</*kNoUnEvac*/ true>(obj);
1530 };
1531 if (space == region_space_) {
1532 region_space_->ScanUnevacFromSpace(®ion_space_inter_region_bitmap_, visitor);
1533 } else {
1534 DCHECK(space == heap_->non_moving_space_);
1535 non_moving_space_inter_region_bitmap_.VisitMarkedRange(
1536 reinterpret_cast<uintptr_t>(space->Begin()),
1537 reinterpret_cast<uintptr_t>(space->End()),
1538 visitor);
1539 }
1540 }
1541 }
1542 // Done scanning unevac space.
1543 done_scanning_.store(true, std::memory_order_release);
1544 // NOTE: inter-region-ref bitmaps can be cleared here to release memory, if needed.
1545 // Currently we do it in ReclaimPhase().
1546 if (kVerboseMode) {
1547 LOG(INFO) << "GC end of ScanCardsForSpace";
1548 }
1549 }
1550 {
1551 // For a sticky-bit collection, this phase needs to be after the card scanning since the
1552 // mutator may read an unevac space object out of an image object. If the image object is no
1553 // longer gray it will trigger a read barrier for the unevac space object.
1554 TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
1555 for (auto& space : immune_spaces_.GetSpaces()) {
1556 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
1557 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1558 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
1559 ImmuneSpaceScanObjVisitor visitor(this);
1560 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects && table != nullptr) {
1561 table->VisitObjects(ImmuneSpaceScanObjVisitor::Callback, &visitor);
1562 } else {
1563 WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1564 card_table->Scan<false>(
1565 live_bitmap,
1566 space->Begin(),
1567 space->Limit(),
1568 visitor,
1569 accounting::CardTable::kCardDirty - 1);
1570 }
1571 }
1572 }
1573 if (kUseBakerReadBarrier) {
1574 // This release fence makes the field updates in the above loop visible before allowing mutator
1575 // getting access to immune objects without graying it first.
1576 updated_all_immune_objects_.store(true, std::memory_order_release);
1577 // Now "un-gray" (conceptually blacken) immune objects concurrently accessed and grayed by
1578 // mutators. We can't do this in the above loop because we would incorrectly disable the read
1579 // barrier by un-graying (conceptually blackening) an object which may point to an unscanned,
1580 // white object, breaking the to-space invariant (a mutator shall never observe a from-space
1581 // (white) object).
1582 //
1583 // Make sure no mutators are in the middle of marking an immune object before un-graying
1584 // (blackening) immune objects.
1585 IssueEmptyCheckpoint();
1586 MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
1587 if (kVerboseMode) {
1588 LOG(INFO) << "immune gray stack size=" << immune_gray_stack_.size();
1589 }
1590 for (mirror::Object* obj : immune_gray_stack_) {
1591 DCHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::GrayState());
1592 bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
1593 ReadBarrier::NonGrayState());
1594 DCHECK(success);
1595 }
1596 immune_gray_stack_.clear();
1597 }
1598
1599 {
1600 TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
1601 Runtime::Current()->VisitConcurrentRoots(this, kVisitRootFlagAllRoots);
1602 }
1603 {
1604 // TODO: don't visit the transaction roots if it's not active.
1605 TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
1606 Runtime::Current()->VisitNonThreadRoots(this);
1607 }
1608
1609 {
1610 TimingLogger::ScopedTiming split7("Process mark stacks and References", GetTimings());
1611
1612 // Process the mark stack once in the thread local stack mode. This marks most of the live
1613 // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and
1614 // system weaks) that may happen concurrently while we are processing the mark stack and newly
1615 // mark/gray objects and push refs on the mark stack.
1616 ProcessMarkStack();
1617
1618 ReferenceProcessor* rp = GetHeap()->GetReferenceProcessor();
1619 bool clear_soft_references = GetCurrentIteration()->GetClearSoftReferences();
1620 rp->Setup(self, this, /*concurrent=*/ true, clear_soft_references);
1621 if (!clear_soft_references) {
1622 // Forward as many SoftReferences as possible before inhibiting reference access.
1623 rp->ForwardSoftReferences(GetTimings());
1624 }
1625
1626 // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
1627 // primary reasons are that we need to use a checkpoint to process thread-local mark
1628 // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
1629 // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
1630 // reach the point where we process weak references, we can avoid using a lock when accessing
1631 // the GC mark stack, which makes mark stack processing more efficient.
1632
1633 // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
1634 // for the last time before transitioning to the shared mark stack mode, which would process new
1635 // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
1636 // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
1637 // important to do these together so that we can ensure that mutators won't
1638 // newly gray objects and push new refs onto the mark stack due to weak ref accesses and
1639 // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
1640 // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
1641 // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
1642 // We must use a stop-the-world pause to disable weak ref access. A checkpoint may lead to a
1643 // deadlock if one mutator acquires a low-level mutex and then gets blocked while accessing
1644 // a weak-ref (after participating in the checkpoint), and another mutator indefinitely waits
1645 // for the mutex before it participates in the checkpoint. Consequently, the gc-thread blocks
1646 // forever as the checkpoint never finishes (See runtime/mutator_gc_coord.md).
1647 SwitchToSharedMarkStackMode();
1648 CHECK(!self->GetWeakRefAccessEnabled());
1649
1650 // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
1651 // (which may be non-empty if there were refs found on thread-local mark stacks during the above
1652 // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
1653 // (via read barriers) have no way to produce any more refs to process. Marking converges once
1654 // before we process weak refs below.
1655 ProcessMarkStack();
1656 CheckEmptyMarkStack();
1657
1658 // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
1659 // lock from this point on.
1660 SwitchToGcExclusiveMarkStackMode();
1661 CheckEmptyMarkStack();
1662 if (kVerboseMode) {
1663 LOG(INFO) << "ProcessReferences";
1664 }
1665 // Process weak references. This also marks through finalizers. Although
1666 // reference processing is "disabled", some accesses will proceed once we've ensured that
1667 // objects directly reachable by the mutator are marked, i.e. before we mark through
1668 // finalizers.
1669 ProcessReferences(self);
1670 CheckEmptyMarkStack();
1671 // JNI WeakGlobalRefs and most other system weaks cannot be processed until we're done marking
1672 // through finalizers, since such references to finalizer-reachable objects must be preserved.
1673 if (kVerboseMode) {
1674 LOG(INFO) << "SweepSystemWeaks";
1675 }
1676 SweepSystemWeaks(self);
1677 CheckEmptyMarkStack();
1678 ReenableWeakRefAccess(self);
1679 if (kVerboseMode) {
1680 LOG(INFO) << "SweepSystemWeaks done";
1681 }
1682 // Marking is done. Disable marking.
1683 DisableMarking();
1684 CheckEmptyMarkStack();
1685 }
1686
1687 if (kIsDebugBuild) {
1688 MutexLock mu(self, *Locks::thread_list_lock_);
1689 CHECK(weak_ref_access_enabled_);
1690 }
1691 if (kVerboseMode) {
1692 LOG(INFO) << "GC end of CopyingPhase";
1693 }
1694 }
1695
ReenableWeakRefAccess(Thread * self)1696 void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
1697 if (kVerboseMode) {
1698 LOG(INFO) << "ReenableWeakRefAccess";
1699 }
1700 // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
1701 {
1702 MutexLock mu(self, *Locks::thread_list_lock_);
1703 weak_ref_access_enabled_ = true; // This is for new threads.
1704 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
1705 for (Thread* thread : thread_list) {
1706 thread->SetWeakRefAccessEnabled(true);
1707 }
1708 }
1709 // Unblock blocking threads.
1710 GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
1711 Runtime::Current()->BroadcastForNewSystemWeaks();
1712 }
1713
1714 class ConcurrentCopying::DisableMarkingCheckpoint : public Closure {
1715 public:
DisableMarkingCheckpoint(ConcurrentCopying * concurrent_copying)1716 explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying)
1717 : concurrent_copying_(concurrent_copying) {
1718 }
1719
Run(Thread * thread)1720 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
1721 // Note: self is not necessarily equal to thread since thread may be suspended.
1722 Thread* self = Thread::Current();
1723 DCHECK(thread == self ||
1724 thread->IsSuspended() ||
1725 thread->GetState() == ThreadState::kWaitingPerformingGc)
1726 << thread->GetState() << " thread " << thread << " self " << self;
1727 thread->GetInterpreterCache()->Clear(thread);
1728 // Disable the thread-local is_gc_marking flag.
1729 // Note a thread that has just started right before this checkpoint may have already this flag
1730 // set to false, which is ok.
1731 thread->SetIsGcMarkingAndUpdateEntrypoints(false);
1732 // If thread is a running mutator, then act on behalf of the garbage collector.
1733 // See the code in ThreadList::RunCheckpoint.
1734 concurrent_copying_->GetBarrier().Pass(self);
1735 }
1736
1737 private:
1738 ConcurrentCopying* const concurrent_copying_;
1739 };
1740
1741 class ConcurrentCopying::DisableMarkingCallback : public Closure {
1742 public:
DisableMarkingCallback(ConcurrentCopying * concurrent_copying)1743 explicit DisableMarkingCallback(ConcurrentCopying* concurrent_copying)
1744 : concurrent_copying_(concurrent_copying) {
1745 }
1746
Run(Thread * self)1747 void Run([[maybe_unused]] Thread* self) override REQUIRES(Locks::thread_list_lock_) {
1748 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
1749 // to avoid a race with ThreadList::Register().
1750 CHECK(concurrent_copying_->is_marking_);
1751 concurrent_copying_->is_marking_ = false;
1752 concurrent_copying_->GetCurrentIteration()->SetAppSlowPathDurationMs(
1753 MilliTime() - concurrent_copying_->app_slow_path_start_time_);
1754 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
1755 CHECK(concurrent_copying_->is_using_read_barrier_entrypoints_);
1756 concurrent_copying_->is_using_read_barrier_entrypoints_ = false;
1757 } else {
1758 CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
1759 }
1760 }
1761
1762 private:
1763 ConcurrentCopying* const concurrent_copying_;
1764 };
1765
IssueDisableMarkingCheckpoint()1766 void ConcurrentCopying::IssueDisableMarkingCheckpoint() {
1767 Thread* self = Thread::Current();
1768 DisableMarkingCheckpoint check_point(this);
1769 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1770 gc_barrier_->Init(self, 0);
1771 DisableMarkingCallback dmc(this);
1772 size_t barrier_count = thread_list->RunCheckpoint(&check_point, &dmc);
1773 // If there are no threads to wait which implies that all the checkpoint functions are finished,
1774 // then no need to release the mutator lock.
1775 if (barrier_count == 0) {
1776 return;
1777 }
1778 // Release locks then wait for all mutator threads to pass the barrier.
1779 Locks::mutator_lock_->SharedUnlock(self);
1780 {
1781 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
1782 gc_barrier_->Increment(self, barrier_count);
1783 }
1784 Locks::mutator_lock_->SharedLock(self);
1785 }
1786
DisableMarking()1787 void ConcurrentCopying::DisableMarking() {
1788 // Use a checkpoint to turn off the global is_marking and the thread-local is_gc_marking flags and
1789 // to ensure no threads are still in the middle of a read barrier which may have a from-space ref
1790 // cached in a local variable.
1791 IssueDisableMarkingCheckpoint();
1792 if (kUseTableLookupReadBarrier) {
1793 heap_->rb_table_->ClearAll();
1794 DCHECK(heap_->rb_table_->IsAllCleared());
1795 }
1796 if (kIsDebugBuild) {
1797 is_mark_stack_push_disallowed_.store(1, std::memory_order_relaxed);
1798 }
1799 mark_stack_mode_.store(kMarkStackModeOff, std::memory_order_release);
1800 }
1801
IssueEmptyCheckpoint()1802 void ConcurrentCopying::IssueEmptyCheckpoint() {
1803 Thread* self = Thread::Current();
1804 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1805 // Release locks then wait for all mutator threads to pass the barrier.
