• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2021 The Abseil Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef ABSL_STRINGS_INTERNAL_CORD_REP_BTREE_H_
16 #define ABSL_STRINGS_INTERNAL_CORD_REP_BTREE_H_
17 
18 #include <cassert>
19 #include <cstdint>
20 #include <iosfwd>
21 
22 #include "absl/base/config.h"
23 #include "absl/base/internal/raw_logging.h"
24 #include "absl/base/optimization.h"
25 #include "absl/strings/internal/cord_data_edge.h"
26 #include "absl/strings/internal/cord_internal.h"
27 #include "absl/strings/internal/cord_rep_flat.h"
28 #include "absl/strings/string_view.h"
29 #include "absl/types/span.h"
30 
31 namespace absl {
32 ABSL_NAMESPACE_BEGIN
33 namespace cord_internal {
34 
35 // `SetCordBtreeExhaustiveValidation()` can be set to force exhaustive
36 // validation in debug assertions, and code that calls `IsValid()`
37 // explicitly. By default, assertions should be relatively cheap and
38 // AssertValid() can easily lead to O(n^2) complexity as recursive / full tree
39 // validation is O(n).
40 void SetCordBtreeExhaustiveValidation(bool do_exaustive_validation);
41 bool IsCordBtreeExhaustiveValidationEnabled();
42 
43 class CordRepBtreeNavigator;
44 
45 // CordRepBtree is as the name implies a btree implementation of a Cordrep tree.
46 // Data is stored at the leaf level only, non leaf nodes contain down pointers
47 // only. Allowed types of data edges are FLAT, EXTERNAL and SUBSTRINGs of FLAT
48 // or EXTERNAL nodes. The implementation allows for data to be added to either
49 // end of the tree only, it does not provide any 'insert' logic. This has the
50 // benefit that we can expect good fill ratios: all nodes except the outer
51 // 'legs' will have 100% fill ratios for trees built using Append/Prepend
52 // methods. Merged trees will typically have a fill ratio well above 50% as in a
53 // similar fashion, one side of the merged tree will typically have a 100% fill
54 // ratio, and the 'open' end will average 50%. All operations are O(log(n)) or
55 // better, and the tree never needs balancing.
56 //
57 // All methods accepting a CordRep* or CordRepBtree* adopt a reference on that
58 // input unless explicitly stated otherwise. All functions returning a CordRep*
59 // or CordRepBtree* instance transfer a reference back to the caller.
60 // Simplified, callers both 'donate' and 'consume' a reference count on each
61 // call, simplifying the API. An example of building a tree:
62 //
63 //   CordRepBtree* tree = CordRepBtree::Create(MakeFlat("Hello"));
64 //   tree = CordRepBtree::Append(tree, MakeFlat("world"));
65 //
66 // In the above example, all inputs are consumed, making each call affecting
67 // `tree` reference count neutral. The returned `tree` value can be different
68 // from the input if the input is shared with other threads, or if the tree
69 // grows in height, but callers typically never have to concern themselves with
70 // that and trust that all methods DTRT at all times.
71 class CordRepBtree : public CordRep {
72  public:
73   // EdgeType identifies `front` and `back` enum values.
74   // Various implementations in CordRepBtree such as `Add` and `Edge` are
75   // generic and templated on operating on either of the boundary edges.
76   // For more information on the possible edges contained in a CordRepBtree
77   // instance see the documentation for `edges_`.
78   enum class EdgeType { kFront, kBack };
79 
80   // Convenience constants into `EdgeType`
81   static constexpr EdgeType kFront = EdgeType::kFront;
82   static constexpr EdgeType kBack = EdgeType::kBack;
83 
84   // Maximum number of edges: based on experiments and performance data, we can
85   // pick suitable values resulting in optimum cacheline aligned values. The
86   // preferred values are based on 64-bit systems where we aim to align this
87   // class onto 64 bytes, i.e.:  6 = 64 bytes, 14 = 128 bytes, etc.
88   // TODO(b/192061034): experiment with alternative sizes.
