1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_RUNTIME_THREAD_INL_H_
18 #define ART_RUNTIME_THREAD_INL_H_
19
20 #include "arch/instruction_set.h"
21 #include "base/aborting.h"
22 #include "base/casts.h"
23 #include "base/mutex-inl.h"
24 #include "base/time_utils.h"
25 #include "indirect_reference_table.h"
26 #include "jni/jni_env_ext.h"
27 #include "managed_stack-inl.h"
28 #include "obj_ptr-inl.h"
29 #include "runtime.h"
30 #include "thread-current-inl.h"
31 #include "thread.h"
32 #include "thread_list.h"
33 #include "thread_pool.h"
34
35 namespace art HIDDEN {
36
37 // Quickly access the current thread from a JNIEnv.
ForEnv(JNIEnv * env)38 inline Thread* Thread::ForEnv(JNIEnv* env) {
39 JNIEnvExt* full_env(down_cast<JNIEnvExt*>(env));
40 return full_env->GetSelf();
41 }
42
GetStackOverflowProtectedSize()43 inline size_t Thread::GetStackOverflowProtectedSize() {
44 // The kMemoryToolStackGuardSizeScale is expected to be 1 when ASan is not enabled.
45 // As the function is always inlined, in those cases each function call should turn
46 // into a simple reference to gPageSize.
47 return kMemoryToolStackGuardSizeScale * gPageSize;
48 }
49
DecodeJObject(jobject obj)50 inline ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const {
51 if (obj == nullptr) {
52 return nullptr;
53 }
54 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
55 if (LIKELY(IndirectReferenceTable::IsJniTransitionOrLocalReference(ref))) {
56 // For JNI transitions, the `jclass` for a static method points to the
57 // `CompressedReference<>` in the `ArtMethod::declaring_class_` and other `jobject`
58 // arguments point to spilled stack references but a `StackReference<>` is just
59 // a subclass of `CompressedReference<>`. Local references also point to
60 // a `CompressedReference<>` encapsulated in a `GcRoot<>`.
61 if (kIsDebugBuild && IndirectReferenceTable::GetIndirectRefKind(ref) == kJniTransition) {
62 CHECK(IsJniTransitionReference(obj));
63 }
64 auto* cref = IndirectReferenceTable::ClearIndirectRefKind<
65 mirror::CompressedReference<mirror::Object>*>(ref);
66 ObjPtr<mirror::Object> result = cref->AsMirrorPtr();
67 if (kIsDebugBuild && IndirectReferenceTable::GetIndirectRefKind(ref) != kJniTransition) {
68 CHECK_EQ(result, tlsPtr_.jni_env->locals_.Get(ref));
69 }
70 return result;
71 } else {
72 return DecodeGlobalJObject(obj);
73 }
74 }
75
AllowThreadSuspension()76 inline void Thread::AllowThreadSuspension() {
77 CheckSuspend();
78 // Invalidate the current thread's object pointers (ObjPtr) to catch possible moving GC bugs due
79 // to missing handles.
80 PoisonObjectPointers();
81 }
82
CheckSuspend(bool implicit)83 inline void Thread::CheckSuspend(bool implicit) {
84 DCHECK_EQ(Thread::Current(), this);
85 while (true) {
86 // Memory_order_relaxed should be OK, since RunCheckpointFunction shares a lock with the
87 // requestor, and FullSuspendCheck() re-checks later. But we currently need memory_order_acquire
88 // for the empty checkpoint path.
89 // TODO (b/382722942): Revisit after we fix RunEmptyCheckpoint().
90 StateAndFlags state_and_flags = GetStateAndFlags(std::memory_order_acquire);
91 if (LIKELY(!state_and_flags.IsAnyOfFlagsSet(SuspendOrCheckpointRequestFlags()))) {
92 break;
93 } else if (state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest)) {
94 RunCheckpointFunction();
95 } else if (state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest) &&
96 !state_and_flags.IsFlagSet(ThreadFlag::kSuspensionImmune)) {
97 FullSuspendCheck(implicit);
98 implicit = false; // We do not need to `MadviseAwayAlternateSignalStack()` anymore.
99 } else if (state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest)) {
100 RunEmptyCheckpoint();
101 } else {
102 DCHECK(state_and_flags.IsFlagSet(ThreadFlag::kSuspensionImmune));
103 break;
104 }
105 }
106 if (implicit) {
107 // For implicit suspend check we want to `madvise()` away
108 // the alternate signal stack to avoid wasting memory.
