• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2022 The Abseil Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // Simultaneous memcopy and CRC-32C for x86-64 and ARM 64. Uses integer
16 // registers because XMM registers do not support the CRC instruction (yet).
17 // While copying, compute the running CRC of the data being copied.
18 //
19 // It is assumed that any CPU running this code has SSE4.2 instructions
20 // available (for CRC32C).  This file will do nothing if that is not true.
21 //
22 // The CRC instruction has a 3-byte latency, and we are stressing the ALU ports
23 // here (unlike a traditional memcopy, which has almost no ALU use), so we will
24 // need to copy in such a way that the CRC unit is used efficiently. We have two
25 // regimes in this code:
26 //  1. For operations of size < kCrcSmallSize, do the CRC then the memcpy
27 //  2. For operations of size > kCrcSmallSize:
28 //      a) compute an initial CRC + copy on a small amount of data to align the
29 //         destination pointer on a 16-byte boundary.
30 //      b) Split the data into 3 main regions and a tail (smaller than 48 bytes)
31 //      c) Do the copy and CRC of the 3 main regions, interleaving (start with
32 //         full cache line copies for each region, then move to single 16 byte
33 //         pieces per region).
34 //      d) Combine the CRCs with CRC32C::Concat.
35 //      e) Copy the tail and extend the CRC with the CRC of the tail.
36 // This method is not ideal for op sizes between ~1k and ~8k because CRC::Concat
37 // takes a significant amount of time.  A medium-sized approach could be added
38 // using 3 CRCs over fixed-size blocks where the zero-extensions required for
39 // CRC32C::Concat can be precomputed.
40 
41 #ifdef __SSE4_2__
42 #include <immintrin.h>
43 #endif
44 
45 #ifdef _MSC_VER
46 #include <intrin.h>
47 #endif
48 
49 #include <array>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <memory>
54 
55 #include "absl/base/attributes.h"
56 #include "absl/base/config.h"
57 #include "absl/base/optimization.h"
58 #include "absl/base/prefetch.h"
59 #include "absl/crc/crc32c.h"
60 #include "absl/crc/internal/cpu_detect.h"
61 #include "absl/crc/internal/crc32_x86_arm_combined_simd.h"
62 #include "absl/crc/internal/crc_memcpy.h"
63 #include "absl/strings/string_view.h"
64 
65 #if defined(ABSL_INTERNAL_HAVE_X86_64_ACCELERATED_CRC_MEMCPY_ENGINE) || \
66     defined(ABSL_INTERNAL_HAVE_ARM_ACCELERATED_CRC_MEMCPY_ENGINE)
67 
68 namespace absl {
69 ABSL_NAMESPACE_BEGIN
70 namespace crc_internal {
71 
72 namespace {
73 
ShortCrcCopy(char * dst,const char * src,std::size_t length,crc32c_t crc)74 inline crc32c_t ShortCrcCopy(char* dst, const char* src, std::size_t length,
75                              crc32c_t crc) {
76   // Small copy: just go 1 byte at a time: being nice to the branch predictor
77   // is more important here than anything else
78   uint32_t crc_uint32 = static_cast<uint32_t>(crc);
79   for (std::size_t i = 0; i < length; i++) {
80     uint8_t data = *reinterpret_cast<const uint8_t*>(src);
81     crc_uint32 = CRC32_u8(crc_uint32, data);
82     *reinterpret_cast<uint8_t*>(dst) = data;
83     ++src;
84     ++dst;
85   }
86   return crc32c_t{crc_uint32};
87 }
88 
89 constexpr size_t kIntLoadsPerVec = sizeof(V128) / sizeof(uint64_t);
90 
91 // Common function for copying the tails of multiple large regions.
92 // Disable ubsan for benign unaligned access. See b/254108538.