89   static constexpr size_t kMaxCapacity = 6;
90 
91   // Reasonable maximum height of the btree. We can expect a fill ratio of at
92   // least 50%: trees are always expanded at the front or back. Concatenating
93   // trees will then typically fold at the top most node, where the lower nodes
94   // are at least at capacity on one side of joined inputs. At a lower fill
95   // rate of 4 edges per node, we have capacity for ~16 million leaf nodes.
96   // We will fail / abort if an application ever exceeds this height, which
97   // should be extremely rare (near impossible) and be an indication of an
98   // application error: we do not assume it reasonable for any application to
99   // operate correctly with such monster trees.
100   // Another compelling reason for the number `12` is that any contextual stack
101   // required for navigation or insertion requires 12 words and 12 bytes, which
102   // fits inside 2 cache lines with some room to spare, and is reasonable as a
103   // local stack variable compared to Cord's current near 400 bytes stack use.
104   // The maximum `height` value of a node is then `kMaxDepth - 1` as node height
105   // values start with a value of 0 for leaf nodes.
106   static constexpr size_t kMaxDepth = 12;
107   // See comments on height() for why this is an int and not a size_t.
108   static constexpr int kMaxHeight = static_cast<int>(kMaxDepth - 1);
109 
110   // `Action` defines the action for unwinding changes done at the btree's leaf
111   // level that need to be propagated up to the parent node(s). Each operation
112   // on a node has an effect / action defined as follows:
113   // - kSelf
114   //   The operation (add / update, etc) was performed directly on the node as
115   //   the node is private to the current thread (i.e.: not shared directly or
116   //   indirectly through a refcount > 1). Changes can be propagated directly to
117   //   all parent nodes as all parent nodes are also then private to the current
118   //   thread.
119   // - kCopied
120   //   The operation (add / update, etc) was performed on a copy of the original
121   //   node, as the node is (potentially) directly or indirectly shared with
122   //   other threads. Changes need to be propagated into the parent nodes where
123   //   the old down pointer must be unreffed and replaced with this new copy.
124   //   Such changes to parent nodes may themselves require a copy if the parent
125   //   node is also shared. A kCopied action can propagate all the way to the
126   //   top node where we then must unref the `tree` input provided by the
127   //   caller, and return the new copy.
128   // - kPopped
129   //   The operation (typically add) could not be satisfied due to insufficient
130   //   capacity in the targeted node, and a new 'leg' was created that needs to
131   //   be added into the parent node. For example, adding a FLAT inside a leaf
132   //   node that is at capacity will create a new leaf node containing that
133   //   FLAT, that needs to be 'popped' up the btree. Such 'pop' actions can
134   //   cascade up the tree if parent nodes are also at capacity. A 'Popped'
135   //   action propagating all the way to the top of the tree will result in
136   //   the tree becoming one level higher than the current tree through a final
137   //   `CordRepBtree::New(tree, popped)` call, resulting in a new top node
138   //   referencing the old tree and the new (fully popped upwards) 'leg'.
139   enum Action { kSelf, kCopied, kPopped };
140 
141   // Result of an operation on a node. See the `Action` enum for details.
142   struct OpResult {
143     CordRepBtree* tree;
144     Action action;
145   };
146 
147   // Return value of the CopyPrefix and CopySuffix methods which can
148   // return a node or data edge at any height inside the tree.
149   // A height of 0 defines the lowest (leaf) node, a height of -1 identifies
150   // `edge` as being a plain data node: EXTERNAL / FLAT or SUBSTRING thereof.
151   struct CopyResult {
152     CordRep* edge;
153     int height;
154   };
155 
156   // Logical position inside a node:
157   // - index: index of the edge.
158   // - n: size or offset value depending on context.
159   struct Position {
160     size_t index;
161     size_t n;
162   };
163 
164   // Creates a btree from the given input. Adopts a ref of `rep`.
165   // If the input `rep` is itself a btree, i.e., `IsBtree()`, then this
166   // function immediately returns `rep->btree()`. If the input is a valid data
167   // edge (see IsDataEdge()), then a new leaf node is returned containing `rep`
168   // as the sole data edge. Else, the input is assumed to be a (legacy) concat
169   // tree, and the input is consumed and transformed into a btree().