109 MadviseAwayAlternateSignalStack();
110 }
111 }
112
CheckEmptyCheckpointFromWeakRefAccess(BaseMutex * cond_var_mutex)113 inline void Thread::CheckEmptyCheckpointFromWeakRefAccess(BaseMutex* cond_var_mutex) {
114 Thread* self = Thread::Current();
115 DCHECK_EQ(self, this);
116 for (;;) {
117 // TODO (b/382722942): Revisit memory ordering after we fix RunEmptyCheckpoint().
118 if (ReadFlag(ThreadFlag::kEmptyCheckpointRequest, std::memory_order_acquire)) {
119 RunEmptyCheckpoint();
120 // Check we hold only an expected mutex when accessing weak ref.
121 if (kIsDebugBuild) {
122 for (int i = kLockLevelCount - 1; i >= 0; --i) {
123 BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
124 if (held_mutex != nullptr && held_mutex != GetMutatorLock() &&
125 held_mutex != cond_var_mutex &&
126 held_mutex != cp_placeholder_mutex_.load(std::memory_order_relaxed)) {
127 // placeholder_mutex may still be nullptr. That's OK.
128 CHECK(Locks::IsExpectedOnWeakRefAccess(held_mutex))
129 << "Holding unexpected mutex " << held_mutex->GetName()
130 << " when accessing weak ref";
131 }
132 }
133 }
134 } else {
135 break;
136 }
137 }
138 }
139
CheckEmptyCheckpointFromMutex()140 inline void Thread::CheckEmptyCheckpointFromMutex() {
141 DCHECK_EQ(Thread::Current(), this);
142 for (;;) {
143 // TODO (b/382722942): Revisit memory ordering after we fix RunEmptyCheckpoint().
144 if (ReadFlag(ThreadFlag::kEmptyCheckpointRequest, std::memory_order_acquire)) {
145 RunEmptyCheckpoint();
146 } else {
147 break;
148 }
149 }
150 }
151
SetState(ThreadState new_state)152 inline ThreadState Thread::SetState(ThreadState new_state) {
153 // Should only be used to change between suspended states.
154 // Cannot use this code to change into or from Runnable as changing to Runnable should
155 // fail if the `ThreadFlag::kSuspendRequest` is set and changing from Runnable might
156 // miss passing an active suspend barrier.
157 DCHECK_NE(new_state, ThreadState::kRunnable);
158 if (kIsDebugBuild && this != Thread::Current()) {
159 std::string name;
160 GetThreadName(name);
161 LOG(FATAL) << "Thread \"" << name << "\"(" << this << " != Thread::Current()="
162 << Thread::Current() << ") changing state to " << new_state;
163 }
164
165 while (true) {
166 StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
167 CHECK_NE(old_state_and_flags.GetState(), ThreadState::kRunnable)
168 << new_state << " " << *this << " " << *Thread::Current();
169 StateAndFlags new_state_and_flags = old_state_and_flags.WithState(new_state);
170 bool done =
171 tls32_.state_and_flags.CompareAndSetWeakRelaxed(old_state_and_flags.GetValue(),
172 new_state_and_flags.GetValue());
173 if (done) {
174 return static_cast<ThreadState>(old_state_and_flags.GetState());
175 }
176 }
177 }
178
IsThreadSuspensionAllowable()179 inline bool Thread::IsThreadSuspensionAllowable() const {
180 if (tls32_.no_thread_suspension != 0) {
181 return false;
182 }
183 for (int i = kLockLevelCount - 1; i >= 0; --i) {
184 if (i != kMutatorLock &&
185 i != kUserCodeSuspensionLock &&
186 GetHeldMutex(static_cast<LockLevel>(i)) != nullptr) {
187 return false;
188 }
189 }
190 // Thread autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we
191 // have the mutex meaning we need to do this hack.
192 auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS {
193 return tls32_.user_code_suspend_count != 0;
194 };
195 if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) {
196 return false;
197 }
198 return true;
199 }
200
AssertThreadSuspensionIsAllowable(bool check_locks)201 inline void Thread::AssertThreadSuspensionIsAllowable(bool check_locks) const {
202 if (kIsDebugBuild) {
203 if (gAborting == 0) {
204 CHECK_EQ(0u, tls32_.no_thread_suspension) << tlsPtr_.last_no_thread_suspension_cause;
205 }
206 if (check_locks) {
207 bool bad_mutexes_held = false;
208 for (int i = kLockLevelCount - 1; i >= 0; --i) {
209 // We expect no locks except the mutator lock. User code suspension lock is OK as long as
210 // we aren't going to be held suspended due to SuspendReason::kForUserCode.
