• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2022 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$assert BATCH_TILE % 8 == 0
7$assert BATCH_TILE >= 8
8$SIMD_TILE = BATCH_TILE // 8
9#include <assert.h>
10
11#include <arm_neon.h>
12
13#include <xnnpack/common.h>
14#include <xnnpack/vunary.h>
15
16
17void xnn_f16_velu_ukernel__neonfp16arith_rr1_p3_x${BATCH_TILE}(
18    size_t n,
19    const void* input,
20    void* output,
21    const union xnn_f16_elu_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
22{
23  assert(n != 0);
24  assert(n % sizeof(__fp16) == 0);
25
26  const float16x8_t vprescale = vreinterpretq_f16_u16(vld1q_dup_u16(&params->neonfp16arith_rr1_p3.prescale));
27  const float16x8_t vsat_cutoff = vreinterpretq_f16_u16(vld1q_dup_u16(&params->neonfp16arith_rr1_p3.sat_cutoff));
28  const float16x8_t vmagic_bias = vreinterpretq_f16_u16(vld1q_dup_u16(&params->neonfp16arith_rr1_p3.magic_bias));
29  const float16x8_t vlog2e = vreinterpretq_f16_u16(vld1q_dup_u16(&params->neonfp16arith_rr1_p3.log2e));
30  const float16x8_t vminus_ln2 = vreinterpretq_f16_u16(vld1q_dup_u16(&params->neonfp16arith_rr1_p3.minus_ln2));
31  const float16x8_t vc3 = vreinterpretq_f16_u16(vld1q_dup_u16(&params->neonfp16arith_rr1_p3.c3));
32  const float16x8_t vc2 = vreinterpretq_f16_u16(vld1q_dup_u16(&params->neonfp16arith_rr1_p3.c2));
33  const float16x8_t vminus_alpha = vreinterpretq_f16_u16(vld1q_dup_u16(&params->neonfp16arith_rr1_p3.minus_alpha));
34  const float16x8_t vbeta = vreinterpretq_f16_u16(vld1q_dup_u16(&params->neonfp16arith_rr1_p3.beta));
35
36  const __fp16* i = (const __fp16*) input;
37  __fp16* o = (__fp16*) output;
38  $if BATCH_TILE > 8:
39    for (; n >= ${BATCH_TILE} * sizeof(__fp16); n -= ${BATCH_TILE} * sizeof(__fp16)) {
40      $for N in range(SIMD_TILE):
41        float16x8_t vx${N} = vld1q_f16(i); i += 8;
42
43      $for N in range(SIMD_TILE):
44        float16x8_t vz${N} = vmulq_f16(vx${N}, vprescale);
45
46      $for N in range(SIMD_TILE):
47        vz${N} = vmaxq_f16(vz${N}, vsat_cutoff);
48
49      $for N in range(SIMD_TILE):
50        float16x8_t vn${N} = vfmaq_f16(vmagic_bias, vz${N}, vlog2e);
51
52      $for N in range(SIMD_TILE):
53        float16x8_t vs${N} = vreinterpretq_f16_s16(vshlq_n_s16(vreinterpretq_s16_f16(vn${N}), 10));
54        vn${N} = vsubq_f16(vn${N}, vmagic_bias);
55
56      $for N in range(SIMD_TILE):
57        float16x8_t vt${N} = vfmaq_f16(vz${N}, vn${N}, vminus_ln2);
58
59      $for N in range(SIMD_TILE):
60        float16x8_t vp${N} = vfmaq_f16(vc2, vc3, vt${N});
61        vp${N} = vmulq_f16(vp${N}, vt${N});
62
63      $for N in range(SIMD_TILE):
64        vt${N} = vmulq_f16(vt${N}, vs${N});
65        vs${N} = vfmsq_f16(vminus_alpha, vs${N}, vminus_alpha);
66