170   static CordRepBtree* Create(CordRep* rep);
171 
172   // Destroys the provided tree. Should only be called by cord internal API's,
173   // typically after a ref_count.Decrement() on the last reference count.
174   static void Destroy(CordRepBtree* tree);
175 
176   // Destruction
Delete(CordRepBtree * tree)177   static void Delete(CordRepBtree* tree) { delete tree; }
178 
179   // Use CordRep::Unref() as we overload for absl::Span<CordRep* const>.
180   using CordRep::Unref;
181 
182   // Unrefs all edges in `edges` which are assumed to be 'likely one'.
183   static void Unref(absl::Span<CordRep* const> edges);
184 
185   // Appends / Prepends an existing CordRep instance to this tree.
186   // The below methods accept three types of input:
187   // 1) `rep` is a data node (See `IsDataNode` for valid data edges).
188   // `rep` is appended or prepended to this tree 'as is'.
189   // 2) `rep` is a BTREE.
190   // `rep` is merged into `tree` respecting the Append/Prepend order.
191   // 3) `rep` is some other (legacy) type.
192   // `rep` is converted in place and added to `tree`
193   // Requires `tree` and `rep` to be not null.
194   static CordRepBtree* Append(CordRepBtree* tree, CordRep* rep);
195   static CordRepBtree* Prepend(CordRepBtree* tree, CordRep* rep);
196 
197   // Append/Prepend the data in `data` to this tree.
198   // The `extra` parameter defines how much extra capacity should be allocated
199   // for any additional FLAT being allocated. This is an optimization hint from
200   // the caller. For example, a caller may need to add 2 string_views of data
201   // "abc" and "defghi" which are not consecutive. The caller can in this case
202   // invoke `AddData(tree, "abc", 6)`, and any newly added flat is allocated
203   // where possible with at least 6 bytes of extra capacity beyond `length`.
204   // This helps avoiding data getting fragmented over multiple flats.
205   // There is no limit on the size of `data`. If `data` can not be stored inside
206   // a single flat, then the function will iteratively add flats until all data
207   // has been consumed and appended or prepended to the tree.
208   static CordRepBtree* Append(CordRepBtree* tree, string_view data,
209                               size_t extra = 0);
210   static CordRepBtree* Prepend(CordRepBtree* tree, string_view data,
211                                size_t extra = 0);
212 
213   // Returns a new tree, containing `n` bytes of data from this instance
214   // starting at offset `offset`. Where possible, the returned tree shares
215   // (re-uses) data edges and nodes with this instance to minimize the
216   // combined memory footprint of both trees.
217   // Requires `offset + n <= length`. Returns `nullptr` if `n` is zero.
218   CordRep* SubTree(size_t offset, size_t n);
219 
220   // Removes `n` trailing bytes from `tree`, and returns the resulting tree
221   // or data edge. Returns `tree` if n is zero, and nullptr if n == length.
222   // This function is logically identical to:
223   //   result = tree->SubTree(0, tree->length - n);
224   //   Unref(tree);
225   //   return result;
226   // However, the actual implementation will as much as possible perform 'in
227   // place' modifications on the tree on all nodes and edges that are mutable.
228   // For example, in a fully privately owned tree with the last edge being a
229   // flat of length 12, RemoveSuffix(1) will simply set the length of that data
230   // edge to 11, and reduce the length of all nodes on the edge path by 1.
231   static CordRep* RemoveSuffix(CordRepBtree* tree, size_t n);
232 
233   // Returns the character at the given offset.
234   char GetCharacter(size_t offset) const;
235 
236   // Returns true if this node holds a single data edge, and if so, sets
237   // `fragment` to reference the contained data. `fragment` is an optional
238   // output parameter and allowed to be null.
239   bool IsFlat(absl::string_view* fragment) const;
240 
241   // Returns true if the data of `n` bytes starting at offset `offset`
242   // is contained in a single data edge, and if so, sets fragment to reference
243   // the contained data. `fragment` is an optional output parameter and allowed
244   // to be null.
245   bool IsFlat(size_t offset, size_t n, absl::string_view* fragment) const;
246 
247   // Returns a span (mutable range of bytes) of up to `size` bytes into the
248   // last FLAT data edge inside this tree under the following conditions:
249   // - none of the nodes down into the FLAT node are shared.