211 if (i != kMutatorLock && i != kUserCodeSuspensionLock) {
212 BaseMutex* held_mutex = GetHeldMutex(static_cast<LockLevel>(i));
213 if (held_mutex != nullptr) {
214 LOG(ERROR) << "holding \"" << held_mutex->GetName()
215 << "\" at point where thread suspension is expected";
216 bad_mutexes_held = true;
217 }
218 }
219 }
220 // Make sure that if we hold the user_code_suspension_lock_ we aren't suspending due to
221 // user_code_suspend_count which would prevent the thread from ever waking up. Thread
222 // autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we
223 // have the mutex meaning we need to do this hack.
224 auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS {
225 return tls32_.user_code_suspend_count != 0;
226 };
227 if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) {
228 LOG(ERROR) << "suspending due to user-code while holding \""
229 << Locks::user_code_suspension_lock_->GetName() << "\"! Thread would never "
230 << "wake up.";
231 bad_mutexes_held = true;
232 }
233 if (gAborting == 0) {
234 CHECK(!bad_mutexes_held);
235 }
236 }
237 }
238 }
239
TransitionToSuspendedAndRunCheckpoints(ThreadState new_state)240 inline void Thread::TransitionToSuspendedAndRunCheckpoints(ThreadState new_state) {
241 DCHECK_NE(new_state, ThreadState::kRunnable);
242 while (true) {
243 // memory_order_relaxed is OK for ordinary checkpoints, which enforce ordering via
244 // thread_suspend_count_lock_ . It is not currently OK for empty checkpoints.
245 // TODO (b/382722942): Consider changing back to memory_order_relaxed after fixing empty
246 // checkpoints.
247 StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_acquire);
248 DCHECK_EQ(old_state_and_flags.GetState(), ThreadState::kRunnable);
249 if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest))) {
250 IncrementStatsCounter(&checkpoint_count_);
251 RunCheckpointFunction();
252 continue;
253 }
254 if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest))) {
255 RunEmptyCheckpoint();
256 continue;
257 }
258 // Change the state but keep the current flags (kCheckpointRequest is clear).
259 DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest));
260 DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest));
261 StateAndFlags new_state_and_flags = old_state_and_flags.WithState(new_state);
262
263 // CAS the value, ensuring that prior memory operations are visible to any thread
264 // that observes that we are suspended.
265 bool done =
266 tls32_.state_and_flags.CompareAndSetWeakRelease(old_state_and_flags.GetValue(),
267 new_state_and_flags.GetValue());
268 if (LIKELY(done)) {
269 IncrementStatsCounter(&suspended_count_);
270 break;
271 }
272 }
273 }
274
CheckActiveSuspendBarriers()275 inline void Thread::CheckActiveSuspendBarriers() {
276 DCHECK_NE(GetState(), ThreadState::kRunnable);
277 while (true) {
278 // memory_order_relaxed is OK here, since PassActiveSuspendBarriers() rechecks with
279 // thread_suspend_count_lock_ .
280 StateAndFlags state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
281 if (LIKELY(!state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest) &&
282 !state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest) &&
283 !state_and_flags.IsFlagSet(ThreadFlag::kActiveSuspendBarrier))) {
284 break;
285 } else if (state_and_flags.IsFlagSet(ThreadFlag::kActiveSuspendBarrier)) {
286 PassActiveSuspendBarriers();
287 } else {
288 // Impossible
289 LOG(FATAL) << "Fatal, thread transitioned into suspended without running the checkpoint";
290 }
291 }
292 }
293
CheckBarrierInactive(WrappedSuspend1Barrier * suspend1_barrier)294 inline void Thread::CheckBarrierInactive(WrappedSuspend1Barrier* suspend1_barrier) {
295 for (WrappedSuspend1Barrier* w = tlsPtr_.active_suspend1_barriers; w != nullptr; w = w->next_) {
296 CHECK_EQ(w->magic_, WrappedSuspend1Barrier::kMagic)
297 << "first = " << tlsPtr_.active_suspend1_barriers << " current = " << w
298 << " next = " << w->next_;
299 CHECK_NE(w, suspend1_barrier);
300 }
301 }
302
AddSuspend1Barrier(WrappedSuspend1Barrier * suspend1_barrier)303 inline void Thread::AddSuspend1Barrier(WrappedSuspend1Barrier* suspend1_barrier) {
304 if (tlsPtr_.active_suspend1_barriers != nullptr) {
305 CHECK_EQ(tlsPtr_.active_suspend1_barriers->magic_, WrappedSuspend1Barrier::kMagic)
306 << "first = " << tlsPtr_.active_suspend1_barriers;
307 }
308 CHECK_EQ(suspend1_barrier->magic_, WrappedSuspend1Barrier::kMagic);
309 suspend1_barrier->next_ = tlsPtr_.active_suspend1_barriers;
310 tlsPtr_.active_suspend1_barriers = suspend1_barrier;
311 }
312
RemoveFirstSuspend1Barrier(WrappedSuspend1Barrier * suspend1_barrier)313 inline void Thread::RemoveFirstSuspend1Barrier(WrappedSuspend1Barrier* suspend1_barrier) {
314 DCHECK_EQ(tlsPtr_.active_suspend1_barriers, suspend1_barrier);
315 tlsPtr_.active_suspend1_barriers = tlsPtr_.active_suspend1_barriers->next_;
316 }
317
RemoveSuspend1Barrier(WrappedSuspend1Barrier * barrier)318 inline void Thread::RemoveSuspend1Barrier(WrappedSuspend1Barrier* barrier) {
319 // 'barrier' should be in the list. If not, we will get a SIGSEGV with fault address of 4 or 8.
