• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2021 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <algorithm>
7 #include <array>
8 #include <cmath>
9 #include <functional>
10 #include <limits>
11 #include <random>
12 #include <vector>
13 
14 #include <xnnpack.h>
15 
16 #include <benchmark/benchmark.h>
17 #include "bench/utils.h"
18 #ifdef BENCHMARK_TENSORFLOW_LITE
19 #include "flatbuffers/include/flatbuffers/flatbuffers.h"
20 #include "tensorflow/lite/interpreter.h"
21 #include "tensorflow/lite/kernels/register.h"
22 #include "tensorflow/lite/model.h"
23 #include "tensorflow/lite/schema/schema_generated.h"
24 #include "tensorflow/lite/version.h"
25 #endif  // BENCHMARK_TENSORFLOW_LITE
26 
27 
xnnpack_leaky_relu_f32(benchmark::State & state)28 static void xnnpack_leaky_relu_f32(benchmark::State& state) {
29   const size_t batch_size = state.range(0);
30 
31   std::random_device random_device;
32   auto rng = std::mt19937(random_device());
33   auto f32rng = std::bind(std::uniform_real_distribution<float>(-5.0f, 5.0f), std::ref(rng));
34 
35   std::vector<float> input(batch_size + XNN_EXTRA_BYTES / sizeof(float));
36   std::vector<float> output(batch_size);
37   std::generate(input.begin(), input.end(), std::ref(f32rng));
38   std::fill(output.begin(), output.end(), std::nanf(""));
39 
40   xnn_status status = xnn_initialize(nullptr /* allocator */);
41   if (status != xnn_status_success) {
42     state.SkipWithError("failed to initialize XNNPACK");
43     return;
44   }
45 
46   xnn_operator_t leaky_relu_op = nullptr;
47   status = xnn_create_leaky_relu_nc_f32(
48     1 /* channels */, 1 /* input stride */, 1 /* output stride */,
49     0.01f /* negative slope */,
50     0 /* flags */, &leaky_relu_op);
51   if (status != xnn_status_success || leaky_relu_op == nullptr) {
52     state.SkipWithError("failed to create Leaky ReLU operator");
53     return;
54   }
55 
56   status = xnn_setup_leaky_relu_nc_f32(
57     leaky_relu_op, batch_size,
58     input.data(), output.data(),
59     nullptr /* thread pool */);
60   if (status != xnn_status_success) {
61     state.SkipWithError("failed to setup Leaky ReLU operator");
62     return;
63   }
64 
65   for (auto _ : state) {
66     status = xnn_run_operator(leaky_relu_op, nullptr /* thread pool */);
67     if (status != xnn_status_success) {
68       state.SkipWithError("failed to run Leaky ReLU operator");
69       return;
70     }
71   }
72 
73   status = xnn_delete_operator(leaky_relu_op);
74   if (status != xnn_status_success) {
75     state.SkipWithError("failed to delete Leaky ReLU operator");
76     return;
77   }
78 
79   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
80   if (cpu_frequency != 0) {
81     state.counters["cpufreq"] = cpu_frequency;
82   }
83 
84   state.counters["elements"] =
85     benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate);
86 
87   const size_t bytes_per_iteration = 2 * batch_size * sizeof(float);
88   state.counters["bytes"] =
89     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
90 }
91 
92 #ifdef BENCHMARK_TENSORFLOW_LITE
tflite_leaky_relu_f32(benchmark::State & state)93 static void tflite_leaky_relu_f32(benchmark::State& state) {
94   const size_t batch_size = state.range(0);
95 
96   std::random_device random_device;
97   auto rng = std::mt19937(random_device());
98   auto f32rng = std::bind(std::uniform_real_distribution<float>(-5.0f, 5.0f), std::ref(rng));
99 
100   flatbuffers::FlatBufferBuilder builder;
101   const flatbuffers::Offset<tflite::OperatorCode> operator_code =
102       CreateOperatorCode(builder, tflite::BuiltinOperator_LEAKY_RELU);
103 
104   flatbuffers::Offset<tflite::LeakyReluOptions> leaky_relu_options =
105     tflite::CreateLeakyReluOptions(builder, 0.01f /* alpha */);
106 
107   const std::array<flatbuffers::Offset<tflite::Buffer>, 1> buffers{{