250   // - the last data edge in this tree is a non-shared FLAT.
251   // - the referenced FLAT has additional capacity available.
252   // If all these conditions are met, a non-empty span is returned, and the
253   // length of the flat node and involved tree nodes have been increased by
254   // `span.length()`. The caller is responsible for immediately assigning values
255   // to all uninitialized data reference by the returned span.
256   // Requires `this->refcount.IsOne()`: this function forces the caller to do
257   // this fast path check on the top level node, as this is the most commonly
258   // shared node of a cord tree.
259   Span<char> GetAppendBuffer(size_t size);
260 
261   // Extracts the right-most data edge from this tree iff:
262   // - the tree and all internal edges to the right-most node are not shared.
263   // - the right-most node is a FLAT node and not shared.
264   // - the right-most node has at least the desired extra capacity.
265   //
266   // Returns {tree, nullptr} if any of the above conditions are not met.
267   // This method effectively removes data from the tree. The intent of this
268   // method is to allow applications appending small string data to use
269   // pre-existing capacity, and add the modified rep back to the tree.
270   //
271   // Simplified such code would look similar to this:
272   //   void MyTreeBuilder::Append(string_view data) {
273   //     ExtractResult result = CordRepBtree::ExtractAppendBuffer(tree_, 1);
274   //     if (CordRep* rep = result.extracted) {
275   //       size_t available = rep->Capacity() - rep->length;
276   //       size_t n = std::min(data.size(), n);
277   //       memcpy(rep->Data(), data.data(), n);
278   //       rep->length += n;
279   //       data.remove_prefix(n);
280   //       if (!result.tree->IsBtree()) {
281   //         tree_ = CordRepBtree::Create(result.tree);
282   //       }
283   //       tree_ = CordRepBtree::Append(tree_, rep);
284   //     }
285   //     ...
286   //     // Remaining edge in `result.tree`.
287   //   }
288   static ExtractResult ExtractAppendBuffer(CordRepBtree* tree,
289                                            size_t extra_capacity = 1);
290 
291   // Returns the `height` of the tree. The height of a tree is limited to
292   // kMaxHeight. `height` is implemented as an `int` as in some places we
293   // use negative (-1) values for 'data edges'.
height()294   int height() const { return static_cast<int>(storage[0]); }
295 
296   // Properties: begin, back, end, front/back boundary indexes.
begin()297   size_t begin() const { return static_cast<size_t>(storage[1]); }
back()298   size_t back() const { return static_cast<size_t>(storage[2]) - 1; }
end()299   size_t end() const { return static_cast<size_t>(storage[2]); }
index(EdgeType edge)300   size_t index(EdgeType edge) const {
301     return edge == kFront ? begin() : back();
302   }
303 
304   // Properties: size and capacity.
305   // `capacity` contains the current capacity of this instance, where
306   // `kMaxCapacity` contains the maximum capacity of a btree node.
307   // For now, `capacity` and `kMaxCapacity` return the same value, but this may
308   // change in the future if we see benefit in dynamically sizing 'small' nodes
309   // to 'large' nodes for large data trees.
size()310   size_t size() const { return end() - begin(); }
capacity()311   size_t capacity() const { return kMaxCapacity; }
312 
313   // Edge access
314   inline CordRep* Edge(size_t index) const;
315   inline CordRep* Edge(EdgeType edge_type) const;
316   inline absl::Span<CordRep* const> Edges() const;
317   inline absl::Span<CordRep* const> Edges(size_t begin, size_t end) const;
318 
319   // Returns reference to the data edge at `index`.
320   // Requires this instance to be a leaf node, and `index` to be valid index.
321   inline absl::string_view Data(size_t index) const;
322 
323   // Diagnostics: returns true if `tree` is valid and internally consistent.
324   // If `shallow` is false, then the provided top level node and all child nodes
325   // below it are recursively checked. If `shallow` is true, only the provided
326   // node in `tree` and the cumulative length, type and height of the direct
327   // child nodes of `tree` are checked. The value of `shallow` is ignored if the
328   // internal `cord_btree_exhaustive_validation` diagnostics variable is true,
329   // in which case the performed validations works as if `shallow` were false.