93 template <size_t vec_regions, size_t int_regions>
LargeTailCopy(crc32c_t * crcs,char ** dst,const char ** src,size_t region_size,size_t copy_rounds)94 ABSL_ATTRIBUTE_NO_SANITIZE_UNDEFINED inline void LargeTailCopy(
95     crc32c_t* crcs, char** dst, const char** src, size_t region_size,
96     size_t copy_rounds) {
97   std::array<V128, vec_regions> data;
98   std::array<uint64_t, kIntLoadsPerVec * int_regions> int_data;
99 
100   while (copy_rounds > 0) {
101     for (size_t i = 0; i < vec_regions; i++) {
102       size_t region = i;
103 
104       auto* vsrc = reinterpret_cast<const V128*>(*src + region_size * region);
105       auto* vdst = reinterpret_cast<V128*>(*dst + region_size * region);
106 
107       // Load the blocks, unaligned
108       data[i] = V128_LoadU(vsrc);
109 
110       // Store the blocks, aligned
111       V128_Store(vdst, data[i]);
112 
113       // Compute the running CRC
114       crcs[region] = crc32c_t{static_cast<uint32_t>(
115           CRC32_u64(static_cast<uint32_t>(crcs[region]),
116                     static_cast<uint64_t>(V128_Extract64<0>(data[i]))))};
117       crcs[region] = crc32c_t{static_cast<uint32_t>(
118           CRC32_u64(static_cast<uint32_t>(crcs[region]),
119                     static_cast<uint64_t>(V128_Extract64<1>(data[i]))))};
120     }
121 
122     for (size_t i = 0; i < int_regions; i++) {
123       size_t region = vec_regions + i;
124 
125       auto* usrc =
126           reinterpret_cast<const uint64_t*>(*src + region_size * region);
127       auto* udst = reinterpret_cast<uint64_t*>(*dst + region_size * region);
128 
129       for (size_t j = 0; j < kIntLoadsPerVec; j++) {
130         size_t data_index = i * kIntLoadsPerVec + j;
131 
132         int_data[data_index] = *(usrc + j);
133         crcs[region] = crc32c_t{CRC32_u64(static_cast<uint32_t>(crcs[region]),
134                                           int_data[data_index])};
135 
136         *(udst + j) = int_data[data_index];
137       }
138     }
139 
140     // Increment pointers
141     *src += sizeof(V128);
142     *dst += sizeof(V128);
143     --copy_rounds;
144   }
145 }
146 
147 }  // namespace
148 
149 template <size_t vec_regions, size_t int_regions>
150 class AcceleratedCrcMemcpyEngine : public CrcMemcpyEngine {
151  public:
152   AcceleratedCrcMemcpyEngine() = default;
153   AcceleratedCrcMemcpyEngine(const AcceleratedCrcMemcpyEngine&) = delete;
154   AcceleratedCrcMemcpyEngine operator=(const AcceleratedCrcMemcpyEngine&) =
155       delete;
156 
157   crc32c_t Compute(void* __restrict dst, const void* __restrict src,
158                    std::size_t length, crc32c_t initial_crc) const override;
159 };
160 
161 // Disable ubsan for benign unaligned access. See b/254108538.
162 template <size_t vec_regions, size_t int_regions>
163 ABSL_ATTRIBUTE_NO_SANITIZE_UNDEFINED crc32c_t
Compute(void * __restrict dst,const void * __restrict src,std::size_t length,crc32c_t initial_crc) const164 AcceleratedCrcMemcpyEngine<vec_regions, int_regions>::Compute(
165     void* __restrict dst, const void* __restrict src, std::size_t length,
166     crc32c_t initial_crc) const {
167   constexpr std::size_t kRegions = vec_regions + int_regions;
168   static_assert(kRegions > 0, "Must specify at least one region.");
169   constexpr uint32_t kCrcDataXor = uint32_t{0xffffffff};
170   constexpr std::size_t kBlockSize = sizeof(V128);
171   constexpr std::size_t kCopyRoundSize = kRegions * kBlockSize;
172 
173   // Number of blocks per cacheline.
174   constexpr std::size_t kBlocksPerCacheLine = ABSL_CACHELINE_SIZE / kBlockSize;
175 
176   char* dst_bytes = static_cast<char*>(dst);
177   const char* src_bytes = static_cast<const char*>(src);
178 
179   // Make sure that one prefetch per big block is enough to cover the whole
180   // dataset, and we don't prefetch too much.
181   static_assert(ABSL_CACHELINE_SIZE % kBlockSize == 0,
182                 "Cache lines are not divided evenly into blocks, may have "
183                 "unintended behavior!");
184 
185   // Experimentally-determined boundary between a small and large copy.
186   // Below this number, spin-up and concatenation of CRCs takes enough time that
187   // it kills the throughput gains of using 3 regions and wide vectors.
188   constexpr size_t kCrcSmallSize = 256;
189 
190   // Experimentally-determined prefetch distance.  Main loop copies will
191   // prefeth data 2 cache lines ahead.