67      $for N in range(SIMD_TILE):
68        vp${N} = vfmaq_f16(vt${N}, vp${N}, vt${N});
69
70      $for N in range(SIMD_TILE):
71        float16x8_t ve${N} = vfmsq_f16(vs${N}, vp${N}, vminus_alpha);
72        const uint16x8_t vm${N} = vcltq_s16(vreinterpretq_s16_f16(vx${N}), vmovq_n_s16(0));
73
74      $for N in range(SIMD_TILE):
75        vx${N} = vmulq_f16(vx${N}, vbeta);
76
77      $for N in range(SIMD_TILE):
78        const float16x8_t vy${N} = vbslq_f16(vm${N}, ve${N}, vx${N});
79
80      $for N in range(SIMD_TILE):
81        vst1q_f16(o, vy${N}); o += 8;
82    }
83  for (; n >= 8 * sizeof(__fp16); n -= 8 * sizeof(__fp16)) {
84    float16x8_t vx = vld1q_f16(i); i += 8;
85    float16x8_t vz = vmulq_f16(vx, vprescale);
86    vz = vmaxq_f16(vz, vsat_cutoff);
87
88    float16x8_t vn = vfmaq_f16(vmagic_bias, vz, vlog2e);
89    float16x8_t vs = vreinterpretq_f16_s16(vshlq_n_s16(vreinterpretq_s16_f16(vn), 10));
90    vn = vsubq_f16(vn, vmagic_bias);
91    float16x8_t vt = vfmaq_f16(vz, vn, vminus_ln2);
92
93    float16x8_t vp = vfmaq_f16(vc2, vc3, vt);
94    vp = vmulq_f16(vp, vt);
95    vt = vmulq_f16(vt, vs);
96    vs = vfmsq_f16(vminus_alpha, vs, vminus_alpha);
97    vp = vfmaq_f16(vt, vp, vt);
98    float16x8_t ve = vfmsq_f16(vs, vp, vminus_alpha);
99
100    const uint16x8_t vm = vcltq_s16(vreinterpretq_s16_f16(vx), vmovq_n_s16(0));
101    vx = vmulq_f16(vx, vbeta);
102    const float16x8_t vy = vbslq_f16(vm, ve, vx);
103    vst1q_f16(o, vy); o += 8;
104  }
105  if XNN_UNLIKELY(n != 0) {
106    float16x8_t vx = vld1q_f16(i); i += 8;
107    float16x8_t vz = vmulq_f16(vx, vprescale);
108    vz = vmaxq_f16(vz, vsat_cutoff);
109
110    float16x8_t vn = vfmaq_f16(vmagic_bias, vz, vlog2e);
111    float16x8_t vs = vreinterpretq_f16_s16(vshlq_n_s16(vreinterpretq_s16_f16(vn), 10));
112    vn = vsubq_f16(vn, vmagic_bias);
113    float16x8_t vt = vfmaq_f16(vz, vn, vminus_ln2);
114
115    float16x8_t vp = vfmaq_f16(vc2, vc3, vt);
116    vp = vmulq_f16(vp, vt);
117    vt = vmulq_f16(vt, vs);
118    vs = vfmsq_f16(vminus_alpha, vs, vminus_alpha);
119    vp = vfmaq_f16(vt, vp, vt);
120    float16x8_t ve = vfmsq_f16(vs, vp, vminus_alpha);
121
122    const uint16x8_t vm = vcltq_s16(vreinterpretq_s16_f16(vx), vmovq_n_s16(0));
123    vx = vmulq_f16(vx, vbeta);
124    float16x8_t vy = vbslq_f16(vm, ve, vx);
125    float16x4_t vy_lo = vget_low_f16(vy);
126    if (n & (4 * sizeof(__fp16))) {
127      vst1_f16(o, vy_lo); o += 4;
128      vy_lo = vget_high_f16(vy);
129    }
130    if (n & (2 * sizeof(__fp16))) {
131      vst1_lane_u32((void*) o, vreinterpret_u32_f16(vy_lo), 0); o += 2;
132      vy_lo = vext_f16(vy_lo, vy_lo, 2);
133    }
134    if (n & (1 * sizeof(__fp16))) {
135      vst1_lane_f16(o, vy_lo, 0);
136    }
137  }
138}
139