330   // This function is intended for debugging and testing purposes only.
331   static bool IsValid(const CordRepBtree* tree, bool shallow = false);
332 
333   // Diagnostics: asserts that the provided tree is valid.
334   // `AssertValid()` performs a shallow validation by default. `shallow` can be
335   // set to false in which case an exhaustive validation is performed. This
336   // function is implemented in terms of calling `IsValid()` and asserting the
337   // return value to be true. See `IsValid()` for more information.
338   // This function is intended for debugging and testing purposes only.
339   static CordRepBtree* AssertValid(CordRepBtree* tree, bool shallow = true);
340   static const CordRepBtree* AssertValid(const CordRepBtree* tree,
341                                          bool shallow = true);
342 
343   // Diagnostics: dump the contents of this tree to `stream`.
344   // This function is intended for debugging and testing purposes only.
345   static void Dump(const CordRep* rep, std::ostream& stream);
346   static void Dump(const CordRep* rep, absl::string_view label,
347                    std::ostream& stream);
348   static void Dump(const CordRep* rep, absl::string_view label,
349                    bool include_contents, std::ostream& stream);
350 
351   // Adds the edge `edge` to this node if possible. `owned` indicates if the
352   // current node is potentially shared or not with other threads. Returns:
353   // - {kSelf, <this>}
354   //   The edge was directly added to this node.
355   // - {kCopied, <node>}
356   //   The edge was added to a copy of this node.
357   // - {kPopped, New(edge, height())}
358   //   A new leg with the edge was created as this node has no extra capacity.
359   template <EdgeType edge_type>
360   inline OpResult AddEdge(bool owned, CordRep* edge, size_t delta);
361 
362   // Replaces the front or back edge with the provided new edge. Returns:
363   // - {kSelf, <this>}
364   //   The edge was directly set in this node. The old edge is unreffed.
365   // - {kCopied, <node>}
366   //   A copy of this node was created with the new edge value.
367   // In both cases, the function adopts a reference on `edge`.
368   template <EdgeType edge_type>
369   OpResult SetEdge(bool owned, CordRep* edge, size_t delta);
370 
371   // Creates a new empty node at the specified height.
372   static CordRepBtree* New(int height = 0);
373 
374   // Creates a new node containing `rep`, with the height being computed
375   // automatically based on the type of `rep`.
376   static CordRepBtree* New(CordRep* rep);
377 
378   // Creates a new node containing both `front` and `back` at height
379   // `front.height() + 1`. Requires `back.height() == front.height()`.
380   static CordRepBtree* New(CordRepBtree* front, CordRepBtree* back);
381 
382   // Creates a fully balanced tree from the provided tree by rebuilding a new
383   // tree from all data edges in the input. This function is automatically
384   // invoked internally when the tree exceeds the maximum height.
385   static CordRepBtree* Rebuild(CordRepBtree* tree);
386 
387  private:
388   CordRepBtree() = default;
389   ~CordRepBtree() = default;
390 
391   // Initializes the main properties `tag`, `begin`, `end`, `height`.
392   inline void InitInstance(int height, size_t begin = 0, size_t end = 0);
393 
394   // Direct property access begin / end
set_begin(size_t begin)395   void set_begin(size_t begin) { storage[1] = static_cast<uint8_t>(begin); }
set_end(size_t end)396   void set_end(size_t end) { storage[2] = static_cast<uint8_t>(end); }
397 
398   // Decreases the value of `begin` by `n`, and returns the new value. Notice
399   // how this returns the new value unlike atomic::fetch_add which returns the
400   // old value. This is because this is used to prepend edges at 'begin - 1'.
sub_fetch_begin(size_t n)401   size_t sub_fetch_begin(size_t n) {
402     storage[1] -= static_cast<uint8_t>(n);
403     return storage[1];
404   }
405 
406   // Increases the value of `end` by `n`, and returns the previous value. This
407   // function is typically used to append edges at 'end'.
fetch_add_end(size_t n)408   size_t fetch_add_end(size_t n) {
409     const uint8_t current = storage[2];
410     storage[2] = static_cast<uint8_t>(current + n);
411     return current;
412   }
413 
414   // Returns the index of the last edge starting on, or before `offset`, with
415   // `n` containing the relative offset of `offset` inside that edge.