192   constexpr std::size_t kPrefetchAhead = 2 * ABSL_CACHELINE_SIZE;
193 
194   // Small-size CRC-memcpy : just do CRC + memcpy
195   if (length < kCrcSmallSize) {
196     crc32c_t crc =
197         ExtendCrc32c(initial_crc, absl::string_view(src_bytes, length));
198     memcpy(dst, src, length);
199     return crc;
200   }
201 
202   // Start work on the CRC: undo the XOR from the previous calculation or set up
203   // the initial value of the CRC.
204   initial_crc = crc32c_t{static_cast<uint32_t>(initial_crc) ^ kCrcDataXor};
205 
206   // Do an initial alignment copy, so we can use aligned store instructions to
207   // the destination pointer.  We align the destination pointer because the
208   // penalty for an unaligned load is small compared to the penalty of an
209   // unaligned store on modern CPUs.
210   std::size_t bytes_from_last_aligned =
211       reinterpret_cast<uintptr_t>(dst) & (kBlockSize - 1);
212   if (bytes_from_last_aligned != 0) {
213     std::size_t bytes_for_alignment = kBlockSize - bytes_from_last_aligned;
214 
215     // Do the short-sized copy and CRC.
216     initial_crc =
217         ShortCrcCopy(dst_bytes, src_bytes, bytes_for_alignment, initial_crc);
218     src_bytes += bytes_for_alignment;
219     dst_bytes += bytes_for_alignment;
220     length -= bytes_for_alignment;
221   }
222 
223   // We are going to do the copy and CRC in kRegions regions to make sure that
224   // we can saturate the CRC unit.  The CRCs will be combined at the end of the
225   // run.  Copying will use the SSE registers, and we will extract words from
226   // the SSE registers to add to the CRC.  Initially, we run the loop one full
227   // cache line per region at a time, in order to insert prefetches.
228 
229   // Initialize CRCs for kRegions regions.
230   crc32c_t crcs[kRegions];
231   crcs[0] = initial_crc;
232   for (size_t i = 1; i < kRegions; i++) {
233     crcs[i] = crc32c_t{kCrcDataXor};
234   }
235 
236   // Find the number of rounds to copy and the region size.  Also compute the
237   // tail size here.
238   size_t copy_rounds = length / kCopyRoundSize;
239 
240   // Find the size of each region and the size of the tail.
241   const std::size_t region_size = copy_rounds * kBlockSize;
242   const std::size_t tail_size = length - (kRegions * region_size);
243 
244   // Holding registers for data in each region.
245   std::array<V128, vec_regions> vec_data;
246   std::array<uint64_t, int_regions * kIntLoadsPerVec> int_data;
247 
248   // Main loop.
249   while (copy_rounds > kBlocksPerCacheLine) {
250     // Prefetch kPrefetchAhead bytes ahead of each pointer.
251     for (size_t i = 0; i < kRegions; i++) {
252       absl::PrefetchToLocalCache(src_bytes + kPrefetchAhead + region_size * i);
253 #ifdef ABSL_INTERNAL_HAVE_X86_64_ACCELERATED_CRC_MEMCPY_ENGINE
254       // TODO(b/297082454): investigate dropping prefetch on x86.
255       absl::PrefetchToLocalCache(dst_bytes + kPrefetchAhead + region_size * i);
256 #endif
257     }
258 
259     // Load and store data, computing CRC on the way.
260     for (size_t i = 0; i < kBlocksPerCacheLine; i++) {
261       // Copy and CRC the data for the CRC regions.
262       for (size_t j = 0; j < vec_regions; j++) {
263         // Cycle which regions get vector load/store and integer load/store, to
264         // engage prefetching logic around vector load/stores and save issue
265         // slots by using the integer registers.
266         size_t region = (j + i) % kRegions;
267 
268         auto* vsrc =
269             reinterpret_cast<const V128*>(src_bytes + region_size * region);
270         auto* vdst = reinterpret_cast<V128*>(dst_bytes + region_size * region);
271 
272         // Load and CRC data.
273         vec_data[j] = V128_LoadU(vsrc + i);
274         crcs[region] = crc32c_t{static_cast<uint32_t>(
275             CRC32_u64(static_cast<uint32_t>(crcs[region]),
276                       static_cast<uint64_t>(V128_Extract64<0>(vec_data[j]))))};
277         crcs[region] = crc32c_t{static_cast<uint32_t>(
278             CRC32_u64(static_cast<uint32_t>(crcs[region]),
279                       static_cast<uint64_t>(V128_Extract64<1>(vec_data[j]))))};
280 
281         // Store the data.