320 WrappedSuspend1Barrier** last = &tlsPtr_.active_suspend1_barriers;
321 while (*last != barrier) {
322 last = &((*last)->next_);
323 }
324 *last = (*last)->next_;
325 }
326
HasActiveSuspendBarrier()327 inline bool Thread::HasActiveSuspendBarrier() {
328 return tlsPtr_.active_suspend1_barriers != nullptr ||
329 tlsPtr_.active_suspendall_barrier != nullptr;
330 }
331
TransitionFromRunnableToSuspended(ThreadState new_state)332 inline void Thread::TransitionFromRunnableToSuspended(ThreadState new_state) {
333 // Note: JNI stubs inline a fast path of this method that transitions to suspended if
334 // there are no flags set and then clears the `held_mutexes[kMutatorLock]` (this comes
335 // from a specialized `BaseMutex::RegisterAsLockedImpl(., kMutatorLock)` inlined from
336 // the `GetMutatorLock()->TransitionFromRunnableToSuspended(this)` below).
337 // Therefore any code added here (other than debug build assertions) should be gated
338 // on some flag being set, so that the JNI stub can take the slow path to get here.
339 AssertThreadSuspensionIsAllowable();
340 PoisonObjectPointersIfDebug();
341 DCHECK_EQ(this, Thread::Current());
342 // Change to non-runnable state, thereby appearing suspended to the system.
343 TransitionToSuspendedAndRunCheckpoints(new_state);
344 // Mark the release of the share of the mutator lock.
345 GetMutatorLock()->TransitionFromRunnableToSuspended(this);
346 // Once suspended - check the active suspend barrier flag
347 CheckActiveSuspendBarriers();
348 }
349
TransitionFromSuspendedToRunnable(bool fail_on_suspend_req)350 inline ThreadState Thread::TransitionFromSuspendedToRunnable(bool fail_on_suspend_req) {
351 // Note: JNI stubs inline a fast path of this method that transitions to Runnable if
352 // there are no flags set and then stores the mutator lock to `held_mutexes[kMutatorLock]`
353 // (this comes from a specialized `BaseMutex::RegisterAsUnlockedImpl(., kMutatorLock)`
354 // inlined from the `GetMutatorLock()->TransitionFromSuspendedToRunnable(this)` below).
355 // Therefore any code added here (other than debug build assertions) should be gated
356 // on some flag being set, so that the JNI stub can take the slow path to get here.
357 DCHECK(this == Current());
358 StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
359 ThreadState old_state = old_state_and_flags.GetState();
360 DCHECK_NE(old_state, ThreadState::kRunnable);
361 while (true) {
362 DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kSuspensionImmune));
363 GetMutatorLock()->AssertNotHeld(this); // Otherwise we starve GC.
364 // Optimize for the return from native code case - this is the fast path.
365 // Atomically change from suspended to runnable if no suspend request pending.
366 constexpr uint32_t kCheckedFlags =
367 SuspendOrCheckpointRequestFlags() |
368 enum_cast<uint32_t>(ThreadFlag::kActiveSuspendBarrier) |
369 FlipFunctionFlags();
370 if (LIKELY(!old_state_and_flags.IsAnyOfFlagsSet(kCheckedFlags))) {
371 // CAS the value with a memory barrier.
372 StateAndFlags new_state_and_flags = old_state_and_flags.WithState(ThreadState::kRunnable);
373 if (LIKELY(tls32_.state_and_flags.CompareAndSetWeakAcquire(old_state_and_flags.GetValue(),
374 new_state_and_flags.GetValue()))) {
375 // Mark the acquisition of a share of the mutator lock.