416   // Requires `offset` < length.
417   Position IndexOf(size_t offset) const;
418 
419   // Returns the index of the last edge starting before `offset`, with `n`
420   // containing the relative offset of `offset` inside that edge.
421   // This function is useful to find the edges for some span of bytes ending at
422   // `offset` (i.e., `n` bytes). For example:
423   //
424   //   Position pos = IndexBefore(n)
425   //   edges = Edges(begin(), pos.index)     // All full edges (may be empty)
426   //   last = Sub(Edge(pos.index), 0, pos.n) // Last partial edge (may be empty)
427   //
428   // Requires 0 < `offset` <= length.
429   Position IndexBefore(size_t offset) const;
430 
431   // Returns the index of the edge ending at (or on) length `length`, and the
432   // number of bytes inside that edge up to `length`. For example, if we have a
433   // Node with 2 edges, one of 10 and one of 20 long, then IndexOfLength(27)
434   // will return {1, 17}, and IndexOfLength(10) will return {0, 10}.
435   Position IndexOfLength(size_t n) const;
436 
437   // Identical to the above function except starting from the position `front`.
438   // This function is equivalent to `IndexBefore(front.n + offset)`, with
439   // the difference that this function is optimized to start at `front.index`.
440   Position IndexBefore(Position front, size_t offset) const;
441 
442   // Returns the index of the edge directly beyond the edge containing offset
443   // `offset`, with `n` containing the distance of that edge from `offset`.
444   // This function is useful for iteratively finding suffix nodes and remaining
445   // partial bytes in left-most suffix nodes as for example in CopySuffix.
446   // Requires `offset` < length.
447   Position IndexBeyond(size_t offset) const;
448 
449   // Creates a new leaf node containing as much data as possible from `data`.
450   // The data is added either forwards or reversed depending on `edge_type`.
451   // Callers must check the length of the returned node to determine if all data
452   // was copied or not.
453   // See the `Append/Prepend` function for the meaning and purpose of `extra`.
454   template <EdgeType edge_type>
455   static CordRepBtree* NewLeaf(absl::string_view data, size_t extra);
456 
457   // Creates a raw copy of this Btree node with the specified length, copying
458   // all properties, but without adding any references to existing edges.
459   CordRepBtree* CopyRaw(size_t new_length) const;
460 
461   // Creates a full copy of this Btree node, adding a reference on all edges.
462   CordRepBtree* Copy() const;
463 
464   // Creates a partial copy of this Btree node, copying all edges up to `end`,
465   // adding a reference on each copied edge, and sets the length of the newly
466   // created copy to `new_length`.
467   CordRepBtree* CopyBeginTo(size_t end, size_t new_length) const;
468 
469   // Returns a tree containing the edges [tree->begin(), end) and length
470   // of `new_length`. This method consumes a reference on the provided
471   // tree, and logically performs the following operation:
472   //   result = tree->CopyBeginTo(end, new_length);
473   //   CordRep::Unref(tree);
474   //   return result;
475   static CordRepBtree* ConsumeBeginTo(CordRepBtree* tree, size_t end,
476                                       size_t new_length);
477 
478   // Creates a partial copy of this Btree node, copying all edges starting at
479   // `begin`, adding a reference on each copied edge, and sets the length of
480   // the newly created copy to `new_length`.
481   CordRepBtree* CopyToEndFrom(size_t begin, size_t new_length) const;
482 
483   // Extracts and returns the front edge from the provided tree.
484   // This method consumes a reference on the provided tree, and logically
485   // performs the following operation:
486   //   edge = CordRep::Ref(tree->Edge(kFront));
487   //   CordRep::Unref(tree);
488   //   return edge;
489   static CordRep* ExtractFront(CordRepBtree* tree);
490 
491   // Returns a tree containing the result of appending `right` to `left`.
492   static CordRepBtree* MergeTrees(CordRepBtree* left, CordRepBtree* right);
493 
494   // Fallback functions for `Create()`, `Append()` and `Prepend()` which
495   // deal with legacy / non conforming input, i.e.: CONCAT trees.