1806 Locks::mutator_lock_->SharedUnlock(self);
1807 thread_list->RunEmptyCheckpoint();
1808 Locks::mutator_lock_->SharedLock(self);
1809 }
1810
ExpandGcMarkStack()1811 void ConcurrentCopying::ExpandGcMarkStack() {
1812 DCHECK(gc_mark_stack_->IsFull());
1813 const size_t new_size = gc_mark_stack_->Capacity() * 2;
1814 std::vector<StackReference<mirror::Object>> temp(gc_mark_stack_->Begin(),
1815 gc_mark_stack_->End());
1816 gc_mark_stack_->Resize(new_size);
1817 for (auto& ref : temp) {
1818 gc_mark_stack_->PushBack(ref.AsMirrorPtr());
1819 }
1820 DCHECK(!gc_mark_stack_->IsFull());
1821 }
1822
PushOntoMarkStack(Thread * const self,mirror::Object * to_ref)1823 void ConcurrentCopying::PushOntoMarkStack(Thread* const self, mirror::Object* to_ref) {
1824 DCHECK_EQ(is_mark_stack_push_disallowed_.load(std::memory_order_relaxed), 0)
1825 << " " << to_ref << " " << mirror::Object::PrettyTypeOf(to_ref);
1826 CHECK(thread_running_gc_ != nullptr);
1827 MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_acquire);
1828 if (LIKELY(mark_stack_mode == kMarkStackModeThreadLocal)) {
1829 if (LIKELY(self == thread_running_gc_)) {
1830 // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
1831 CHECK(self->GetThreadLocalMarkStack() == nullptr);
1832 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1833 ExpandGcMarkStack();
1834 }
1835 gc_mark_stack_->PushBack(to_ref);
1836 } else {
1837 // Otherwise, use a thread-local mark stack.
1838 accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
1839 if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
1840 MutexLock mu(self, mark_stack_lock_);
1841 // Get a new thread local mark stack.
1842 accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
1843 if (!pooled_mark_stacks_.empty()) {
1844 // Use a pooled mark stack.
1845 new_tl_mark_stack = pooled_mark_stacks_.back();
1846 pooled_mark_stacks_.pop_back();
1847 } else {
1848 // None pooled. Create a new one.
1849 new_tl_mark_stack =
1850 accounting::AtomicStack<mirror::Object>::Create(
1851 "thread local mark stack", 4 * KB, 4 * KB);
1852 }
1853 DCHECK(new_tl_mark_stack != nullptr);
1854 DCHECK(new_tl_mark_stack->IsEmpty());
1855 new_tl_mark_stack->PushBack(to_ref);
1856 self->SetThreadLocalMarkStack(new_tl_mark_stack);
1857 if (tl_mark_stack != nullptr) {
1858 // Store the old full stack into a vector.
1859 revoked_mark_stacks_.push_back(tl_mark_stack);
1860 }
1861 } else {
1862 tl_mark_stack->PushBack(to_ref);
1863 }
1864 }
1865 } else if (mark_stack_mode == kMarkStackModeShared) {
1866 // Access the shared GC mark stack with a lock.
1867 MutexLock mu(self, mark_stack_lock_);
1868 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1869 ExpandGcMarkStack();
1870 }
1871 gc_mark_stack_->PushBack(to_ref);
1872 } else {
1873 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
1874 static_cast<uint32_t>(kMarkStackModeGcExclusive))
1875 << "ref=" << to_ref
1876 << " self->gc_marking=" << self->GetIsGcMarking()
1877 << " cc->is_marking=" << is_marking_;
1878 CHECK(self == thread_running_gc_)
1879 << "Only GC-running thread should access the mark stack "
1880 << "in the GC exclusive mark stack mode. "
1881 << "ref=" << to_ref
1882 << " self->gc_marking=" << self->GetIsGcMarking()
1883 << " cc->is_marking=" << is_marking_;
1884 // Access the GC mark stack without a lock.
1885 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1886 ExpandGcMarkStack();
1887 }
1888 gc_mark_stack_->PushBack(to_ref);
1889 }
1890 }
1891
GetAllocationStack()1892 accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
1893 return heap_->allocation_stack_.get();
1894 }
1895
GetLiveStack()1896 accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
1897 return heap_->live_stack_.get();
1898 }
1899
1900 // The following visitors are used to verify that there's no references to the from-space left after
1901 // marking.
1902 class ConcurrentCopying::VerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
1903 public:
VerifyNoFromSpaceRefsVisitor(ConcurrentCopying * collector)1904 explicit VerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
1905 : collector_(collector) {}
1906
operator ()(mirror::Object * ref,MemberOffset offset=MemberOffset (0),mirror::Object * holder=nullptr) const1907 void operator()(mirror::Object* ref,
1908 MemberOffset offset = MemberOffset(0),
1909 mirror::Object* holder = nullptr) const
1910 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1911 if (ref == nullptr) {
1912 // OK.
1913 return;
1914 }
1915 collector_->AssertToSpaceInvariant(holder, offset, ref);
1916 if (kUseBakerReadBarrier) {
1917 CHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState())
1918 << "Ref " << ref << " " << ref->PrettyTypeOf() << " has gray rb_state";
1919 }
1920 }
1921
VisitRoot(mirror::Object * root,const RootInfo & info)1922 void VisitRoot(mirror::Object* root, [[maybe_unused]] const RootInfo& info) override
1923 REQUIRES_SHARED(Locks::mutator_lock_) {
1924 DCHECK(root != nullptr);
1925 operator()(root);
1926 }
1927
1928 private:
1929 ConcurrentCopying* const collector_;
1930 };
1931
1932 class ConcurrentCopying::VerifyNoFromSpaceRefsFieldVisitor {
1933 public:
VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying * collector)1934 explicit VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
1935 : collector_(collector) {}
1936
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const1937 void operator()(ObjPtr<mirror::Object> obj,
1938 MemberOffset offset,
1939 [[maybe_unused]] bool is_static) const
1940 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1941 mirror::Object* ref =
1942 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
1943 VerifyNoFromSpaceRefsVisitor visitor(collector_);
1944 visitor(ref, offset, obj.Ptr());
1945 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1946 void operator()(ObjPtr<mirror::Class> klass,
1947 ObjPtr<mirror::Reference> ref) const
1948 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1949 CHECK(klass->IsTypeOfReferenceClass());
1950 this->operator()(ref, mirror::Reference::ReferentOffset(), false);
1951 }
1952
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1953 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1954 REQUIRES_SHARED(Locks::mutator_lock_) {
1955 if (!root->IsNull()) {
1956 VisitRoot(root);
1957 }
1958 }
1959
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1960 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1961 REQUIRES_SHARED(Locks::mutator_lock_) {
1962 VerifyNoFromSpaceRefsVisitor visitor(collector_);
1963 visitor(root->AsMirrorPtr());
1964 }
1965
1966 private:
1967 ConcurrentCopying* const collector_;
1968 };
1969
1970 // Verify there's no from-space references left after the marking phase.
VerifyNoFromSpaceReferences()1971 void ConcurrentCopying::VerifyNoFromSpaceReferences() {
1972 Thread* self = Thread::Current();
1973 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
1974 // Verify all threads have is_gc_marking to be false
1975 {
1976 MutexLock mu(self, *Locks::thread_list_lock_);
1977 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
1978 for (Thread* thread : thread_list) {
1979 CHECK(!thread->GetIsGcMarking());
1980 }
1981 }
1982
1983 auto verify_no_from_space_refs_visitor = [&](mirror::Object* obj)
1984 REQUIRES_SHARED(Locks::mutator_lock_) {
1985 CHECK(obj != nullptr);
1986 space::RegionSpace* region_space = RegionSpace();
1987 CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
1988 VerifyNoFromSpaceRefsFieldVisitor visitor(this);
1989 obj->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1990 visitor,
1991 visitor);
1992 if (kUseBakerReadBarrier) {
1993 CHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::NonGrayState())
1994 << "obj=" << obj << " has gray rb_state " << obj->GetReadBarrierState();
1995 }
1996 };
1997 // Roots.
1998 {
1999 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2000 VerifyNoFromSpaceRefsVisitor ref_visitor(this);
2001 Runtime::Current()->VisitRoots(&ref_visitor);
2002 }
2003 // The to-space.
2004 region_space_->WalkToSpace(verify_no_from_space_refs_visitor);
2005 // Non-moving spaces.
2006 {
2007 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2008 heap_->GetMarkBitmap()->Visit(verify_no_from_space_refs_visitor);
2009 }
2010 // The alloc stack.
2011 {
2012 VerifyNoFromSpaceRefsVisitor ref_visitor(this);
2013 for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
2014 it < end; ++it) {
2015 mirror::Object* const obj = it->AsMirrorPtr();
2016 if (obj != nullptr && obj->GetClass() != nullptr) {
2017 // TODO: need to call this only if obj is alive?
2018 ref_visitor(obj);
2019 verify_no_from_space_refs_visitor(obj);
2020 }
2021 }
2022 }
2023 // TODO: LOS. But only refs in LOS are classes.
2024 }
2025
2026 // The following visitors are used to assert the to-space invariant.
2027 class ConcurrentCopying::AssertToSpaceInvariantFieldVisitor {
2028 public:
AssertToSpaceInvariantFieldVisitor(ConcurrentCopying * collector)2029 explicit AssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
2030 : collector_(collector) {}
2031
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const2032 void operator()(ObjPtr<mirror::Object> obj,
2033 MemberOffset offset,
2034 [[maybe_unused]] bool is_static) const
2035 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
2036 mirror::Object* ref =
2037 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
2038 collector_->AssertToSpaceInvariant(obj.Ptr(), offset, ref);
2039 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const2040 void operator()(ObjPtr<mirror::Class> klass, [[maybe_unused]] ObjPtr<mirror::Reference> ref) const
2041 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
2042 CHECK(klass->IsTypeOfReferenceClass());
2043 }
2044
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const2045 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
2046 REQUIRES_SHARED(Locks::mutator_lock_) {
2047 if (!root->IsNull()) {
2048 VisitRoot(root);
2049 }
2050 }
2051
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const2052 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
2053 REQUIRES_SHARED(Locks::mutator_lock_) {
2054 mirror::Object* ref = root->AsMirrorPtr();
2055 collector_->AssertToSpaceInvariant(/* obj */ nullptr, MemberOffset(0), ref);
2056 }
2057
2058 private:
2059 ConcurrentCopying* const collector_;
2060 };
2061
RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,Closure * checkpoint_callback)2062 void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,
2063 Closure* checkpoint_callback) {
2064 Thread* self = Thread::Current();
2065 Locks::mutator_lock_->AssertSharedHeld(self);
2066 ThreadList* thread_list = Runtime::Current()->GetThreadList();
2067 RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
2068 if (disable_weak_ref_access) {
2069 // We're the only thread that could possibly ask for exclusive access here.
2070 Locks::mutator_lock_->SharedUnlock(self);
2071 {
2072 ScopedPause pause(this);
2073 MutexLock mu(self, *Locks::thread_list_lock_);
2074 checkpoint_callback->Run(self);
2075 for (Thread* thread : thread_list->GetList()) {
2076 check_point.Run(thread);
2077 }
2078 }
2079 Locks::mutator_lock_->SharedLock(self);
2080 } else {
2081 gc_barrier_->Init(self, 0);
2082 size_t barrier_count = thread_list->RunCheckpoint(&check_point, checkpoint_callback);
2083 // If there are no threads to wait which implys that all the checkpoint functions are finished,
2084 // then no need to release the mutator lock.
2085 if (barrier_count == 0) {
2086 return;
2087 }
2088 Locks::mutator_lock_->SharedUnlock(self);
2089 {
2090 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
2091 gc_barrier_->Increment(self, barrier_count);
2092 }
2093 Locks::mutator_lock_->SharedLock(self);
2094 }
2095 }
2096
RevokeThreadLocalMarkStack(Thread * thread)2097 void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
2098 Thread* self = Thread::Current();
2099 CHECK_EQ(self, thread);
2100 MutexLock mu(self, mark_stack_lock_);
2101 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
2102 if (tl_mark_stack != nullptr) {
2103 CHECK(is_marking_);
2104 revoked_mark_stacks_.push_back(tl_mark_stack);
2105 thread->SetThreadLocalMarkStack(nullptr);
2106 }
2107 }
2108
ProcessMarkStack()2109 void ConcurrentCopying::ProcessMarkStack() {
2110 if (kVerboseMode) {
2111 LOG(INFO) << "ProcessMarkStack. ";
2112 }
2113 bool empty_prev = false;
2114 while (true) {
2115 bool empty = ProcessMarkStackOnce();
2116 if (empty_prev && empty) {
2117 // Saw empty mark stack for a second time, done.
2118 break;
2119 }
2120 empty_prev = empty;
2121 }
2122 }
2123
ProcessMarkStackOnce()2124 bool ConcurrentCopying::ProcessMarkStackOnce() {
2125 DCHECK(thread_running_gc_ != nullptr);
2126 Thread* const self = Thread::Current();
2127 DCHECK(self == thread_running_gc_);
2128 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2129 size_t count = 0;
2130 MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_acquire);
2131 if (mark_stack_mode == kMarkStackModeThreadLocal) {
2132 // Process the thread-local mark stacks and the GC mark stack.