376 GetMutatorLock()->TransitionFromSuspendedToRunnable(this);
377 break;
378 }
379 } else if (old_state_and_flags.IsFlagSet(ThreadFlag::kActiveSuspendBarrier)) {
380 PassActiveSuspendBarriers();
381 } else if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest) ||
382 old_state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest))) {
383 // Checkpoint flags should not be set while in suspended state.
384 static_assert(static_cast<std::underlying_type_t<ThreadState>>(ThreadState::kRunnable) == 0u);
385 LOG(FATAL) << "Transitioning to Runnable with checkpoint flag,"
386 // Note: Keeping unused flags. If they are set, it points to memory corruption.
387 << " flags=" << old_state_and_flags.WithState(ThreadState::kRunnable).GetValue()
388 << " state=" << old_state_and_flags.GetState();
389 } else if (old_state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest)) {
390 auto fake_mutator_locker = []() SHARED_LOCK_FUNCTION(Locks::mutator_lock_)
391 NO_THREAD_SAFETY_ANALYSIS {};
392 if (fail_on_suspend_req) {
393 // Should get here EXTREMELY rarely.
394 fake_mutator_locker(); // We lie to make thread-safety analysis mostly work. See thread.h.
395 return ThreadState::kInvalidState;
396 }
397 // Wait while our suspend count is non-zero.
398
399 // We pass null to the MutexLock as we may be in a situation where the
400 // runtime is shutting down. Guarding ourselves from that situation
401 // requires to take the shutdown lock, which is undesirable here.
402 Thread* thread_to_pass = nullptr;
403 if (kIsDebugBuild && !IsDaemon()) {
404 // We know we can make our debug locking checks on non-daemon threads,
405 // so re-enable them on debug builds.
406 thread_to_pass = this;
407 }
408 MutexLock mu(thread_to_pass, *Locks::thread_suspend_count_lock_);
409 // Reload state and flags after locking the mutex.
410 old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
411 DCHECK_EQ(old_state, old_state_and_flags.GetState());
412 while (old_state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest)) {
413 // Re-check when Thread::resume_cond_ is notified.
414 Thread::resume_cond_->Wait(thread_to_pass);
415 // Reload state and flags after waiting.
416 old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
417 DCHECK_EQ(old_state, old_state_and_flags.GetState());
418 }
419 DCHECK_EQ(GetSuspendCount(), 0);
420 } else if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction))) {
421 DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kPendingFlipFunction));
422 // Do this before transitioning to runnable, both because we shouldn't wait in a runnable
423 // state, and so that the thread running the flip function can DCHECK we're not runnable.
424 WaitForFlipFunction(this);
425 } else if (old_state_and_flags.IsFlagSet(ThreadFlag::kPendingFlipFunction)) {
426 // Logically acquire mutator lock in shared mode.
427 DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction));
428 if (EnsureFlipFunctionStarted(this, this, old_state_and_flags)) {
429 break;
430 }
431 }
432 // Reload state and flags.
433 old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
434 DCHECK_EQ(old_state, old_state_and_flags.GetState());
435 }
436 DCHECK_EQ(this->GetState(), ThreadState::kRunnable);
437 return static_cast<ThreadState>(old_state);
438 }
439
AllocTlab(size_t bytes)440 inline mirror::Object* Thread::AllocTlab(size_t bytes) {
441 DCHECK_GE(TlabSize(), bytes);
442 ++tlsPtr_.thread_local_objects;
443 mirror::Object* ret = reinterpret_cast<mirror::Object*>(tlsPtr_.thread_local_pos);
444 tlsPtr_.thread_local_pos += bytes;
445 return ret;
446 }
447
PushOnThreadLocalAllocationStack(mirror::Object * obj)448 inline bool Thread::PushOnThreadLocalAllocationStack(mirror::Object* obj) {
449 DCHECK_LE(tlsPtr_.thread_local_alloc_stack_top, tlsPtr_.thread_local_alloc_stack_end);
450 if (tlsPtr_.thread_local_alloc_stack_top < tlsPtr_.thread_local_alloc_stack_end) {
451 // There's room.