496   static CordRepBtree* CreateSlow(CordRep* rep);
497   static CordRepBtree* AppendSlow(CordRepBtree*, CordRep* rep);
498   static CordRepBtree* PrependSlow(CordRepBtree*, CordRep* rep);
499 
500   // Recursively rebuilds `tree` into `stack`. If 'consume` is set to true, the
501   // function will consume a reference on `tree`. `stack` is a null terminated
502   // array containing the new tree's state, with the current leaf node at
503   // stack[0], and parent nodes above that, or null for 'top of tree'.
504   static void Rebuild(CordRepBtree** stack, CordRepBtree* tree, bool consume);
505 
506   // Aligns existing edges to start at index 0, to allow for a new edge to be
507   // added to the back of the current edges.
508   inline void AlignBegin();
509 
510   // Aligns existing edges to end at `capacity`, to allow for a new edge to be
511   // added in front of the current edges.
512   inline void AlignEnd();
513 
514   // Adds the provided edge to this node.
515   // Requires this node to have capacity for the edge. Realigns / moves
516   // existing edges as needed to prepend or append the new edge.
517   template <EdgeType edge_type>
518   inline void Add(CordRep* rep);
519 
520   // Adds the provided edges to this node.
521   // Requires this node to have capacity for the edges. Realigns / moves
522   // existing edges as needed to prepend or append the new edges.
523   template <EdgeType edge_type>
524   inline void Add(absl::Span<CordRep* const>);
525 
526   // Adds data from `data` to this node until either all data has been consumed,
527   // or there is no more capacity for additional flat nodes inside this node.
528   // Requires the current node to be a leaf node, data to be non empty, and the
529   // current node to have capacity for at least one more data edge.
530   // Returns any remaining data from `data` that was not added, which is
531   // depending on the edge type (front / back) either the remaining prefix of
532   // suffix of the input.
533   // See the `Append/Prepend` function for the meaning and purpose of `extra`.
534   template <EdgeType edge_type>
535   absl::string_view AddData(absl::string_view data, size_t extra);
536 
537   // Replace the front or back edge with the provided value.
538   // Adopts a reference on `edge` and unrefs the old edge.
539   template <EdgeType edge_type>
540   inline void SetEdge(CordRep* edge);
541 
542   // Returns a partial copy of the current tree containing the first `n` bytes
543   // of data. `CopyResult` contains both the resulting edge and its height. The
544   // resulting tree may be less high than the current tree, or even be a single
545   // matching data edge if `allow_folding` is set to true.
546   // For example, if `n == 1`, then the result will be the single data edge, and
547   // height will be set to -1 (one below the owning leaf node). If n == 0, this
548   // function returns null. Requires `n <= length`
549   CopyResult CopyPrefix(size_t n, bool allow_folding = true);
550 
551   // Returns a partial copy of the current tree containing all data starting
552   // after `offset`. `CopyResult` contains both the resulting edge and its
553   // height. The resulting tree may be less high than the current tree, or even
554   // be a single matching data edge. For example, if `n == length - 1`, then the
555   // result will be a single data edge, and height will be set to -1 (one below
556   // the owning leaf node).
557   // Requires `offset < length`
558   CopyResult CopySuffix(size_t offset);
559 
560   // Returns a OpResult value of {this, kSelf} or {Copy(), kCopied}
561   // depending on the value of `owned`.
562   inline OpResult ToOpResult(bool owned);
563 
564   // Adds `rep` to the specified tree, returning the modified tree.
565   template <EdgeType edge_type>
566   static CordRepBtree* AddCordRep(CordRepBtree* tree, CordRep* rep);
567 
568   // Adds `data` to the specified tree, returning the modified tree.
569   // See the `Append/Prepend` function for the meaning and purpose of `extra`.
570   template <EdgeType edge_type>
571   static CordRepBtree* AddData(CordRepBtree* tree, absl::string_view data,
572                                size_t extra = 0);
573 
574   // Merges `src` into `dst` with `src` being added either before (kFront) or
575   // after (kBack) `dst`. Requires the height of `dst` to be greater than or
576   // equal to the height of `src`.