2133 count += ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ false,
2134 /* checkpoint_callback= */ nullptr,
2135 [this] (mirror::Object* ref)
2136 REQUIRES_SHARED(Locks::mutator_lock_) {
2137 ProcessMarkStackRef(ref);
2138 });
2139 while (!gc_mark_stack_->IsEmpty()) {
2140 mirror::Object* to_ref = gc_mark_stack_->PopBack();
2141 ProcessMarkStackRef(to_ref);
2142 ++count;
2143 }
2144 gc_mark_stack_->Reset();
2145 } else if (mark_stack_mode == kMarkStackModeShared) {
2146 // Do an empty checkpoint to avoid a race with a mutator preempted in the middle of a read
2147 // barrier but before pushing onto the mark stack. b/32508093. Note the weak ref access is
2148 // disabled at this point.
2149 IssueEmptyCheckpoint();
2150 // Process the shared GC mark stack with a lock.
2151 {
2152 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2153 CHECK(revoked_mark_stacks_.empty());
2154 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2155 }
2156 while (true) {
2157 std::vector<mirror::Object*> refs;
2158 {
2159 // Copy refs with lock. Note the number of refs should be small.
2160 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2161 if (gc_mark_stack_->IsEmpty()) {
2162 break;
2163 }
2164 for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
2165 p != gc_mark_stack_->End(); ++p) {
2166 refs.push_back(p->AsMirrorPtr());
2167 }
2168 gc_mark_stack_->Reset();
2169 }
2170 for (mirror::Object* ref : refs) {
2171 ProcessMarkStackRef(ref);
2172 ++count;
2173 }
2174 }
2175 } else {
2176 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
2177 static_cast<uint32_t>(kMarkStackModeGcExclusive));
2178 {
2179 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2180 CHECK(revoked_mark_stacks_.empty());
2181 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2182 }
2183 // Process the GC mark stack in the exclusive mode. No need to take the lock.
2184 while (!gc_mark_stack_->IsEmpty()) {
2185 mirror::Object* to_ref = gc_mark_stack_->PopBack();
2186 ProcessMarkStackRef(to_ref);
2187 ++count;
2188 }
2189 gc_mark_stack_->Reset();
2190 }
2191
2192 // Return true if the stack was empty.
2193 return count == 0;
2194 }
2195
2196 template <typename Processor>
ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,Closure * checkpoint_callback,const Processor & processor)2197 size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,
2198 Closure* checkpoint_callback,
2199 const Processor& processor) {
2200 // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
2201 RevokeThreadLocalMarkStacks(disable_weak_ref_access, checkpoint_callback);
2202 if (disable_weak_ref_access) {
2203 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode_.load(std::memory_order_relaxed)),
2204 static_cast<uint32_t>(kMarkStackModeShared));
2205 }
2206 size_t count = 0;
2207 std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
2208 {
2209 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2210 // Make a copy of the mark stack vector.
2211 mark_stacks = revoked_mark_stacks_;
2212 revoked_mark_stacks_.clear();
2213 }
2214 for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
2215 for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
2216 mirror::Object* to_ref = p->AsMirrorPtr();
2217 processor(to_ref);
2218 ++count;
2219 }
2220 {
2221 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2222 if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
2223 // The pool has enough. Delete it.
2224 delete mark_stack;
2225 } else {
2226 // Otherwise, put it into the pool for later reuse.
2227 mark_stack->Reset();
2228 pooled_mark_stacks_.push_back(mark_stack);
2229 }
2230 }
2231 }
2232 if (disable_weak_ref_access) {
2233 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2234 CHECK(revoked_mark_stacks_.empty());
2235 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2236 }
2237 return count;
2238 }
2239
ProcessMarkStackRef(mirror::Object * to_ref)2240 inline void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
2241 DCHECK(!region_space_->IsInFromSpace(to_ref));
2242 size_t obj_size = 0;
2243 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(to_ref);
2244 if (kUseBakerReadBarrier) {
2245 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
2246 << " to_ref=" << to_ref
2247 << " rb_state=" << to_ref->GetReadBarrierState()
2248 << " is_marked=" << IsMarked(to_ref)
2249 << " type=" << to_ref->PrettyTypeOf()
2250 << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
2251 << " space=" << heap_->DumpSpaceNameFromAddress(to_ref)
2252 << " region_type=" << rtype;
2253 }
2254 bool add_to_live_bytes = false;
2255 // Invariant: There should be no object from a newly-allocated
2256 // region (either large or non-large) on the mark stack.
2257 DCHECK(!region_space_->IsInNewlyAllocatedRegion(to_ref)) << to_ref;
2258 bool perform_scan = false;
2259 switch (rtype) {
2260 case space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace:
2261 // Mark the bitmap only in the GC thread here so that we don't need a CAS.
2262 if (!kUseBakerReadBarrier || !region_space_bitmap_->Set(to_ref)) {
2263 // It may be already marked if we accidentally pushed the same object twice due to the racy
2264 // bitmap read in MarkUnevacFromSpaceRegion.
2265 if (use_generational_cc_ && young_gen_) {
2266 CHECK(region_space_->IsLargeObject(to_ref));
2267 region_space_->ZeroLiveBytesForLargeObject(to_ref);
2268 }
2269 perform_scan = true;
2270 // Only add to the live bytes if the object was not already marked and we are not the young
2271 // GC.
2272 // Why add live bytes even after 2-phase GC?
2273 // We need to ensure that if there is a unevac region with any live
2274 // objects, then its live_bytes must be non-zero. Otherwise,
2275 // ClearFromSpace() will clear the region. Considering, that we may skip
2276 // live objects during marking phase of 2-phase GC, we have to take care
2277 // of such objects here.
2278 add_to_live_bytes = true;
2279 }
2280 break;
2281 case space::RegionSpace::RegionType::kRegionTypeToSpace:
2282 if (use_generational_cc_) {
2283 // Copied to to-space, set the bit so that the next GC can scan objects.
2284 region_space_bitmap_->Set(to_ref);
2285 }
2286 perform_scan = true;
2287 break;
2288 default:
2289 DCHECK(!region_space_->HasAddress(to_ref)) << to_ref;
2290 DCHECK(!immune_spaces_.ContainsObject(to_ref));
2291 // Non-moving or large-object space.
2292 if (kUseBakerReadBarrier) {
2293 accounting::ContinuousSpaceBitmap* mark_bitmap =
2294 heap_->GetNonMovingSpace()->GetMarkBitmap();
2295 const bool is_los = !mark_bitmap->HasAddress(to_ref);
2296 if (is_los) {
2297 if (!IsAlignedParam(to_ref, space::LargeObjectSpace::ObjectAlignment())) {
2298 // Ref is a large object that is not aligned, it must be heap
2299 // corruption. Remove memory protection and dump data before
2300 // AtomicSetReadBarrierState since it will fault if the address is not
2301 // valid.
2302 region_space_->Unprotect();
2303 heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
2304 MemberOffset(0),
2305 to_ref,
2306 /* fatal */ true);
2307 }
2308 DCHECK(heap_->GetLargeObjectsSpace())
2309 << "ref=" << to_ref
2310 << " doesn't belong to non-moving space and large object space doesn't exist";
2311 accounting::LargeObjectBitmap* los_bitmap =
2312 heap_->GetLargeObjectsSpace()->GetMarkBitmap();
2313 DCHECK(los_bitmap->HasAddress(to_ref));
2314 // Only the GC thread could be setting the LOS bit map hence doesn't
2315 // need to be atomically done.
2316 perform_scan = !los_bitmap->Set(to_ref);
2317 } else {
2318 // Only the GC thread could be setting the non-moving space bit map
2319 // hence doesn't need to be atomically done.
2320 perform_scan = !mark_bitmap->Set(to_ref);
2321 }
2322 } else {
2323 perform_scan = true;
2324 }
2325 }
2326 if (perform_scan) {
2327 obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
2328 if (use_generational_cc_ && young_gen_) {
2329 Scan<true>(to_ref, obj_size);
2330 } else {
2331 Scan<false>(to_ref, obj_size);
2332 }
2333 }
2334 if (kUseBakerReadBarrier) {
2335 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
2336 << " to_ref=" << to_ref
2337 << " rb_state=" << to_ref->GetReadBarrierState()
2338 << " is_marked=" << IsMarked(to_ref)
2339 << " type=" << to_ref->PrettyTypeOf()
2340 << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
2341 << " space=" << heap_->DumpSpaceNameFromAddress(to_ref)
2342 << " region_type=" << rtype
2343 // TODO: Temporary; remove this when this is no longer needed (b/116087961).
2344 << " runtime->sentinel=" << Runtime::Current()->GetSentinel().Read<kWithoutReadBarrier>();
2345 }
2346 #ifdef USE_BAKER_READ_BARRIER
2347 mirror::Object* referent = nullptr;
2348 if (UNLIKELY((to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
2349 (referent = to_ref->AsReference()->GetReferent<kWithoutReadBarrier>()) != nullptr &&
2350 !IsInToSpace(referent)))) {
2351 // Leave this reference gray in the queue so that GetReferent() will trigger a read barrier. We
2352 // will change it to non-gray later in ReferenceQueue::DisableReadBarrierForReference.
2353 DCHECK(to_ref->AsReference()->GetPendingNext() != nullptr)
2354 << "Left unenqueued ref gray " << to_ref;
2355 } else {
2356 // We may occasionally leave a reference non-gray in the queue if its referent happens to be
2357 // concurrently marked after the Scan() call above has enqueued the Reference, in which case the
2358 // above IsInToSpace() evaluates to true and we change the color from gray to non-gray here in
2359 // this else block.
2360 if (kUseBakerReadBarrier) {
2361 bool success = to_ref->AtomicSetReadBarrierState(
2362 ReadBarrier::GrayState(), ReadBarrier::NonGrayState(), std::memory_order_release);
2363 DCHECK(success) << "Must succeed as we won the race.";
2364 }
2365 }
2366 #else
2367 DCHECK(!kUseBakerReadBarrier);
2368 #endif
2369
2370 if (add_to_live_bytes) {
2371 // Add to the live bytes per unevacuated from-space. Note this code is always run by the
2372 // GC-running thread (no synchronization required).
2373 DCHECK(region_space_bitmap_->Test(to_ref));
2374 if (obj_size == 0) {
2375 obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
2376 }
2377 region_space_->AddLiveBytes(to_ref, RoundUp(obj_size, space::RegionSpace::kAlignment));
2378 }
2379 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
2380 CHECK(to_ref != nullptr);
2381 space::RegionSpace* region_space = RegionSpace();
2382 CHECK(!region_space->IsInFromSpace(to_ref)) << "Scanning object " << to_ref << " in from space";
2383 AssertToSpaceInvariant(nullptr, MemberOffset(0), to_ref);
2384 AssertToSpaceInvariantFieldVisitor visitor(this);
2385 to_ref->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
2386 visitor,
2387 visitor);
2388 }
2389 }
2390
2391 class ConcurrentCopying::DisableWeakRefAccessCallback : public Closure {
2392 public:
DisableWeakRefAccessCallback(ConcurrentCopying * concurrent_copying)2393 explicit DisableWeakRefAccessCallback(ConcurrentCopying* concurrent_copying)
2394 : concurrent_copying_(concurrent_copying) {
2395 }
2396
Run(Thread * self)2397 void Run([[maybe_unused]] Thread* self) override REQUIRES(Locks::thread_list_lock_) {
2398 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
2399 // to avoid a deadlock b/31500969.
2400 CHECK(concurrent_copying_->weak_ref_access_enabled_);
2401 concurrent_copying_->weak_ref_access_enabled_ = false;
2402 }
2403
2404 private:
2405 ConcurrentCopying* const concurrent_copying_;
2406 };
2407
SwitchToSharedMarkStackMode()2408 void ConcurrentCopying::SwitchToSharedMarkStackMode() {
2409 Thread* self = Thread::Current();
2410 DCHECK(thread_running_gc_ != nullptr);
2411 DCHECK(self == thread_running_gc_);
2412 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2413 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode_.load(std::memory_order_relaxed)),
2414 static_cast<uint32_t>(kMarkStackModeThreadLocal));
2415 mark_stack_mode_.store(kMarkStackModeShared, std::memory_order_release);
2416 DisableWeakRefAccessCallback dwrac(this);
2417 // Process the thread local mark stacks one last time after switching to the shared mark stack
2418 // mode and disable weak ref accesses.
2419 ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ true,
2420 &dwrac,
2421 [this] (mirror::Object* ref)
2422 REQUIRES_SHARED(Locks::mutator_lock_) {
2423 ProcessMarkStackRef(ref);
2424 });
2425 if (kVerboseMode) {
2426 LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
2427 }
2428 }
2429
SwitchToGcExclusiveMarkStackMode()2430 void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
2431 Thread* self = Thread::Current();
2432 DCHECK(thread_running_gc_ != nullptr);
2433 DCHECK(self == thread_running_gc_);
2434 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2435 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode_.load(std::memory_order_relaxed)),
2436 static_cast<uint32_t>(kMarkStackModeShared));
2437 mark_stack_mode_.store(kMarkStackModeGcExclusive, std::memory_order_release);
2438 if (kVerboseMode) {
2439 LOG(INFO) << "Switched to GC exclusive mark stack mode";
2440 }
2441 }
2442
CheckEmptyMarkStack()2443 void ConcurrentCopying::CheckEmptyMarkStack() {
2444 Thread* self = Thread::Current();
2445 DCHECK(thread_running_gc_ != nullptr);
2446 DCHECK(self == thread_running_gc_);
2447 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2448 MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_acquire);
2449 if (mark_stack_mode == kMarkStackModeThreadLocal) {
2450 // Thread-local mark stack mode.