452 DCHECK_LE(reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_top) +
453 sizeof(StackReference<mirror::Object>),
454 reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_end));
455 DCHECK(tlsPtr_.thread_local_alloc_stack_top->AsMirrorPtr() == nullptr);
456 tlsPtr_.thread_local_alloc_stack_top->Assign(obj);
457 ++tlsPtr_.thread_local_alloc_stack_top;
458 return true;
459 }
460 return false;
461 }
462
GetWeakRefAccessEnabled()463 inline bool Thread::GetWeakRefAccessEnabled() const {
464 DCHECK(gUseReadBarrier);
465 DCHECK(this == Thread::Current());
466 WeakRefAccessState s = tls32_.weak_ref_access_enabled.load(std::memory_order_relaxed);
467 if (LIKELY(s == WeakRefAccessState::kVisiblyEnabled)) {
468 return true;
469 }
470 s = tls32_.weak_ref_access_enabled.load(std::memory_order_acquire);
471 if (s == WeakRefAccessState::kVisiblyEnabled) {
472 return true;
473 } else if (s == WeakRefAccessState::kDisabled) {
474 return false;
475 }
476 DCHECK(s == WeakRefAccessState::kEnabled)
477 << "state = " << static_cast<std::underlying_type_t<WeakRefAccessState>>(s);
478 // The state is only changed back to DISABLED during a checkpoint. Thus no other thread can
479 // change the value concurrently here. No other thread reads the value we store here, so there
480 // is no need for a release store.
481 tls32_.weak_ref_access_enabled.store(WeakRefAccessState::kVisiblyEnabled,
482 std::memory_order_relaxed);
483 return true;
484 }
485
SetThreadLocalAllocationStack(StackReference<mirror::Object> * start,StackReference<mirror::Object> * end)486 inline void Thread::SetThreadLocalAllocationStack(StackReference<mirror::Object>* start,
487 StackReference<mirror::Object>* end) {
488 DCHECK(Thread::Current() == this) << "Should be called by self";
489 DCHECK(start != nullptr);
490 DCHECK(end != nullptr);
491 DCHECK_ALIGNED(start, sizeof(StackReference<mirror::Object>));
492 DCHECK_ALIGNED(end, sizeof(StackReference<mirror::Object>));
493 DCHECK_LT(start, end);
494 tlsPtr_.thread_local_alloc_stack_end = end;
495 tlsPtr_.thread_local_alloc_stack_top = start;
496 }
497
RevokeThreadLocalAllocationStack()498 inline void Thread::RevokeThreadLocalAllocationStack() {
499 if (kIsDebugBuild) {
500 // Note: self is not necessarily equal to this thread since thread may be suspended.
501 Thread* self = Thread::Current();
502 DCHECK(this == self || GetState() != ThreadState::kRunnable)
503 << GetState() << " thread " << this << " self " << self;
504 }
505 tlsPtr_.thread_local_alloc_stack_end = nullptr;
506 tlsPtr_.thread_local_alloc_stack_top = nullptr;
507 }
508
PoisonObjectPointersIfDebug()509 inline void Thread::PoisonObjectPointersIfDebug() {
510 if (kObjPtrPoisoning) {
511 Thread::Current()->PoisonObjectPointers();
512 }
513 }
514
IncrementSuspendCount(Thread * self,AtomicInteger * suspendall_barrier,WrappedSuspend1Barrier * suspend1_barrier,SuspendReason reason)515 inline void Thread::IncrementSuspendCount(Thread* self,
516 AtomicInteger* suspendall_barrier,
517 WrappedSuspend1Barrier* suspend1_barrier,
518 SuspendReason reason) {
519 if (kIsDebugBuild) {
520 Locks::thread_suspend_count_lock_->AssertHeld(self);
521 if (this != self) {
522 Locks::thread_list_lock_->AssertHeld(self);
523 }
524 }
525 if (UNLIKELY(reason == SuspendReason::kForUserCode)) {
526 Locks::user_code_suspension_lock_->AssertHeld(self);
527 }
528
529 uint32_t flags = enum_cast<uint32_t>(ThreadFlag::kSuspendRequest);
530 if (suspendall_barrier != nullptr) {
531 DCHECK(suspend1_barrier == nullptr);
532 DCHECK(tlsPtr_.active_suspendall_barrier == nullptr);
533 tlsPtr_.active_suspendall_barrier = suspendall_barrier;
534 flags |= enum_cast<uint32_t>(ThreadFlag::kActiveSuspendBarrier);
535 } else if (suspend1_barrier != nullptr) {
536 AddSuspend1Barrier(suspend1_barrier);
537 flags |= enum_cast<uint32_t>(ThreadFlag::kActiveSuspendBarrier);
538 }
539
540 ++tls32_.suspend_count;
541 if (reason == SuspendReason::kForUserCode) {
542 ++tls32_.user_code_suspend_count;
543 }
544
545 // Two bits might be set simultaneously.