282         V128_Store(vdst + i, vec_data[j]);
283       }
284 
285       // Preload the partial CRCs for the CLMUL subregions.
286       for (size_t j = 0; j < int_regions; j++) {
287         // Cycle which regions get vector load/store and integer load/store, to
288         // engage prefetching logic around vector load/stores and save issue
289         // slots by using the integer registers.
290         size_t region = (j + vec_regions + i) % kRegions;
291 
292         auto* usrc =
293             reinterpret_cast<const uint64_t*>(src_bytes + region_size * region);
294         auto* udst =
295             reinterpret_cast<uint64_t*>(dst_bytes + region_size * region);
296 
297         for (size_t k = 0; k < kIntLoadsPerVec; k++) {
298           size_t data_index = j * kIntLoadsPerVec + k;
299 
300           // Load and CRC the data.
301           int_data[data_index] = *(usrc + i * kIntLoadsPerVec + k);
302           crcs[region] = crc32c_t{CRC32_u64(static_cast<uint32_t>(crcs[region]),
303                                             int_data[data_index])};
304 
305           // Store the data.
306           *(udst + i * kIntLoadsPerVec + k) = int_data[data_index];
307         }
308       }
309     }
310 
311     // Increment pointers
312     src_bytes += kBlockSize * kBlocksPerCacheLine;
313     dst_bytes += kBlockSize * kBlocksPerCacheLine;
314     copy_rounds -= kBlocksPerCacheLine;
315   }
316 
317   // Copy and CRC the tails of each region.
318   LargeTailCopy<vec_regions, int_regions>(crcs, &dst_bytes, &src_bytes,
319                                           region_size, copy_rounds);
320 
321   // Move the source and destination pointers to the end of the region
322   src_bytes += region_size * (kRegions - 1);
323   dst_bytes += region_size * (kRegions - 1);
324 
325   // Copy and CRC the tail through the XMM registers.
326   std::size_t tail_blocks = tail_size / kBlockSize;
327   LargeTailCopy<0, 1>(&crcs[kRegions - 1], &dst_bytes, &src_bytes, 0,
328                       tail_blocks);
329 
330   // Final tail copy for under 16 bytes.
331   crcs[kRegions - 1] =
332       ShortCrcCopy(dst_bytes, src_bytes, tail_size - tail_blocks * kBlockSize,
333                    crcs[kRegions - 1]);
334 
335   if (kRegions == 1) {
336     // If there is only one region, finalize and return its CRC.
337     return crc32c_t{static_cast<uint32_t>(crcs[0]) ^ kCrcDataXor};
338   }
339 
340   // Finalize the first CRCs: XOR the internal CRCs by the XOR mask to undo the
341   // XOR done before doing block copy + CRCs.
342   for (size_t i = 0; i + 1 < kRegions; i++) {
343     crcs[i] = crc32c_t{static_cast<uint32_t>(crcs[i]) ^ kCrcDataXor};
344   }
345 
346   // Build a CRC of the first kRegions - 1 regions.
347   crc32c_t full_crc = crcs[0];
348   for (size_t i = 1; i + 1 < kRegions; i++) {
349     full_crc = ConcatCrc32c(full_crc, crcs[i], region_size);
350   }
351 
352   // Finalize and concatenate the final CRC, then return.
353   crcs[kRegions - 1] =
354       crc32c_t{static_cast<uint32_t>(crcs[kRegions - 1]) ^ kCrcDataXor};
355   return ConcatCrc32c(full_crc, crcs[kRegions - 1], region_size + tail_size);
356 }
357 
GetArchSpecificEngines()358 CrcMemcpy::ArchSpecificEngines CrcMemcpy::GetArchSpecificEngines() {
359 #ifdef UNDEFINED_BEHAVIOR_SANITIZER
360   // UBSAN does not play nicely with unaligned loads (which we use a lot).
361   // Get the underlying architecture.