2451 RevokeThreadLocalMarkStacks(false, nullptr);
2452 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2453 if (!revoked_mark_stacks_.empty()) {
2454 for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
2455 while (!mark_stack->IsEmpty()) {
2456 mirror::Object* obj = mark_stack->PopBack();
2457 if (kUseBakerReadBarrier) {
2458 uint32_t rb_state = obj->GetReadBarrierState();
2459 LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf() << " rb_state="
2460 << rb_state << " is_marked=" << IsMarked(obj);
2461 } else {
2462 LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf()
2463 << " is_marked=" << IsMarked(obj);
2464 }
2465 }
2466 }
2467 LOG(FATAL) << "mark stack is not empty";
2468 }
2469 } else {
2470 // Shared, GC-exclusive, or off.
2471 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2472 CHECK(gc_mark_stack_->IsEmpty());
2473 CHECK(revoked_mark_stacks_.empty());
2474 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2475 }
2476 }
2477
SweepSystemWeaks(Thread * self)2478 void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
2479 TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
2480 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2481 Runtime::Current()->SweepSystemWeaks(this);
2482 }
2483
Sweep(bool swap_bitmaps)2484 void ConcurrentCopying::Sweep(bool swap_bitmaps) {
2485 if (use_generational_cc_ && young_gen_) {
2486 // Only sweep objects on the live stack.
2487 SweepArray(heap_->GetLiveStack(), /* swap_bitmaps= */ false);
2488 } else {
2489 {
2490 TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
2491 accounting::ObjectStack* live_stack = heap_->GetLiveStack();
2492 if (kEnableFromSpaceAccountingCheck) {
2493 // Ensure that nobody inserted items in the live stack after we swapped the stacks.
2494 CHECK_GE(live_stack_freeze_size_, live_stack->Size());
2495 }
2496 heap_->MarkAllocStackAsLive(live_stack);
2497 live_stack->Reset();
2498 }
2499 CheckEmptyMarkStack();
2500 TimingLogger::ScopedTiming split("Sweep", GetTimings());
2501 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
2502 if (space->IsContinuousMemMapAllocSpace() && space != region_space_
2503 && !immune_spaces_.ContainsSpace(space)) {
2504 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2505 TimingLogger::ScopedTiming split2(
2506 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
2507 RecordFree(alloc_space->Sweep(swap_bitmaps));
2508 }
2509 }
2510 SweepLargeObjects(swap_bitmaps);
2511 }
2512 }
2513
SweepArray(accounting::ObjectStack * obj_arr,bool swap_bitmaps)2514 void ConcurrentCopying::SweepArray(accounting::ObjectStack* obj_arr, bool swap_bitmaps) {
2515 // This method is only used when Generational CC collection is enabled.
2516 DCHECK(use_generational_cc_);
2517 CheckEmptyMarkStack();
2518 TimingLogger::ScopedTiming t("SweepArray", GetTimings());
2519 std::vector<space::ContinuousSpace*> sweep_spaces;
2520 for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
2521 if (!space->IsAllocSpace() ||
2522 space == region_space_ ||
2523 immune_spaces_.ContainsSpace(space) ||
2524 space->GetLiveBitmap() == nullptr) {
2525 continue;
2526 }
2527 sweep_spaces.push_back(space);
2528 }
2529 GarbageCollector::SweepArray(obj_arr, swap_bitmaps, &sweep_spaces);
2530 }
2531
MarkZygoteLargeObjects()2532 void ConcurrentCopying::MarkZygoteLargeObjects() {
2533 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
2534 Thread* const self = Thread::Current();
2535 WriterMutexLock rmu(self, *Locks::heap_bitmap_lock_);
2536 space::LargeObjectSpace* const los = heap_->GetLargeObjectsSpace();
2537 if (los != nullptr) {
2538 // Pick the current live bitmap (mark bitmap if swapped).
2539 accounting::LargeObjectBitmap* const live_bitmap = los->GetLiveBitmap();
2540 accounting::LargeObjectBitmap* const mark_bitmap = los->GetMarkBitmap();
2541 // Walk through all of the objects and explicitly mark the zygote ones so they don't get swept.
2542 std::pair<uint8_t*, uint8_t*> range = los->GetBeginEndAtomic();
2543 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(range.first),
2544 reinterpret_cast<uintptr_t>(range.second),
2545 [mark_bitmap, los, self](mirror::Object* obj)
2546 REQUIRES(Locks::heap_bitmap_lock_)
2547 REQUIRES_SHARED(Locks::mutator_lock_) {
2548 if (los->IsZygoteLargeObject(self, obj)) {
2549 mark_bitmap->Set(obj);
2550 }
2551 });
2552 }
2553 }
2554
SweepLargeObjects(bool swap_bitmaps)2555 void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
2556 TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
2557 if (heap_->GetLargeObjectsSpace() != nullptr) {
2558 RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
2559 }
2560 }
2561
CaptureRssAtPeak()2562 void ConcurrentCopying::CaptureRssAtPeak() {
2563 using range_t = std::pair<void*, void*>;
2564 // This operation is expensive as several calls to mincore() are performed.
2565 // Also, this must be called before clearing regions in ReclaimPhase().
2566 // Therefore, we make it conditional on the flag that enables dumping GC
2567 // performance info on shutdown.
2568 if (Runtime::Current()->GetDumpGCPerformanceOnShutdown()) {
2569 std::list<range_t> gc_ranges;
2570 auto add_gc_range = [&gc_ranges](void* start, size_t size) {
2571 void* end = static_cast<char*>(start) + RoundUp(size, gPageSize);
2572 gc_ranges.emplace_back(range_t(start, end));
2573 };
2574
2575 // region space
2576 DCHECK(IsAlignedParam(region_space_->Limit(), gPageSize));
2577 gc_ranges.emplace_back(range_t(region_space_->Begin(), region_space_->Limit()));
2578 // mark bitmap
2579 add_gc_range(region_space_bitmap_->Begin(), region_space_bitmap_->Size());
2580
2581 // non-moving space
2582 {
2583 DCHECK(IsAlignedParam(heap_->non_moving_space_->Limit(), gPageSize));
2584 gc_ranges.emplace_back(range_t(heap_->non_moving_space_->Begin(),
2585 heap_->non_moving_space_->Limit()));
2586 // mark bitmap
2587 accounting::ContinuousSpaceBitmap *bitmap = heap_->non_moving_space_->GetMarkBitmap();
2588 add_gc_range(bitmap->Begin(), bitmap->Size());
2589 // live bitmap. Deal with bound bitmaps.
2590 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2591 if (heap_->non_moving_space_->HasBoundBitmaps()) {
2592 DCHECK_EQ(bitmap->Begin(),
2593 heap_->non_moving_space_->GetLiveBitmap()->Begin());
2594 bitmap = heap_->non_moving_space_->GetTempBitmap();
2595 } else {
2596 bitmap = heap_->non_moving_space_->GetLiveBitmap();
2597 }
2598 add_gc_range(bitmap->Begin(), bitmap->Size());
2599 }
2600 // large-object space
2601 if (heap_->GetLargeObjectsSpace()) {
2602 heap_->GetLargeObjectsSpace()->ForEachMemMap([&add_gc_range](const MemMap& map) {
2603 DCHECK(IsAlignedParam(map.BaseSize(), gPageSize));
2604 add_gc_range(map.BaseBegin(), map.BaseSize());
2605 });
2606 // mark bitmap
2607 accounting::LargeObjectBitmap* bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
2608 add_gc_range(bitmap->Begin(), bitmap->Size());
2609 // live bitmap
2610 bitmap = heap_->GetLargeObjectsSpace()->GetLiveBitmap();
2611 add_gc_range(bitmap->Begin(), bitmap->Size());
2612 }
2613 // card table
2614 add_gc_range(heap_->GetCardTable()->MemMapBegin(), heap_->GetCardTable()->MemMapSize());
2615 // inter-region refs
2616 if (use_generational_cc_ && !young_gen_) {
2617 // region space
2618 add_gc_range(region_space_inter_region_bitmap_.Begin(),
2619 region_space_inter_region_bitmap_.Size());
2620 // non-moving space
2621 add_gc_range(non_moving_space_inter_region_bitmap_.Begin(),
2622 non_moving_space_inter_region_bitmap_.Size());
2623 }
2624 // Extract RSS using mincore(). Updates the cummulative RSS counter.
2625 ExtractRssFromMincore(&gc_ranges);
2626 }
2627 }
2628
ReclaimPhase()2629 void ConcurrentCopying::ReclaimPhase() {
2630 TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
2631 if (kVerboseMode) {
2632 LOG(INFO) << "GC ReclaimPhase";
2633 }
2634 Thread* self = Thread::Current();
2635
2636 // Free data for class loaders that we unloaded. This includes removing
2637 // dead methods from JIT's internal maps. This must be done before
2638 // reclaiming the memory of the dead methods' declaring classes.
2639 Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
2640
2641 {
2642 // Double-check that the mark stack is empty.
2643 // Note: need to set this after VerifyNoFromSpaceRef().
2644 is_asserting_to_space_invariant_ = false;
2645 QuasiAtomic::ThreadFenceForConstructor(); // TODO: Remove?
2646 if (kVerboseMode) {
2647 LOG(INFO) << "Issue an empty check point. ";
2648 }
2649 IssueEmptyCheckpoint();
2650 // Disable the check.
2651 if (kIsDebugBuild) {
2652 is_mark_stack_push_disallowed_.store(0, std::memory_order_relaxed);
2653 }
2654 if (kUseBakerReadBarrier) {
2655 updated_all_immune_objects_.store(false, std::memory_order_seq_cst);
2656 }
2657 CheckEmptyMarkStack();
2658 }
2659
2660 // Capture RSS at the time when memory usage is at its peak. All GC related
2661 // memory ranges like java heap, card table, bitmap etc. are taken into
2662 // account.
2663 // TODO: We can fetch resident memory for region space directly by going
2664 // through list of allocated regions. This way we can avoid calling mincore on
2665 // the biggest memory range, thereby reducing the cost of this function.
2666 CaptureRssAtPeak();
2667
2668 // Sweep the malloc spaces before clearing the from space since the memory tool mode might
2669 // access the object classes in the from space for dead objects.
2670 {
2671 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2672 Sweep(/* swap_bitmaps= */ false);
2673 SwapBitmaps();
2674 heap_->UnBindBitmaps();
2675
2676 // The bitmap was cleared at the start of the GC, there is nothing we need to do here.
2677 DCHECK(region_space_bitmap_ != nullptr);
2678 region_space_bitmap_ = nullptr;
2679 }
2680
2681
2682 {
2683 // Record freed objects.
2684 TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
2685 // Don't include thread-locals that are in the to-space.
2686 const uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
2687 const uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
2688 uint64_t to_bytes = bytes_moved_.load(std::memory_order_relaxed) + bytes_moved_gc_thread_;
2689 cumulative_bytes_moved_ += to_bytes;
2690 uint64_t to_objects = objects_moved_.load(std::memory_order_relaxed) + objects_moved_gc_thread_;
2691 if (kEnableFromSpaceAccountingCheck) {
2692 CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
2693 }
2694 // to_bytes <= from_bytes is only approximately true, because objects expand a little when
2695 // copying to non-moving space in near-OOM situations.
2696 if (from_bytes > 0) {
2697 copied_live_bytes_ratio_sum_ += static_cast<float>(to_bytes) / from_bytes;
2698 gc_count_++;
2699 }
2700
2701 // Cleared bytes and objects, populated by the call to RegionSpace::ClearFromSpace below.
2702 uint64_t cleared_bytes;
2703 uint64_t cleared_objects;
2704 bool should_eagerly_release_memory = ShouldEagerlyReleaseMemoryToOS();
2705 {
2706 TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
2707 region_space_->ClearFromSpace(&cleared_bytes,
2708 &cleared_objects,
2709 /*clear_bitmap*/ !young_gen_,
2710 should_eagerly_release_memory);
2711 // `cleared_bytes` may be greater than the from space equivalents since
2712 // RegionSpace::ClearFromSpace may clear empty unevac regions.
2713 CHECK_GE(cleared_bytes, from_bytes);
2714 }
2715
2716 // If we need to release available memory to the OS, go over all free
2717 // regions which the kernel might still cache.