546 tls32_.state_and_flags.fetch_or(flags, std::memory_order_release);
547 TriggerSuspend();
548 }
549
IncrementSuspendCount(Thread * self)550 inline void Thread::IncrementSuspendCount(Thread* self) {
551 IncrementSuspendCount(self, nullptr, nullptr, SuspendReason::kInternal);
552 }
553
DecrementSuspendCount(Thread * self,bool for_user_code)554 inline void Thread::DecrementSuspendCount(Thread* self, bool for_user_code) {
555 DCHECK(ReadFlag(ThreadFlag::kSuspendRequest, std::memory_order_relaxed));
556 Locks::thread_suspend_count_lock_->AssertHeld(self);
557 if (UNLIKELY(tls32_.suspend_count <= 0)) {
558 UnsafeLogFatalForSuspendCount(self, this);
559 UNREACHABLE();
560 }
561 if (for_user_code) {
562 Locks::user_code_suspension_lock_->AssertHeld(self);
563 if (UNLIKELY(tls32_.user_code_suspend_count <= 0)) {
564 LOG(ERROR) << "user_code_suspend_count incorrect";
565 UnsafeLogFatalForSuspendCount(self, this);
566 UNREACHABLE();
567 }
568 --tls32_.user_code_suspend_count;
569 }
570
571 --tls32_.suspend_count;
572
573 if (tls32_.suspend_count == 0) {
574 AtomicClearFlag(ThreadFlag::kSuspendRequest, std::memory_order_release);
575 }
576 }
577
PushShadowFrame(ShadowFrame * new_top_frame)578 inline ShadowFrame* Thread::PushShadowFrame(ShadowFrame* new_top_frame) {
579 new_top_frame->CheckConsistentVRegs();
580 return tlsPtr_.managed_stack.PushShadowFrame(new_top_frame);
581 }
582
PopShadowFrame()583 inline ShadowFrame* Thread::PopShadowFrame() {
584 return tlsPtr_.managed_stack.PopShadowFrame();
585 }
586
587 template <>
588 inline uint8_t* Thread::GetStackEnd<StackType::kHardware>() const {
589 return tlsPtr_.stack_end;
590 }
591 template <>
592 inline void Thread::SetStackEnd<StackType::kHardware>(uint8_t* new_stack_end) {
593 tlsPtr_.stack_end = new_stack_end;
594 }
595 template <>
596 inline uint8_t* Thread::GetStackBegin<StackType::kHardware>() const {
597 return tlsPtr_.stack_begin;
598 }
599 template <>
600 inline void Thread::SetStackBegin<StackType::kHardware>(uint8_t* new_stack_begin) {
601 tlsPtr_.stack_begin = new_stack_begin;
602 }
603 template <>
604 inline size_t Thread::GetStackSize<StackType::kHardware>() const {
605 return tlsPtr_.stack_size;
606 }
607 template <>
608 inline void Thread::SetStackSize<StackType::kHardware>(size_t new_stack_size) {
609 tlsPtr_.stack_size = new_stack_size;
610 }
611
GetStackEndForInterpreter(bool implicit_overflow_check)612 inline uint8_t* Thread::GetStackEndForInterpreter(bool implicit_overflow_check) const {
613 uint8_t* end = GetStackEnd<kNativeStackType>() + (implicit_overflow_check
614 ? GetStackOverflowReservedBytes(kRuntimeQuickCodeISA)
615 : 0);
616 if (kIsDebugBuild) {
617 // In a debuggable build, but especially under ASAN, the access-checks interpreter has a
618 // potentially humongous stack size. We don't want to take too much of the stack regularly,
619 // so do not increase the regular reserved size (for compiled code etc) and only report the
620 // virtually smaller stack to the interpreter here.
621 end += GetStackOverflowReservedBytes(kRuntimeQuickCodeISA);
622 }
623 return end;
624 }
625
626 template <StackType stack_type>
ResetDefaultStackEnd()627 inline void Thread::ResetDefaultStackEnd() {
628 // Our stacks grow down, so we want stack_end_ to be near there, but reserving enough room
629 // to throw a StackOverflowError.
630 SetStackEnd<stack_type>(
631 GetStackBegin<stack_type>() + GetStackOverflowReservedBytes(kRuntimeQuickCodeISA));
632 }
633
634 template <StackType stack_type>
SetStackEndForStackOverflow()635 inline void Thread::SetStackEndForStackOverflow()
636 REQUIRES_SHARED(Locks::mutator_lock_) {
637 // During stack overflow we allow use of the full stack.
638 if (GetStackEnd<stack_type>() == GetStackBegin<stack_type>()) {
639 // However, we seem to have already extended to use the full stack.