362   CpuType cpu_type = GetCpuType();
363   switch (cpu_type) {
364     case CpuType::kAmdRome:
365     case CpuType::kAmdNaples:
366     case CpuType::kAmdMilan:
367     case CpuType::kAmdGenoa:
368     case CpuType::kAmdRyzenV3000:
369     case CpuType::kIntelCascadelakeXeon:
370     case CpuType::kIntelSkylakeXeon:
371     case CpuType::kIntelSkylake:
372     case CpuType::kIntelBroadwell:
373     case CpuType::kIntelHaswell:
374     case CpuType::kIntelIvybridge:
375       return {
376           /*.temporal=*/new FallbackCrcMemcpyEngine(),
377           /*.non_temporal=*/new CrcNonTemporalMemcpyAVXEngine(),
378       };
379     // INTEL_SANDYBRIDGE performs better with SSE than AVX.
380     case CpuType::kIntelSandybridge:
381       return {
382           /*.temporal=*/new FallbackCrcMemcpyEngine(),
383           /*.non_temporal=*/new CrcNonTemporalMemcpyEngine(),
384       };
385     default:
386       return {/*.temporal=*/new FallbackCrcMemcpyEngine(),
387               /*.non_temporal=*/new FallbackCrcMemcpyEngine()};
388   }
389 #else
390   // Get the underlying architecture.
391   CpuType cpu_type = GetCpuType();
392   switch (cpu_type) {
393     // On Zen 2, PEXTRQ uses 2 micro-ops, including one on the vector store port
394     // which data movement from the vector registers to the integer registers
395     // (where CRC32C happens) to crowd the same units as vector stores.  As a
396     // result, using that path exclusively causes bottlenecking on this port.
397     // We can avoid this bottleneck by using the integer side of the CPU for
398     // most operations rather than the vector side.  We keep a vector region to
399     // engage some of the prefetching logic in the cache hierarchy which seems
400     // to give vector instructions special treatment.  These prefetch units see
401     // strided access to each region, and do the right thing.
402     case CpuType::kAmdRome:
403     case CpuType::kAmdNaples:
404     case CpuType::kAmdMilan:
405     case CpuType::kAmdGenoa:
406     case CpuType::kAmdRyzenV3000:
407       return {
408           /*.temporal=*/new AcceleratedCrcMemcpyEngine<1, 2>(),
409           /*.non_temporal=*/new CrcNonTemporalMemcpyAVXEngine(),
410       };
411     // PCLMULQDQ is slow and we don't have wide enough issue width to take
412     // advantage of it.  For an unknown architecture, don't risk using CLMULs.
413     case CpuType::kIntelCascadelakeXeon:
414     case CpuType::kIntelSkylakeXeon:
415     case CpuType::kIntelSkylake:
416     case CpuType::kIntelBroadwell:
417     case CpuType::kIntelHaswell:
418     case CpuType::kIntelIvybridge:
419       return {
420           /*.temporal=*/new AcceleratedCrcMemcpyEngine<3, 0>(),
421           /*.non_temporal=*/new CrcNonTemporalMemcpyAVXEngine(),
422       };
423     // INTEL_SANDYBRIDGE performs better with SSE than AVX.
424     case CpuType::kIntelSandybridge:
425       return {
426           /*.temporal=*/new AcceleratedCrcMemcpyEngine<3, 0>(),
427           /*.non_temporal=*/new CrcNonTemporalMemcpyEngine(),
428       };
429     default:
430       return {/*.temporal=*/new FallbackCrcMemcpyEngine(),
431               /*.non_temporal=*/new FallbackCrcMemcpyEngine()};
432   }
433 #endif  // UNDEFINED_BEHAVIOR_SANITIZER
434 }
435 
436 // For testing, allow the user to specify which engine they want.
GetTestEngine(int vector,int integer)437 std::unique_ptr<CrcMemcpyEngine> CrcMemcpy::GetTestEngine(int vector,
438                                                           int integer) {
439   if (vector == 3 && integer == 0) {
440     return std::make_unique<AcceleratedCrcMemcpyEngine<3, 0>>();
441   } else if (vector == 1 && integer == 2) {
442     return std::make_unique<AcceleratedCrcMemcpyEngine<1, 2>>();
443   } else if (vector == 1 && integer == 0) {
444     return std::make_unique<AcceleratedCrcMemcpyEngine<1, 0>>();
445   }
446   return nullptr;
447 }
448 
449 }  // namespace crc_internal
450 ABSL_NAMESPACE_END
451 }  // namespace absl
452 
453 #endif  // ABSL_INTERNAL_HAVE_X86_64_ACCELERATED_CRC_MEMCPY_ENGINE ||
454         // ABSL_INTERNAL_HAVE_ARM_ACCELERATED_CRC_MEMCPY_ENGINE
455