2718 if (should_eagerly_release_memory) {
2719 TimingLogger::ScopedTiming split4("Release free regions", GetTimings());
2720 region_space_->ReleaseFreeRegions();
2721 }
2722
2723 // freed_bytes could conceivably be negative if we fall back to nonmoving space and have to
2724 // pad to a larger size.
2725 int64_t freed_bytes = (int64_t)cleared_bytes - (int64_t)to_bytes;
2726 uint64_t freed_objects = cleared_objects - to_objects;
2727 if (kVerboseMode) {
2728 LOG(INFO) << "RecordFree:"
2729 << " from_bytes=" << from_bytes
2730 << " unevac_from_bytes=" << unevac_from_bytes
2731 << " to_bytes=" << to_bytes
2732 << " freed_bytes=" << freed_bytes
2733 << " from_space size=" << region_space_->FromSpaceSize()
2734 << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
2735 << " to_space size=" << region_space_->ToSpaceSize();
2736 LOG(INFO) << "(before) num_bytes_allocated="
2737 << heap_->num_bytes_allocated_.load();
2738 }
2739 RecordFree(ObjectBytePair(freed_objects, freed_bytes));
2740 GetCurrentIteration()->SetScannedBytes(bytes_scanned_);
2741 if (kVerboseMode) {
2742 LOG(INFO) << "(after) num_bytes_allocated="
2743 << heap_->num_bytes_allocated_.load();
2744 }
2745
2746 float reclaimed_bytes_ratio = static_cast<float>(freed_bytes) / num_bytes_allocated_before_gc_;
2747 reclaimed_bytes_ratio_sum_ += reclaimed_bytes_ratio;
2748 }
2749
2750 CheckEmptyMarkStack();
2751
2752 if (heap_->dump_region_info_after_gc_) {
2753 LOG(INFO) << "time=" << region_space_->Time();
2754 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
2755 }
2756
2757 if (kVerboseMode) {
2758 LOG(INFO) << "GC end of ReclaimPhase";
2759 }
2760 }
2761
DumpReferenceInfo(mirror::Object * ref,const char * ref_name,const char * indent)2762 std::string ConcurrentCopying::DumpReferenceInfo(mirror::Object* ref,
2763 const char* ref_name,
2764 const char* indent) {
2765 std::ostringstream oss;
2766 oss << indent << heap_->GetVerification()->DumpObjectInfo(ref, ref_name) << '\n';
2767 if (ref != nullptr) {
2768 if (kUseBakerReadBarrier) {
2769 oss << indent << ref_name << "->GetMarkBit()=" << ref->GetMarkBit() << '\n';
2770 oss << indent << ref_name << "->GetReadBarrierState()=" << ref->GetReadBarrierState() << '\n';
2771 }
2772 }
2773 if (region_space_->HasAddress(ref)) {
2774 oss << indent << "Region containing " << ref_name << ":" << '\n';
2775 region_space_->DumpRegionForObject(oss, ref);
2776 if (region_space_bitmap_ != nullptr) {
2777 oss << indent << "region_space_bitmap_->Test(" << ref_name << ")="
2778 << std::boolalpha << region_space_bitmap_->Test(ref) << std::noboolalpha;
2779 }
2780 }
2781 return oss.str();
2782 }
2783
DumpHeapReference(mirror::Object * obj,MemberOffset offset,mirror::Object * ref)2784 std::string ConcurrentCopying::DumpHeapReference(mirror::Object* obj,
2785 MemberOffset offset,
2786 mirror::Object* ref) {
2787 std::ostringstream oss;
2788 constexpr const char* kIndent = " ";
2789 oss << kIndent << "Invalid reference: ref=" << ref
2790 << " referenced from: object=" << obj << " offset= " << offset << '\n';
2791 // Information about `obj`.
2792 oss << DumpReferenceInfo(obj, "obj", kIndent) << '\n';
2793 // Information about `ref`.
2794 oss << DumpReferenceInfo(ref, "ref", kIndent);
2795 return oss.str();
2796 }
2797
AssertToSpaceInvariant(mirror::Object * obj,MemberOffset offset,mirror::Object * ref)2798 void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj,
2799 MemberOffset offset,
2800 mirror::Object* ref) {
2801 CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
2802 if (is_asserting_to_space_invariant_) {
2803 if (ref == nullptr) {
2804 // OK.
2805 return;
2806 } else if (region_space_->HasAddress(ref)) {
2807 // Check to-space invariant in region space (moving space).
2808 using RegionType = space::RegionSpace::RegionType;
2809 space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref);
2810 if (type == RegionType::kRegionTypeToSpace) {
2811 // OK.
2812 return;
2813 } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
2814 if (!IsMarkedInUnevacFromSpace(ref)) {
2815 LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:";
2816 // Remove memory protection from the region space and log debugging information.
2817 region_space_->Unprotect();
2818 LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref);
2819 Thread::Current()->DumpJavaStack(LOG_STREAM(FATAL_WITHOUT_ABORT));
2820 }
2821 CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
2822 } else {
2823 // Not OK: either a from-space ref or a reference in an unused region.
2824 if (type == RegionType::kRegionTypeFromSpace) {
2825 LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:";
2826 } else {
2827 LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":";
2828 }
2829 // Remove memory protection from the region space and log debugging information.
2830 region_space_->Unprotect();
2831 LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref);
2832 if (obj != nullptr) {
2833 LogFromSpaceRefHolder(obj, offset);
2834 LOG(FATAL_WITHOUT_ABORT) << "UNEVAC " << region_space_->IsInUnevacFromSpace(obj) << " "
2835 << obj << " " << obj->GetMarkBit();
2836 if (region_space_->HasAddress(obj)) {
2837 region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj);
2838 }
2839 LOG(FATAL_WITHOUT_ABORT) << "CARD " << static_cast<size_t>(
2840 *Runtime::Current()->GetHeap()->GetCardTable()->CardFromAddr(
2841 reinterpret_cast<uint8_t*>(obj)));
2842 if (region_space_->HasAddress(obj)) {
2843 LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << region_space_bitmap_->Test(obj);
2844 } else {
2845 accounting::ContinuousSpaceBitmap* mark_bitmap =
2846 heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
2847 if (mark_bitmap != nullptr) {
2848 LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << mark_bitmap->Test(obj);
2849 } else {
2850 accounting::LargeObjectBitmap* los_bitmap =
2851 heap_mark_bitmap_->GetLargeObjectBitmap(obj);
2852 LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << los_bitmap->Test(obj);
2853 }
2854 }
2855 }
2856 ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
2857 LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:";
2858 region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
2859 PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
2860 MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true);
2861 LOG(FATAL) << "Invalid reference " << ref
2862 << " referenced from object " << obj << " at offset " << offset;
2863 }
2864 } else {
2865 // Check to-space invariant in non-moving space.
2866 AssertToSpaceInvariantInNonMovingSpace(obj, ref);
2867 }
2868 }
2869 }
2870
2871 class RootPrinter {
2872 public:
RootPrinter()2873 RootPrinter() { }
2874
2875 template <class MirrorType>
VisitRootIfNonNull(mirror::CompressedReference<MirrorType> * root)2876 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
2877 REQUIRES_SHARED(Locks::mutator_lock_) {
2878 if (!root->IsNull()) {
2879 VisitRoot(root);
2880 }
2881 }
2882
2883 template <class MirrorType>
VisitRoot(mirror::Object ** root)2884 void VisitRoot(mirror::Object** root)
2885 REQUIRES_SHARED(Locks::mutator_lock_) {
2886 LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << *root;
2887 }
2888
2889 template <class MirrorType>
VisitRoot(mirror::CompressedReference<MirrorType> * root)2890 void VisitRoot(mirror::CompressedReference<MirrorType>* root)
2891 REQUIRES_SHARED(Locks::mutator_lock_) {
2892 LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << root->AsMirrorPtr();
2893 }
2894 };
2895
DumpGcRoot(mirror::Object * ref)2896 std::string ConcurrentCopying::DumpGcRoot(mirror::Object* ref) {
2897 std::ostringstream oss;
2898 constexpr const char* kIndent = " ";
2899 oss << kIndent << "Invalid GC root: ref=" << ref << '\n';
2900 // Information about `ref`.
2901 oss << DumpReferenceInfo(ref, "ref", kIndent);
2902 return oss.str();
2903 }
2904
AssertToSpaceInvariant(GcRootSource * gc_root_source,mirror::Object * ref)2905 void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
2906 mirror::Object* ref) {
2907 CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
2908 if (is_asserting_to_space_invariant_) {
2909 if (ref == nullptr) {
2910 // OK.
2911 return;
2912 } else if (region_space_->HasAddress(ref)) {
2913 // Check to-space invariant in region space (moving space).
2914 using RegionType = space::RegionSpace::RegionType;
2915 space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref);
2916 if (type == RegionType::kRegionTypeToSpace) {
2917 // OK.
2918 return;
2919 } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
2920 if (!IsMarkedInUnevacFromSpace(ref)) {
2921 LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:";
2922 // Remove memory protection from the region space and log debugging information.
2923 region_space_->Unprotect();
2924 LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref);
2925 }
2926 CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
2927 } else {
2928 // Not OK: either a from-space ref or a reference in an unused region.
2929 if (type == RegionType::kRegionTypeFromSpace) {
2930 LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:";
2931 } else {
2932 LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":";
2933 }
2934 // Remove memory protection from the region space and log debugging information.
2935 region_space_->Unprotect();
2936 LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref);
2937 if (gc_root_source == nullptr) {
2938 // No info.
2939 } else if (gc_root_source->HasArtField()) {
2940 ArtField* field = gc_root_source->GetArtField();
2941 LOG(FATAL_WITHOUT_ABORT) << "gc root in field " << field << " "
2942 << ArtField::PrettyField(field);
2943 RootPrinter root_printer;
2944 field->VisitRoots(root_printer);
2945 } else if (gc_root_source->HasArtMethod()) {
2946 ArtMethod* method = gc_root_source->GetArtMethod();
2947 LOG(FATAL_WITHOUT_ABORT) << "gc root in method " << method << " "
2948 << ArtMethod::PrettyMethod(method);
2949 RootPrinter root_printer;
2950 method->VisitRoots(root_printer, kRuntimePointerSize);
2951 }
2952 ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
2953 LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:";
2954 region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
2955 PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
2956 MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true);
2957 LOG(FATAL) << "Invalid reference " << ref;
2958 }
2959 } else {
2960 // Check to-space invariant in non-moving space.
2961 AssertToSpaceInvariantInNonMovingSpace(/* obj= */ nullptr, ref);
2962 }
2963 }
2964 }
2965
LogFromSpaceRefHolder(mirror::Object * obj,MemberOffset offset)2966 void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
2967 if (kUseBakerReadBarrier) {
2968 LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf()
2969 << " holder rb_state=" << obj->GetReadBarrierState();
2970 } else {
2971 LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf();
2972 }
2973 if (region_space_->IsInFromSpace(obj)) {
2974 LOG(INFO) << "holder is in the from-space.";
2975 } else if (region_space_->IsInToSpace(obj)) {
2976 LOG(INFO) << "holder is in the to-space.";
2977 } else if (region_space_->IsInUnevacFromSpace(obj)) {
2978 LOG(INFO) << "holder is in the unevac from-space.";
2979 if (IsMarkedInUnevacFromSpace(obj)) {
2980 LOG(INFO) << "holder is marked in the region space bitmap.";
2981 } else {
2982 LOG(INFO) << "holder is not marked in the region space bitmap.";
2983 }
2984 } else {
2985 // In a non-moving space.
2986 if (immune_spaces_.ContainsObject(obj)) {
2987 LOG(INFO) << "holder is in an immune image or the zygote space.";
2988 } else {
2989 LOG(INFO) << "holder is in a non-immune, non-moving (or main) space.";
2990 accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
2991 accounting::LargeObjectBitmap* los_bitmap = nullptr;
2992 const bool is_los = !mark_bitmap->HasAddress(obj);
2993 if (is_los) {
2994 DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(obj))
2995 << "obj=" << obj
2996 << " LOS bit map covers the entire lower 4GB address range";
2997 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
2998 }
2999 if (!is_los && mark_bitmap->Test(obj)) {
3000 LOG(INFO) << "holder is marked in the non-moving space mark bit map.";
3001 } else if (is_los && los_bitmap->Test(obj)) {
3002 LOG(INFO) << "holder is marked in the los bit map.";
3003 } else {
3004 // If ref is on the allocation stack, then it is considered
3005 // mark/alive (but not necessarily on the live stack.)