108     tflite::CreateBuffer(builder, builder.CreateVector({})),
109   }};
110 
111   const std::array<int32_t, 1> shape{{
112     static_cast<int32_t>(batch_size)
113   }};
114 
115   const std::array<flatbuffers::Offset<tflite::Tensor>, 2> tensors{{
116     tflite::CreateTensor(builder,
117                          builder.CreateVector<int32_t>(shape.data(), shape.size()),
118                          tflite::TensorType_FLOAT32),
119     tflite::CreateTensor(builder,
120                          builder.CreateVector<int32_t>(shape.data(), shape.size()),
121                          tflite::TensorType_FLOAT32),
122   }};
123 
124   const std::array<int32_t, 1> op_inputs{{ 0 }};
125   const std::array<int32_t, 1> op_outputs{{ 1 }};
126   flatbuffers::Offset<tflite::Operator> op = tflite::CreateOperator(
127       builder,
128       0 /* opcode_index */,
129       builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
130       builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()),
131       tflite::BuiltinOptions_LeakyReluOptions, leaky_relu_options.Union());
132 
133   const std::array<int32_t, 1> graph_inputs{{ 0 }};
134   const std::array<int32_t, 1> graph_outputs{{ 1 }};
135   const flatbuffers::Offset<tflite::SubGraph> subgraph = tflite::CreateSubGraph(
136       builder,
137       builder.CreateVector(tensors.data(), tensors.size()),
138       builder.CreateVector<int32_t>(graph_inputs.data(), graph_inputs.size()),
139       builder.CreateVector<int32_t>(graph_outputs.data(), graph_outputs.size()),
140       builder.CreateVector(&op, 1));
141 
142   const flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder,
143       TFLITE_SCHEMA_VERSION,
144       builder.CreateVector(&operator_code, 1),
145       builder.CreateVector(&subgraph, 1),
146       builder.CreateString("Leaky ReLU model"),
147       builder.CreateVector(buffers.data(), buffers.size()));
148 
149   builder.Finish(model_buffer);
150 
151   const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer());
152   tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver;
153   tflite::InterpreterBuilder interpreterBuilder(model, resolver);
154   std::unique_ptr<tflite::Interpreter> interpreter;
155   if (interpreterBuilder(&interpreter) != kTfLiteOk || interpreter == nullptr) {
156     state.SkipWithError("failed to create TFLite interpreter");
157     return;
158   }
159   interpreter->SetNumThreads(1);
160 
161   if (interpreter->AllocateTensors() != kTfLiteOk) {
162     state.SkipWithError("failed to allocate tensors");
163     return;
164   }
165 
166   std::generate(
167     interpreter->typed_tensor<float>(0),
168     interpreter->typed_tensor<float>(0) + batch_size,
169     std::ref(f32rng));
170 
171   for (auto _ : state) {
172     if (interpreter->Invoke() != kTfLiteOk) {
173       state.SkipWithError("failed to invoke TFLite interpreter");
174       return;
175     }
176   }
177 
178   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
179   if (cpu_frequency != 0) {
180     state.counters["cpufreq"] = cpu_frequency;
181   }
182 
183   state.counters["elements"] =
184     benchmark::Counter(uint64_t(state.iterations()) * batch_size, benchmark::Counter::kIsRate);
185 
186   const size_t bytes_per_iteration = 2 * batch_size * sizeof(float);
187   state.counters["bytes"] =
188     benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
189 
190   interpreter.reset();
191 }
192 #endif  // BENCHMARK_TENSORFLOW_LITE
193 
194 BENCHMARK(xnnpack_leaky_relu_f32)
195   ->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
196   ->UseRealTime();
197 
198 #ifdef BENCHMARK_TENSORFLOW_LITE
199   BENCHMARK(tflite_leaky_relu_f32)
200     ->Apply(benchmark::utils::UnaryElementwiseParameters<float, float>)
201     ->UseRealTime();
202 #endif  // BENCHMARK_TENSORFLOW_LITE
203 
204 #ifndef XNNPACK_BENCHMARK_NO_MAIN
205 BENCHMARK_MAIN();
206 #endif
207