• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2022 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #pragma once
7 
8 #include <gtest/gtest.h>
9 
10 #include <algorithm>
11 #include <cassert>
12 #include <cmath>
13 #include <cstddef>
14 #include <cstdlib>
15 #include <random>
16 #include <vector>
17 
18 #include <xnnpack.h>
19 #include <xnnpack/aligned-allocator.h>
20 #include <xnnpack/microfnptr.h>
21 
22 
23 class FilterbankSubtractMicrokernelTester {
24  public:
25 
batch(size_t batch)26   inline FilterbankSubtractMicrokernelTester& batch(size_t batch) {
27     assert(batch != 0);
28     this->batch_ = batch;
29     return *this;
30   }
31 
batch()32   inline size_t batch() const {
33     return this->batch_;
34   }
35 
inplace(bool inplace)36   inline FilterbankSubtractMicrokernelTester& inplace(bool inplace) {
37     this->inplace_ = inplace;
38     return *this;
39   }
40 
inplace()41   inline bool inplace() const {
42     return this->inplace_;
43   }
44 
iterations(size_t iterations)45   inline FilterbankSubtractMicrokernelTester& iterations(size_t iterations) {
46     this->iterations_ = iterations;
47     return *this;
48   }
49 
iterations()50   inline size_t iterations() const {
51     return this->iterations_;
52   }
53 
Test(xnn_u32_filterbank_subtract_ukernel_function filterbank_subtract)54   void Test(xnn_u32_filterbank_subtract_ukernel_function filterbank_subtract) const {
55     std::random_device random_device;
56     auto rng = std::mt19937(random_device());
57     auto u32rng = std::bind(std::uniform_int_distribution<uint32_t>(), std::ref(rng));
58     const uint32_t smoothing = 655;
59     const uint32_t alternate_smoothing = 655;
60     const uint32_t one_minus_smoothing = 15729;
61     const uint32_t alternate_one_minus_smoothing = 15729;
62     const uint32_t min_signal_remaining = 819;
63     const uint32_t smoothing_bits = 0;
64     const uint32_t spectral_subtraction_bits = 14;
65 
66     std::vector<uint32_t, AlignedAllocator<uint32_t, 64>> x(batch() + XNN_EXTRA_BYTES / sizeof(uint32_t));
67     std::vector<uint32_t, AlignedAllocator<uint32_t, 64>> noise(batch() + XNN_EXTRA_BYTES / sizeof(uint32_t));
68     std::vector<uint32_t, AlignedAllocator<uint32_t, 64>> noise_ref(batch() + XNN_EXTRA_BYTES / sizeof(uint32_t));
69     std::vector<uint32_t, AlignedAllocator<uint32_t, 64>> y(batch() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint32_t) : 0));
70     std::vector<uint32_t, AlignedAllocator<uint32_t, 64>> y_ref(batch());
71     const uint32_t* x_data = inplace() ? y.data() : x.data();
72 
73     for (size_t iteration = 0; iteration < iterations(); iteration++) {
74       std::generate(x.begin(), x.end(), std::ref(u32rng));
75       std::iota(noise.begin(), noise.end(), 0);
76       std::iota(noise_ref.begin(), noise_ref.end(), 0);
77       std::generate(y.begin(), y.end(), std::ref(u32rng));
78       std::generate(y_ref.begin(), y_ref.end(), std::ref(u32rng));
79 
80       for (size_t n = 0; n < batch(); n += 2) {
81         const uint32_t vinput0 = x_data[n + 0];
82         const uint32_t vinput1 = x_data[n + 1];
83 
84         uint32_t vnoise_estimate0 = noise_ref[n + 0];
85         uint32_t vnoise_estimate1 = noise_ref[n + 1];
86 
87         // Scale up signa for smoothing filter computation.
88         const uint32_t vsignal_scaled_up0 = vinput0 << smoothing_bits;
89         const uint32_t vsignal_scaled_up1 = vinput1 << smoothing_bits;
90 
91         vnoise_estimate0 = (((uint64_t) (vsignal_scaled_up0) * smoothing) +
92                             ((uint64_t) (vnoise_estimate0) * one_minus_smoothing)) >> spectral_subtraction_bits;
93         vnoise_estimate1 = (((uint64_t) (vsignal_scaled_up1) * alternate_smoothing) +
94                             ((uint64_t) (vnoise_estimate1) * alternate_one_minus_smoothing)) >> spectral_subtraction_bits;
95 
96         noise_ref[n + 0] = vnoise_estimate0;
97         noise_ref[n + 1] = vnoise_estimate1;
98 
99         // Make sure that we can't get a negative value for the signal - estimate.
100         const uint32_t estimate_scaled_up0 = std::min(vnoise_estimate0, vsignal_scaled_up0);
101         const uint32_t estimate_scaled_up1 = std::min(vnoise_estimate1, vsignal_scaled_up1);
102         const uint32_t vsubtracted0 = (vsignal_scaled_up0 - estimate_scaled_up0) >> smoothing_bits;
103         const uint32_t vsubtracted1 = (vsignal_scaled_up1 - estimate_scaled_up1) >> smoothing_bits;
104 
105         const uint32_t vfloor0 = ((uint64_t) (vinput0) * min_signal_remaining) >> spectral_subtraction_bits;
106         const uint32_t vfloor1 = ((uint64_t) (vinput1) * min_signal_remaining) >> spectral_subtraction_bits;
107         const uint32_t vout0 = std::max(vsubtracted0, vfloor0);
108         const uint32_t vout1 = std::max(vsubtracted1, vfloor1);
109 
110         y_ref[n + 0] = vout0;
111         y_ref[n + 1] = vout1;
112       }
113 
114       // Call optimized micro-kernel.
115       filterbank_subtract(batch(), x_data,
116           smoothing, alternate_smoothing, one_minus_smoothing, alternate_one_minus_smoothing,
117           min_signal_remaining, smoothing_bits, spectral_subtraction_bits,
118           noise.data(), y.data());
119 
120       // Verify results.
121       for (size_t n = 0; n < batch(); n++) {
122         ASSERT_EQ(y[n], y_ref[n])
123             << "at n " << n << " / " << batch();
124         ASSERT_EQ(noise[n], noise_ref[n])
125             << "at n " << n << " / " << batch();
126       }
127     }
128   }
129 
130  private:
131   size_t batch_{48};
132   bool inplace_{false};
133   size_t iterations_{15};
134 };
135