3006 if (IsOnAllocStack(obj)) {
3007 LOG(INFO) << "holder is on the alloc stack.";
3008 } else {
3009 LOG(INFO) << "holder is not marked or on the alloc stack.";
3010 }
3011 }
3012 }
3013 }
3014 LOG(INFO) << "offset=" << offset.SizeValue();
3015 }
3016
IsMarkedInNonMovingSpace(mirror::Object * from_ref)3017 bool ConcurrentCopying::IsMarkedInNonMovingSpace(mirror::Object* from_ref) {
3018 DCHECK(!region_space_->HasAddress(from_ref)) << "ref=" << from_ref;
3019 DCHECK(!immune_spaces_.ContainsObject(from_ref)) << "ref=" << from_ref;
3020 if (kUseBakerReadBarrier && from_ref->GetReadBarrierStateAcquire() == ReadBarrier::GrayState()) {
3021 return true;
3022 } else if (!use_generational_cc_ || done_scanning_.load(std::memory_order_acquire)) {
3023 // Read the comment in IsMarkedInUnevacFromSpace()
3024 accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
3025 accounting::LargeObjectBitmap* los_bitmap = nullptr;
3026 const bool is_los = !mark_bitmap->HasAddress(from_ref);
3027 if (is_los) {
3028 DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(from_ref))
3029 << "ref=" << from_ref
3030 << " doesn't belong to non-moving space and large object space doesn't exist";
3031 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
3032 }
3033 if (is_los ? los_bitmap->Test(from_ref) : mark_bitmap->Test(from_ref)) {
3034 return true;
3035 }
3036 }
3037 return IsOnAllocStack(from_ref);
3038 }
3039
AssertToSpaceInvariantInNonMovingSpace(mirror::Object * obj,mirror::Object * ref)3040 void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
3041 mirror::Object* ref) {
3042 CHECK(ref != nullptr);
3043 CHECK(!region_space_->HasAddress(ref)) << "obj=" << obj << " ref=" << ref;
3044 // In a non-moving space. Check that the ref is marked.
3045 if (immune_spaces_.ContainsObject(ref)) {
3046 // Immune space case.
3047 if (kUseBakerReadBarrier) {
3048 // Immune object may not be gray if called from the GC.
3049 if (Thread::Current() == thread_running_gc_ && !gc_grays_immune_objects_) {
3050 return;
3051 }
3052 bool updated_all_immune_objects = updated_all_immune_objects_.load(std::memory_order_seq_cst);
3053 CHECK(updated_all_immune_objects || ref->GetReadBarrierState() == ReadBarrier::GrayState())
3054 << "Unmarked immune space ref. obj=" << obj << " rb_state="
3055 << (obj != nullptr ? obj->GetReadBarrierState() : 0U)
3056 << " ref=" << ref << " ref rb_state=" << ref->GetReadBarrierState()
3057 << " updated_all_immune_objects=" << updated_all_immune_objects;
3058 }
3059 } else {
3060 // Non-moving space and large-object space (LOS) cases.
3061 // If `ref` is on the allocation stack, then it may not be
3062 // marked live, but considered marked/alive (but not
3063 // necessarily on the live stack).
3064 CHECK(IsMarkedInNonMovingSpace(ref))
3065 << "Unmarked ref that's not on the allocation stack."
3066 << " obj=" << obj
3067 << " ref=" << ref
3068 << " rb_state=" << ref->GetReadBarrierState()
3069 << " is_marking=" << std::boolalpha << is_marking_ << std::noboolalpha
3070 << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
3071 << " done_scanning="
3072 << std::boolalpha << done_scanning_.load(std::memory_order_acquire) << std::noboolalpha
3073 << " self=" << Thread::Current();
3074 }
3075 }
3076
3077 // Used to scan ref fields of an object.
3078 template <bool kNoUnEvac>
3079 class ConcurrentCopying::RefFieldsVisitor {
3080 public:
RefFieldsVisitor(ConcurrentCopying * collector,Thread * const thread)3081 explicit RefFieldsVisitor(ConcurrentCopying* collector, Thread* const thread)
3082 : collector_(collector), thread_(thread) {
3083 // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3084 DCHECK_IMPLIES(kNoUnEvac, collector_->use_generational_cc_);
3085 }
3086
operator ()(mirror::Object * obj,MemberOffset offset,bool) const3087 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
3088 const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
3089 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
3090 collector_->Process<kNoUnEvac>(obj, offset);
3091 }
3092
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const3093 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
3094 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
3095 CHECK(klass->IsTypeOfReferenceClass());
3096 collector_->DelayReferenceReferent(klass, ref);
3097 }
3098
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const3099 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
3100 ALWAYS_INLINE
3101 REQUIRES_SHARED(Locks::mutator_lock_) {
3102 if (!root->IsNull()) {
3103 VisitRoot(root);
3104 }
3105 }
3106
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const3107 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
3108 ALWAYS_INLINE
3109 REQUIRES_SHARED(Locks::mutator_lock_) {
3110 collector_->MarkRoot</*kGrayImmuneObject=*/false>(thread_, root);
3111 }
3112
3113 private:
3114 ConcurrentCopying* const collector_;
3115 Thread* const thread_;
3116 };
3117
3118 template <bool kNoUnEvac>
Scan(mirror::Object * to_ref,size_t obj_size)3119 inline void ConcurrentCopying::Scan(mirror::Object* to_ref, size_t obj_size) {
3120 // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3121 DCHECK_IMPLIES(kNoUnEvac, use_generational_cc_);
3122 if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
3123 // Avoid all read barriers during visit references to help performance.
3124 // Don't do this in transaction mode because we may read the old value of an field which may
3125 // trigger read barriers.
3126 Thread::Current()->ModifyDebugDisallowReadBarrier(1);
3127 }
3128 if (obj_size == 0) {
3129 obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
3130 }
3131 bytes_scanned_ += obj_size;
3132
3133 DCHECK(!region_space_->IsInFromSpace(to_ref));
3134 DCHECK_EQ(Thread::Current(), thread_running_gc_);
3135 RefFieldsVisitor<kNoUnEvac> visitor(this, thread_running_gc_);
3136 // Disable the read barrier for a performance reason.
3137 to_ref->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
3138 visitor, visitor);
3139 if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
3140 thread_running_gc_->ModifyDebugDisallowReadBarrier(-1);
3141 }
3142 }
3143
3144 template <bool kNoUnEvac>
Process(mirror::Object * obj,MemberOffset offset)3145 inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
3146 // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3147 DCHECK_IMPLIES(kNoUnEvac, use_generational_cc_);
3148 DCHECK_EQ(Thread::Current(), thread_running_gc_);
3149 mirror::Object* ref = obj->GetFieldObject<
3150 mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
3151 mirror::Object* to_ref = Mark</*kGrayImmuneObject=*/false, kNoUnEvac, /*kFromGCThread=*/true>(
3152 thread_running_gc_,
3153 ref,
3154 /*holder=*/ obj,
3155 offset);
3156 if (to_ref == ref) {
3157 return;
3158 }
3159 // This may fail if the mutator writes to the field at the same time. But it's ok.
3160 mirror::Object* expected_ref = ref;
3161 mirror::Object* new_ref = to_ref;
3162 do {
3163 if (expected_ref !=
3164 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
3165 // It was updated by the mutator.
3166 break;
3167 }
3168 // Use release CAS to make sure threads reading the reference see contents of copied objects.
3169 } while (!obj->CasFieldObjectWithoutWriteBarrier<false, false, kVerifyNone>(
3170 offset,
3171 expected_ref,
3172 new_ref,
3173 CASMode::kWeak,
3174 std::memory_order_release));
3175 }
3176
3177 // Process some roots.
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info)3178 inline void ConcurrentCopying::VisitRoots(mirror::Object*** roots,
3179 size_t count,
3180 [[maybe_unused]] const RootInfo& info) {
3181 Thread* const self = Thread::Current();
3182 for (size_t i = 0; i < count; ++i) {
3183 mirror::Object** root = roots[i];
3184 mirror::Object* ref = *root;
3185 mirror::Object* to_ref = Mark(self, ref);
3186 if (to_ref == ref) {
3187 continue;
3188 }
3189 Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
3190 mirror::Object* expected_ref = ref;
3191 mirror::Object* new_ref = to_ref;
3192 do {
3193 if (expected_ref != addr->load(std::memory_order_relaxed)) {
3194 // It was updated by the mutator.
3195 break;
3196 }
3197 } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref));
3198 }
3199 }
3200
3201 template<bool kGrayImmuneObject>
MarkRoot(Thread * const self,mirror::CompressedReference<mirror::Object> * root)3202 inline void ConcurrentCopying::MarkRoot(Thread* const self,
3203 mirror::CompressedReference<mirror::Object>* root) {
3204 DCHECK(!root->IsNull());
3205 mirror::Object* const ref = root->AsMirrorPtr();
3206 mirror::Object* to_ref = Mark<kGrayImmuneObject>(self, ref);
3207 if (to_ref != ref) {
3208 auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
3209 auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
3210 auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
3211 // If the cas fails, then it was updated by the mutator.
3212 do {
3213 if (ref != addr->load(std::memory_order_relaxed).AsMirrorPtr()) {
3214 // It was updated by the mutator.
3215 break;
3216 }
3217 } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref));
3218 }
3219 }
3220
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info)3221 inline void ConcurrentCopying::VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
3222 size_t count,
3223 [[maybe_unused]] const RootInfo& info) {
3224 Thread* const self = Thread::Current();
3225 for (size_t i = 0; i < count; ++i) {
3226 mirror::CompressedReference<mirror::Object>* const root = roots[i];
3227 if (!root->IsNull()) {
3228 // kGrayImmuneObject is true because this is used for the thread flip.
3229 MarkRoot</*kGrayImmuneObject=*/true>(self, root);
3230 }
3231 }
3232 }
3233
3234 // Temporary set gc_grays_immune_objects_ to true in a scope if the current thread is GC.
3235 class ConcurrentCopying::ScopedGcGraysImmuneObjects {
3236 public:
ScopedGcGraysImmuneObjects(ConcurrentCopying * collector)3237 explicit ScopedGcGraysImmuneObjects(ConcurrentCopying* collector)
3238 : collector_(collector), enabled_(false) {
3239 if (kUseBakerReadBarrier &&
3240 collector_->thread_running_gc_ == Thread::Current() &&
3241 !collector_->gc_grays_immune_objects_) {
3242 collector_->gc_grays_immune_objects_ = true;
3243 enabled_ = true;
3244 }
3245 }
3246
~ScopedGcGraysImmuneObjects()3247 ~ScopedGcGraysImmuneObjects() {
3248 if (kUseBakerReadBarrier &&
3249 collector_->thread_running_gc_ == Thread::Current() &&
3250 enabled_) {
3251 DCHECK(collector_->gc_grays_immune_objects_);
3252 collector_->gc_grays_immune_objects_ = false;
3253 }
3254 }
3255
3256 private:
3257 ConcurrentCopying* const collector_;
3258 bool enabled_;
3259 };
3260
3261 // Fill the given memory block with a fake object. Used to fill in a
3262 // copy of objects that was lost in race.
FillWithFakeObject(Thread * const self,mirror::Object * fake_obj,size_t byte_size)3263 void ConcurrentCopying::FillWithFakeObject(Thread* const self,
3264 mirror::Object* fake_obj,
3265 size_t byte_size) {
3266 // GC doesn't gray immune objects while scanning immune objects. But we need to trigger the read
3267 // barriers here because we need the updated reference to the int array class, etc. Temporary set
3268 // gc_grays_immune_objects_ to true so that we won't cause a DCHECK failure in MarkImmuneSpace().
3269 ScopedGcGraysImmuneObjects scoped_gc_gray_immune_objects(this);
3270 CHECK_ALIGNED(byte_size, kObjectAlignment);
3271 memset(fake_obj, 0, byte_size);
3272 // Avoid going through read barrier for since kDisallowReadBarrierDuringScan may be enabled.
3273 // Explicitly mark to make sure to get an object in the to-space.
3274 mirror::Class* int_array_class = down_cast<mirror::Class*>(
3275 Mark(self, GetClassRoot<mirror::IntArray, kWithoutReadBarrier>().Ptr()));
3276 CHECK(int_array_class != nullptr);
3277 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
3278 AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
3279 }
3280 size_t component_size = int_array_class->GetComponentSize();
3281 CHECK_EQ(component_size, sizeof(int32_t));
3282 size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
3283 if (data_offset > byte_size) {
3284 // An int array is too big. Use java.lang.Object.
3285 CHECK(java_lang_Object_ != nullptr);
3286 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
3287 AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object_);
3288 }
3289 CHECK_EQ(byte_size, java_lang_Object_->GetObjectSize<kVerifyNone>());
3290 fake_obj->SetClass(java_lang_Object_);
3291 CHECK_EQ(byte_size, (fake_obj->SizeOf<kVerifyNone>()));
3292 } else {
3293 // Use an int array.