640 LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
641 << GetStackOverflowReservedBytes(kRuntimeQuickCodeISA) << ")?";
642 DumpStack(LOG_STREAM(ERROR));
643 LOG(FATAL) << "Recursive stack overflow.";
644 }
645
646 SetStackEnd<stack_type>(GetStackBegin<stack_type>());
647 }
648
NotifyOnThreadExit(ThreadExitFlag * tef)649 inline void Thread::NotifyOnThreadExit(ThreadExitFlag* tef) {
650 DCHECK_EQ(tef->exited_, false);
651 DCHECK(tlsPtr_.thread_exit_flags == nullptr || !tlsPtr_.thread_exit_flags->exited_);
652 tef->next_ = tlsPtr_.thread_exit_flags;
653 tlsPtr_.thread_exit_flags = tef;
654 if (tef->next_ != nullptr) {
655 DCHECK(!tef->next_->HasExited());
656 tef->next_->prev_ = tef;
657 }
658 tef->prev_ = nullptr;
659 }
660
UnregisterThreadExitFlag(ThreadExitFlag * tef)661 inline void Thread::UnregisterThreadExitFlag(ThreadExitFlag* tef) {
662 if (tef->HasExited()) {
663 // List is no longer used; each client will deallocate its own ThreadExitFlag.
664 return;
665 }
666 DCHECK(IsRegistered(tef));
667 // Remove tef from the list.
668 if (tef->next_ != nullptr) {
669 tef->next_->prev_ = tef->prev_;
670 }
671 if (tef->prev_ == nullptr) {
672 DCHECK_EQ(tlsPtr_.thread_exit_flags, tef);
673 tlsPtr_.thread_exit_flags = tef->next_;
674 } else {
675 DCHECK_NE(tlsPtr_.thread_exit_flags, tef);
676 tef->prev_->next_ = tef->next_;
677 }
678 DCHECK(tlsPtr_.thread_exit_flags == nullptr || tlsPtr_.thread_exit_flags->prev_ == nullptr);
679 }
680
DCheckUnregisteredEverywhere(ThreadExitFlag * first,ThreadExitFlag * last)681 inline void Thread::DCheckUnregisteredEverywhere(ThreadExitFlag* first, ThreadExitFlag* last) {
682 if (!kIsDebugBuild) {
683 return;
684 }
685 Thread* self = Thread::Current();
686 MutexLock mu(self, *Locks::thread_list_lock_);
687 Runtime::Current()->GetThreadList()->ForEach([&](Thread* t) REQUIRES(Locks::thread_list_lock_) {
688 for (ThreadExitFlag* tef = t->tlsPtr_.thread_exit_flags; tef != nullptr; tef = tef->next_) {
689 CHECK(tef < first || tef > last)
690 << "tef = " << std::hex << tef << " first = " << first << std::dec;
691 }
692 // Also perform a minimal consistency check on each list.
693 ThreadExitFlag* flags = t->tlsPtr_.thread_exit_flags;
694 CHECK(flags == nullptr || flags->prev_ == nullptr);
695 });
696 }
697
IsRegistered(ThreadExitFlag * query_tef)698 inline bool Thread::IsRegistered(ThreadExitFlag* query_tef) {
699 for (ThreadExitFlag* tef = tlsPtr_.thread_exit_flags; tef != nullptr; tef = tef->next_) {
700 if (tef == query_tef) {
701 return true;
702 }
703 }
704 return false;
705 }
706
DisallowPreMonitorMutexes()707 inline void Thread::DisallowPreMonitorMutexes() {
708 if (kIsDebugBuild) {
709 CHECK(this == Thread::Current());
710 CHECK(GetHeldMutex(kMonitorLock) == nullptr);
711 // Pretend we hold a kMonitorLock level mutex to detect disallowed mutex
712 // acquisitions by checkpoint Run() methods. We don't normally register or thus check
713 // kMonitorLock level mutexes, but this is an exception.
714 Mutex* ph = cp_placeholder_mutex_.load(std::memory_order_acquire);
715 if (UNLIKELY(ph == nullptr)) {
716 Mutex* new_ph = new Mutex("checkpoint placeholder mutex", kMonitorLock);
717 if (LIKELY(cp_placeholder_mutex_.compare_exchange_strong(ph, new_ph))) {
718 ph = new_ph;
719 } else {
720 // ph now has the value set by another thread.
721 delete new_ph;
722 }
723 }
724 SetHeldMutex(kMonitorLock, ph);
725 }
726 }
727
728 // Undo the effect of the previous call. Again only invoked by the thread itself.
AllowPreMonitorMutexes()729 inline void Thread::AllowPreMonitorMutexes() {
730 if (kIsDebugBuild) {
731 CHECK_EQ(GetHeldMutex(kMonitorLock), cp_placeholder_mutex_.load(std::memory_order_relaxed));
732 SetHeldMutex(kMonitorLock, nullptr);
733 }
734 }
735
736 } // namespace art
737
738 #endif // ART_RUNTIME_THREAD_INL_H_
739