3294 fake_obj->SetClass(int_array_class);
3295 CHECK(fake_obj->IsArrayInstance<kVerifyNone>());
3296 int32_t length = (byte_size - data_offset) / component_size;
3297 ObjPtr<mirror::Array> fake_arr = fake_obj->AsArray<kVerifyNone>();
3298 fake_arr->SetLength(length);
3299 CHECK_EQ(fake_arr->GetLength(), length)
3300 << "byte_size=" << byte_size << " length=" << length
3301 << " component_size=" << component_size << " data_offset=" << data_offset;
3302 CHECK_EQ(byte_size, (fake_obj->SizeOf<kVerifyNone>()))
3303 << "byte_size=" << byte_size << " length=" << length
3304 << " component_size=" << component_size << " data_offset=" << data_offset;
3305 }
3306 }
3307
3308 // Reuse the memory blocks that were copy of objects that were lost in race.
AllocateInSkippedBlock(Thread * const self,size_t alloc_size)3309 mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(Thread* const self, size_t alloc_size) {
3310 // Try to reuse the blocks that were unused due to CAS failures.
3311 CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
3312 size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
3313 size_t byte_size;
3314 uint8_t* addr;
3315 {
3316 MutexLock mu(self, skipped_blocks_lock_);
3317 auto it = skipped_blocks_map_.lower_bound(alloc_size);
3318 if (it == skipped_blocks_map_.end()) {
3319 // Not found.
3320 return nullptr;
3321 }
3322 byte_size = it->first;
3323 CHECK_GE(byte_size, alloc_size);
3324 if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
3325 // If remainder would be too small for a fake object, retry with a larger request size.
3326 it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
3327 if (it == skipped_blocks_map_.end()) {
3328 // Not found.
3329 return nullptr;
3330 }
3331 CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
3332 CHECK_GE(it->first - alloc_size, min_object_size)
3333 << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
3334 }
3335 // Found a block.
3336 CHECK(it != skipped_blocks_map_.end());
3337 byte_size = it->first;
3338 addr = it->second;
3339 CHECK_GE(byte_size, alloc_size);
3340 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
3341 CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
3342 if (kVerboseMode) {
3343 LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
3344 }
3345 skipped_blocks_map_.erase(it);
3346 }
3347 memset(addr, 0, byte_size);
3348 if (byte_size > alloc_size) {
3349 // Return the remainder to the map.
3350 CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
3351 CHECK_GE(byte_size - alloc_size, min_object_size);
3352 // FillWithFakeObject may mark an object, avoid holding skipped_blocks_lock_ to prevent lock
3353 // violation and possible deadlock. The deadlock case is a recursive case:
3354 // FillWithFakeObject -> Mark(IntArray.class) -> Copy -> AllocateInSkippedBlock.
3355 FillWithFakeObject(self,
3356 reinterpret_cast<mirror::Object*>(addr + alloc_size),
3357 byte_size - alloc_size);
3358 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
3359 {
3360 MutexLock mu(self, skipped_blocks_lock_);
3361 skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
3362 }
3363 }
3364 return reinterpret_cast<mirror::Object*>(addr);
3365 }
3366
Copy(Thread * const self,mirror::Object * from_ref,mirror::Object * holder,MemberOffset offset)3367 mirror::Object* ConcurrentCopying::Copy(Thread* const self,
3368 mirror::Object* from_ref,
3369 mirror::Object* holder,
3370 MemberOffset offset) {
3371 DCHECK(region_space_->IsInFromSpace(from_ref));
3372 // If the class pointer is null, the object is invalid. This could occur for a dangling pointer
3373 // from a previous GC that is either inside or outside the allocated region.
3374 mirror::Class* klass = from_ref->GetClass<kVerifyNone, kWithoutReadBarrier>();
3375 if (UNLIKELY(klass == nullptr)) {
3376 // Remove memory protection from the region space and log debugging information.
3377 region_space_->Unprotect();
3378 heap_->GetVerification()->LogHeapCorruption(holder, offset, from_ref, /* fatal= */ true);
3379 }
3380 // There must not be a read barrier to avoid nested RB that might violate the to-space invariant.
3381 // Note that from_ref is a from space ref so the SizeOf() call will access the from-space meta
3382 // objects, but it's ok and necessary.
3383 size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags>();
3384 size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
3385 // Large objects are never evacuated.
3386 CHECK_LE(region_space_alloc_size, space::RegionSpace::kRegionSize);
3387 size_t region_space_bytes_allocated = 0U;
3388 size_t non_moving_space_bytes_allocated = 0U;
3389 size_t bytes_allocated = 0U;
3390 size_t unused_size;
3391 bool fall_back_to_non_moving = false;
3392 mirror::Object* to_ref = region_space_->AllocNonvirtual</*kForEvac=*/ true>(
3393 region_space_alloc_size, ®ion_space_bytes_allocated, nullptr, &unused_size);
3394 bytes_allocated = region_space_bytes_allocated;
3395 if (LIKELY(to_ref != nullptr)) {
3396 DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
3397 } else {
3398 // Failed to allocate in the region space. Try the skipped blocks.
3399 to_ref = AllocateInSkippedBlock(self, region_space_alloc_size);
3400 if (to_ref != nullptr) {
3401 // Succeeded to allocate in a skipped block.
3402 if (heap_->use_tlab_) {
3403 // This is necessary for the tlab case as it's not accounted in the space.
3404 region_space_->RecordAlloc(to_ref);
3405 }
3406 bytes_allocated = region_space_alloc_size;
3407 heap_->num_bytes_allocated_.fetch_sub(bytes_allocated, std::memory_order_relaxed);
3408 to_space_bytes_skipped_.fetch_sub(bytes_allocated, std::memory_order_relaxed);
3409 to_space_objects_skipped_.fetch_sub(1, std::memory_order_relaxed);
3410 } else {
3411 // Fall back to the non-moving space.
3412 fall_back_to_non_moving = true;
3413 if (kVerboseMode) {
3414 LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
3415 << to_space_bytes_skipped_.load(std::memory_order_relaxed)
3416 << " skipped_objects="
3417 << to_space_objects_skipped_.load(std::memory_order_relaxed);
3418 }
3419 to_ref = heap_->non_moving_space_->Alloc(
3420 self, obj_size, &non_moving_space_bytes_allocated, nullptr, &unused_size);
3421 if (UNLIKELY(to_ref == nullptr)) {
3422 LOG(FATAL_WITHOUT_ABORT) << "Fall-back non-moving space allocation failed for a "
3423 << obj_size << " byte object in region type "
3424 << region_space_->GetRegionType(from_ref);
3425 LOG(FATAL) << "Object address=" << from_ref << " type=" << from_ref->PrettyTypeOf();
3426 }
3427 bytes_allocated = non_moving_space_bytes_allocated;
3428 }
3429 }
3430 DCHECK(to_ref != nullptr);
3431
3432 // Copy the object excluding the lock word since that is handled in the loop.
3433 to_ref->SetClass(klass);
3434 const size_t kObjectHeaderSize = sizeof(mirror::Object);
3435 DCHECK_GE(obj_size, kObjectHeaderSize);
3436 static_assert(kObjectHeaderSize == sizeof(mirror::HeapReference<mirror::Class>) +
3437 sizeof(LockWord),
3438 "Object header size does not match");
3439 // Memcpy can tear for words since it may do byte copy. It is only safe to do this since the
3440 // object in the from space is immutable other than the lock word. b/31423258
3441 memcpy(reinterpret_cast<uint8_t*>(to_ref) + kObjectHeaderSize,
3442 reinterpret_cast<const uint8_t*>(from_ref) + kObjectHeaderSize,
3443 obj_size - kObjectHeaderSize);
3444
3445 // Attempt to install the forward pointer. This is in a loop as the
3446 // lock word atomic write can fail.
3447 while (true) {
3448 LockWord old_lock_word = from_ref->GetLockWord(false);
3449
3450 if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
3451 // Lost the race. Another thread (either GC or mutator) stored
3452 // the forwarding pointer first. Make the lost copy (to_ref)
3453 // look like a valid but dead (fake) object and keep it for
3454 // future reuse.
3455 FillWithFakeObject(self, to_ref, bytes_allocated);
3456 if (!fall_back_to_non_moving) {
3457 DCHECK(region_space_->IsInToSpace(to_ref));
3458 // Record the lost copy for later reuse.
3459 heap_->num_bytes_allocated_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3460 to_space_bytes_skipped_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3461 to_space_objects_skipped_.fetch_add(1, std::memory_order_relaxed);
3462 MutexLock mu(self, skipped_blocks_lock_);
3463 skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
3464 reinterpret_cast<uint8_t*>(to_ref)));
3465 } else {
3466 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
3467 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
3468 // Free the non-moving-space chunk.
3469 heap_->non_moving_space_->Free(self, to_ref);
3470 }
3471
3472 // Get the winner's forward ptr.
3473 mirror::Object* lost_fwd_ptr = to_ref;
3474 to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
3475 CHECK(to_ref != nullptr);
3476 CHECK_NE(to_ref, lost_fwd_ptr);
3477 CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
3478 << "to_ref=" << to_ref << " " << heap_->DumpSpaces();
3479 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
3480 return to_ref;
3481 }
3482
3483 // Copy the old lock word over since we did not copy it yet.
3484 to_ref->SetLockWord(old_lock_word, false);
3485 // Set the gray ptr.
3486 if (kUseBakerReadBarrier) {
3487 to_ref->SetReadBarrierState(ReadBarrier::GrayState());
3488 }
3489
3490 LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
3491
3492 // Try to atomically write the fwd ptr. Make sure that the copied object is visible to any
3493 // readers of the fwd pointer.
3494 bool success = from_ref->CasLockWord(old_lock_word,
3495 new_lock_word,
3496 CASMode::kWeak,
3497 std::memory_order_release);
3498 if (LIKELY(success)) {
3499 // The CAS succeeded.
3500 DCHECK(thread_running_gc_ != nullptr);
3501 if (LIKELY(self == thread_running_gc_)) {
3502 objects_moved_gc_thread_ += 1;
3503 bytes_moved_gc_thread_ += bytes_allocated;
3504 } else {
3505 objects_moved_.fetch_add(1, std::memory_order_relaxed);
3506 bytes_moved_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3507 }
3508
3509 if (LIKELY(!fall_back_to_non_moving)) {
3510 DCHECK(region_space_->IsInToSpace(to_ref));
3511 } else {
3512 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
3513 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
3514 if (!use_generational_cc_ || !young_gen_) {
3515 // Mark it in the live bitmap.
3516 CHECK(!heap_->non_moving_space_->GetLiveBitmap()->AtomicTestAndSet(to_ref));
3517 }
3518 if (!kUseBakerReadBarrier) {
3519 // Mark it in the mark bitmap.
3520 CHECK(!heap_->non_moving_space_->GetMarkBitmap()->AtomicTestAndSet(to_ref));
3521 }
3522 }
3523 if (kUseBakerReadBarrier) {
3524 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState());
3525 }
3526 DCHECK(GetFwdPtr(from_ref) == to_ref);
3527 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
3528 // Make sure that anyone who sees to_ref also sees both the object contents and the
3529 // fwd pointer.
3530 QuasiAtomic::ThreadFenceForConstructor();
3531 PushOntoMarkStack(self, to_ref);
3532 return to_ref;
3533 } else {
3534 // The CAS failed. It may have lost the race or may have failed
3535 // due to monitor/hashcode ops. Either way, retry.
3536 }
3537 }
3538 }
3539
IsMarked(mirror::Object * from_ref)3540 mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
3541 DCHECK(from_ref != nullptr);
3542 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
3543 if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
3544 // It's already marked.
3545 return from_ref;
3546 }
3547 mirror::Object* to_ref;
3548 if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
3549 to_ref = GetFwdPtr(from_ref);
3550 DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
3551 heap_->non_moving_space_->HasAddress(to_ref))
3552 << "from_ref=" << from_ref << " to_ref=" << to_ref;
3553 } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
3554 if (IsMarkedInUnevacFromSpace(from_ref)) {
3555 to_ref = from_ref;
3556 } else {
3557 to_ref = nullptr;
3558 }
3559 } else {
3560 // At this point, `from_ref` should not be in the region space
3561 // (i.e. within an "unused" region).
3562 DCHECK(!region_space_->HasAddress(from_ref)) << from_ref;
3563 // from_ref is in a non-moving space.
3564 if (immune_spaces_.ContainsObject(from_ref)) {
3565 // An immune object is alive.
3566 to_ref = from_ref;
3567 } else {
3568 // Non-immune non-moving space. Use the mark bitmap.
3569 if (IsMarkedInNonMovingSpace(from_ref)) {
3570 // Already marked.
3571 to_ref = from_ref;
3572 } else {
3573 to_ref = nullptr;
3574 }
3575 }
3576 }
3577 return to_ref;
3578 }
3579
IsOnAllocStack(mirror::Object * ref)3580 bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
3581 // Pairs with release fence after allocation-stack push in
3582 // Heap::AllocObjectWithAllocator().
3583 std::atomic_thread_fence(std::memory_order_acquire);
3584 accounting::ObjectStack* alloc_stack = GetAllocationStack();
3585 return alloc_stack->Contains(ref);
3586 }
3587
MarkNonMoving(Thread * const self,mirror::Object * ref,mirror::Object * holder,MemberOffset offset)3588 mirror::Object* ConcurrentCopying::MarkNonMoving(Thread* const self,
3589 mirror::Object* ref,
3590 mirror::Object* holder,
3591 MemberOffset offset) {
3592 // ref is in a non-moving space (from_ref == to_ref).
3593 DCHECK(!region_space_->HasAddress(ref)) << ref;
3594 DCHECK(!immune_spaces_.ContainsObject(ref));
3595 // Use the mark bitmap.
3596 accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
3597 accounting::LargeObjectBitmap* los_bitmap = nullptr;
3598 const bool is_los = !mark_bitmap->HasAddress(ref);
3599 if (is_los) {
3600 if (!IsAlignedParam(ref, space::LargeObjectSpace::ObjectAlignment())) {
3601 // Ref is a large object that is not aligned, it must be heap
3602 // corruption. Remove memory protection and dump data before
3603 // AtomicSetReadBarrierState since it will fault if the address is not
3604 // valid.
3605 region_space_->Unprotect();
3606 heap_->GetVerification()->LogHeapCorruption(holder, offset, ref, /* fatal= */ true);
3607 }
3608 DCHECK(heap_->GetLargeObjectsSpace())
3609 << "ref=" << ref
3610 << " doesn't belong to non-moving space and large object space doesn't exist";
3611 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
3612 DCHECK(los_bitmap->HasAddress(ref));
3613 }
3614 if (use_generational_cc_) {
3615 // The sticky-bit CC collector is only compatible with Baker-style read barriers.
3616 DCHECK(kUseBakerReadBarrier);
3617 // Not done scanning, use AtomicSetReadBarrierPointer.
3618 if (!done_scanning_.load(std::memory_order_acquire)) {
3619 // Since the mark bitmap is still filled in from last GC, we can not use that or else the
3620 // mutator may see references to the from space. Instead, use the Baker pointer itself as
3621 // the mark bit.
3622 //
3623 // We need to avoid marking objects that are on allocation stack as that will lead to a
3624 // situation (after this GC cycle is finished) where some object(s) are on both allocation
3625 // stack and live bitmap. This leads to visiting the same object(s) twice during a heapdump
3626 // (b/117426281).
3627 if (!IsOnAllocStack(ref) &&
3628 ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState())) {
3629 // TODO: We don't actually need to scan this object later, we just need to clear the gray
3630 // bit.
3631 // We don't need to mark newly allocated objects (those in allocation stack) as they can
3632 // only point to to-space objects. Also, they are considered live till the next GC cycle.
3633 PushOntoMarkStack(self, ref);
3634 }
3635 return ref;
3636 }
3637 }
3638 if (!is_los && mark_bitmap->Test(ref)) {
3639 // Already marked.
3640 } else if (is_los && los_bitmap->Test(ref)) {
3641 // Already marked in LOS.
3642 } else if (IsOnAllocStack(ref)) {
3643 // If it's on the allocation stack, it's considered marked. Keep it white (non-gray).
3644 // Objects on the allocation stack need not be marked.
3645 if (!is_los) {
3646 DCHECK(!mark_bitmap->Test(ref));
3647 } else {
3648 DCHECK(!los_bitmap->Test(ref));
3649 }
3650 if (kUseBakerReadBarrier) {
3651 DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState());
3652 }
3653 } else {
3654 // Not marked nor on the allocation stack. Try to mark it.
3655 // This may or may not succeed, which is ok.
3656 bool success = false;
3657 if (kUseBakerReadBarrier) {
3658 success = ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(),
3659 ReadBarrier::GrayState());
3660 } else {
3661 success = is_los ?
3662 !los_bitmap->AtomicTestAndSet(ref) :
3663 !mark_bitmap->AtomicTestAndSet(ref);
3664 }
3665 if (success) {
3666 if (kUseBakerReadBarrier) {
3667 DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::GrayState());
3668 }
3669 PushOntoMarkStack(self, ref);
3670 }
3671 }
3672 return ref;
3673 }
3674
FinishPhase()3675 void ConcurrentCopying::FinishPhase() {
3676 Thread* const self = Thread::Current();
3677 {
3678 MutexLock mu(self, mark_stack_lock_);
3679 CHECK(revoked_mark_stacks_.empty());
3680 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
3681 }
3682 bool should_eagerly_release_memory = ShouldEagerlyReleaseMemoryToOS();
3683 // kVerifyNoMissingCardMarks relies on the region space cards not being cleared to avoid false
3684 // positives.
3685 if (!kVerifyNoMissingCardMarks && !use_generational_cc_) {
3686 TimingLogger::ScopedTiming split("ClearRegionSpaceCards", GetTimings());
3687 // We do not currently use the region space cards at all, madvise them away to save ram.
3688 heap_->GetCardTable()->ClearCardRange(region_space_->Begin(), region_space_->Limit());
3689 } else if (use_generational_cc_ && !young_gen_) {
3690 region_space_inter_region_bitmap_.Clear(should_eagerly_release_memory);
3691 non_moving_space_inter_region_bitmap_.Clear(should_eagerly_release_memory);
3692 }
3693 {
3694 MutexLock mu(self, skipped_blocks_lock_);
3695 skipped_blocks_map_.clear();
3696 }
3697 {
3698 ReaderMutexLock mu(self, *Locks::mutator_lock_);
3699 {
3700 WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3701 heap_->ClearMarkedObjects(should_eagerly_release_memory);
3702 }
3703 if (kUseBakerReadBarrier && kFilterModUnionCards) {
3704 TimingLogger::ScopedTiming split("FilterModUnionCards", GetTimings());
3705 ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3706 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
3707 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
3708 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
3709 // Filter out cards that don't need to be set.
3710 if (table != nullptr) {
3711 table->FilterCards();
3712 }
3713 }
3714 }
3715 if (kUseBakerReadBarrier) {
3716 TimingLogger::ScopedTiming split("EmptyRBMarkBitStack", GetTimings());
3717 DCHECK(rb_mark_bit_stack_ != nullptr);
3718 const auto* limit = rb_mark_bit_stack_->End();
3719 for (StackReference<mirror::Object>* it = rb_mark_bit_stack_->Begin(); it != limit; ++it) {
3720 CHECK(it->AsMirrorPtr()->AtomicSetMarkBit(1, 0))
3721 << "rb_mark_bit_stack_->Begin()" << rb_mark_bit_stack_->Begin() << '\n'
3722 << "rb_mark_bit_stack_->End()" << rb_mark_bit_stack_->End() << '\n'
3723 << "rb_mark_bit_stack_->IsFull()"
3724 << std::boolalpha << rb_mark_bit_stack_->IsFull() << std::noboolalpha << '\n'
3725 << DumpReferenceInfo(it->AsMirrorPtr(), "*it");
3726 }
3727 rb_mark_bit_stack_->Reset();
3728 }
3729 }
3730 if (measure_read_barrier_slow_path_) {
3731 MutexLock mu(self, rb_slow_path_histogram_lock_);
3732 rb_slow_path_time_histogram_.AdjustAndAddValue(
3733 rb_slow_path_ns_.load(std::memory_order_relaxed));
3734 rb_slow_path_count_total_ += rb_slow_path_count_.load(std::memory_order_relaxed);
3735 rb_slow_path_count_gc_total_ += rb_slow_path_count_gc_.load(std::memory_order_relaxed);
3736 }
3737 }
3738
IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object> * field,bool do_atomic_update)3739 bool ConcurrentCopying::IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object>* field,
3740 bool do_atomic_update) {
3741 mirror::Object* from_ref = field->AsMirrorPtr();
3742 if (from_ref == nullptr) {
3743 return true;
3744 }
3745 mirror::Object* to_ref = IsMarked(from_ref);
3746 if (to_ref == nullptr) {
3747 return false;
3748 }
3749 if (from_ref != to_ref) {
3750 if (do_atomic_update) {
3751 do {
3752 if (field->AsMirrorPtr() != from_ref) {
3753 // Concurrently overwritten by a mutator.
3754 break;
3755 }
3756 } while (!field->CasWeakRelaxed(from_ref, to_ref));
3757 // See comment in MarkHeapReference() for memory ordering.
3758 } else {
3759 field->Assign(to_ref);
3760 }
3761 }
3762 return true;
3763 }
3764
MarkObject(mirror::Object * from_ref)3765 mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
3766 return Mark(Thread::Current(), from_ref);
3767 }
3768
DelayReferenceReferent(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> reference)3769 void ConcurrentCopying::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
3770 ObjPtr<mirror::Reference> reference) {
3771 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
3772 }
3773
ProcessReferences(Thread * self)3774 void ConcurrentCopying::ProcessReferences(Thread* self) {
3775 // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
3776 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3777 GetHeap()->GetReferenceProcessor()->ProcessReferences(self, GetTimings());
3778 }
3779
RevokeAllThreadLocalBuffers()3780 void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
3781 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
3782 region_space_->RevokeAllThreadLocalBuffers();
3783 }
3784
MarkFromReadBarrierWithMeasurements(Thread * const self,mirror::Object * from_ref)3785 mirror::Object* ConcurrentCopying::MarkFromReadBarrierWithMeasurements(Thread* const self,
3786 mirror::Object* from_ref) {
3787 if (self != thread_running_gc_) {
3788 rb_slow_path_count_.fetch_add(1u, std::memory_order_relaxed);
3789 } else {
3790 rb_slow_path_count_gc_.fetch_add(1u, std::memory_order_relaxed);
3791 }
3792 ScopedTrace tr(__FUNCTION__);
3793 const uint64_t start_time = measure_read_barrier_slow_path_ ? NanoTime() : 0u;
3794 mirror::Object* ret =
3795 Mark</*kGrayImmuneObject=*/true, /*kNoUnEvac=*/false, /*kFromGCThread=*/false>(self,
3796 from_ref);
3797 if (measure_read_barrier_slow_path_) {
3798 rb_slow_path_ns_.fetch_add(NanoTime() - start_time, std::memory_order_relaxed);
3799 }
3800 return ret;
3801 }
3802
DumpPerformanceInfo(std::ostream & os)3803 void ConcurrentCopying::DumpPerformanceInfo(std::ostream& os) {
3804 GarbageCollector::DumpPerformanceInfo(os);
3805 size_t num_gc_cycles = GetCumulativeTimings().GetIterations();
3806 MutexLock mu(Thread::Current(), rb_slow_path_histogram_lock_);
3807 if (rb_slow_path_time_histogram_.SampleSize() > 0) {
3808 Histogram<uint64_t>::CumulativeData cumulative_data;
3809 rb_slow_path_time_histogram_.CreateHistogram(&cumulative_data);
3810 rb_slow_path_time_histogram_.PrintConfidenceIntervals(os, 0.99, cumulative_data);
3811 }
3812 if (rb_slow_path_count_total_ > 0) {
3813 os << "Slow path count " << rb_slow_path_count_total_ << "\n";
3814 }
3815 if (rb_slow_path_count_gc_total_ > 0) {
3816 os << "GC slow path count " << rb_slow_path_count_gc_total_ << "\n";
3817 }
3818
3819 os << "Average " << (young_gen_ ? "minor" : "major") << " GC reclaim bytes ratio "
3820 << (reclaimed_bytes_ratio_sum_ / num_gc_cycles) << " over " << num_gc_cycles
3821 << " GC cycles\n";
3822
3823 os << "Average " << (young_gen_ ? "minor" : "major") << " GC copied live bytes ratio "
3824 << (copied_live_bytes_ratio_sum_ / gc_count_) << " over " << gc_count_
3825 << " " << (young_gen_ ? "minor" : "major") << " GCs\n";
3826
3827 os << "Cumulative bytes moved " << cumulative_bytes_moved_ << "\n";
3828
3829 os << "Peak regions allocated "
3830 << region_space_->GetMaxPeakNumNonFreeRegions() << " ("
3831 << PrettySize(region_space_->GetMaxPeakNumNonFreeRegions() * space::RegionSpace::kRegionSize)
3832 << ") / " << region_space_->GetNumRegions() / 2 << " ("
3833 << PrettySize(region_space_->GetNumRegions() * space::RegionSpace::kRegionSize / 2)
3834 << ")\n";
3835 if (!young_gen_) {
3836 os << "Total madvise time " << PrettyDuration(region_space_->GetMadviseTime()) << "\n";
3837 }
3838 }
3839
3840 } // namespace collector
3841 } // namespace gc
3842 } // namespace art
3843