577   template <EdgeType edge_type>
578   static CordRepBtree* Merge(CordRepBtree* dst, CordRepBtree* src);
579 
580   // Fallback version of GetAppendBuffer for large trees: GetAppendBuffer()
581   // implements an inlined version for trees of limited height (3 levels),
582   // GetAppendBufferSlow implements the logic for large trees.
583   Span<char> GetAppendBufferSlow(size_t size);
584 
585   // `edges_` contains all edges starting from this instance.
586   // These are explicitly `child` edges only, a cord btree (or any cord tree in
587   // that respect) does not store `parent` pointers anywhere: multiple trees /
588   // parents can reference the same shared child edge. The type of these edges
589   // depends on the height of the node. `Leaf nodes` (height == 0) contain `data
590   // edges` (external or flat nodes, or sub-strings thereof). All other nodes
591   // (height > 0) contain pointers to BTREE nodes with a height of `height - 1`.
592   CordRep* edges_[kMaxCapacity];
593 
594   friend class CordRepBtreeTestPeer;
595   friend class CordRepBtreeNavigator;
596 };
597 
btree()598 inline CordRepBtree* CordRep::btree() {
599   assert(IsBtree());
600   return static_cast<CordRepBtree*>(this);
601 }
602 
btree()603 inline const CordRepBtree* CordRep::btree() const {
604   assert(IsBtree());
605   return static_cast<const CordRepBtree*>(this);
606 }
607 
InitInstance(int height,size_t begin,size_t end)608 inline void CordRepBtree::InitInstance(int height, size_t begin, size_t end) {
609   tag = BTREE;
610   storage[0] = static_cast<uint8_t>(height);
611   storage[1] = static_cast<uint8_t>(begin);
612   storage[2] = static_cast<uint8_t>(end);
613 }
614 
Edge(size_t index)615 inline CordRep* CordRepBtree::Edge(size_t index) const {
616   assert(index >= begin());
617   assert(index < end());
618   return edges_[index];
619 }
620 
Edge(EdgeType edge_type)621 inline CordRep* CordRepBtree::Edge(EdgeType edge_type) const {
622   return edges_[edge_type == kFront ? begin() : back()];
623 }
624 
Edges()625 inline absl::Span<CordRep* const> CordRepBtree::Edges() const {
626   return {edges_ + begin(), size()};
627 }
628 
Edges(size_t begin,size_t end)629 inline absl::Span<CordRep* const> CordRepBtree::Edges(size_t begin,
630                                                       size_t end) const {
631   assert(begin <= end);
632   assert(begin >= this->begin());
633   assert(end <= this->end());
634   return {edges_ + begin, static_cast<size_t>(end - begin)};
635 }
636 
Data(size_t index)637 inline absl::string_view CordRepBtree::Data(size_t index) const {
638   assert(height() == 0);
639   return EdgeData(Edge(index));
640 }
641 
New(int height)642 inline CordRepBtree* CordRepBtree::New(int height) {
643   CordRepBtree* tree = new CordRepBtree;
644   tree->length = 0;
645   tree->InitInstance(height);
646   return tree;
647 }
648 
New(CordRep * rep)649 inline CordRepBtree* CordRepBtree::New(CordRep* rep) {
650   CordRepBtree* tree = new CordRepBtree;
651   int height = rep->IsBtree() ? rep->btree()->height() + 1 : 0;
652   tree->length = rep->length;
653   tree->InitInstance(height, /*begin=*/0, /*end=*/1);
654   tree->edges_[0] = rep;
655   return tree;
656 }
657 
New(CordRepBtree * front,CordRepBtree * back)658 inline CordRepBtree* CordRepBtree::New(CordRepBtree* front,
659                                        CordRepBtree* back) {
660   assert(front->height() == back->height());
661   CordRepBtree* tree = new CordRepBtree;
662   tree->length = front->length + back->length;
663   tree->InitInstance(front->height() + 1, /*begin=*/0, /*end=*/2);
664   tree->edges_[0] = front;
665   tree->edges_[1] = back;
666   return tree;
667 }
668 
Unref(absl::Span<CordRep * const> edges)669 inline void CordRepBtree::Unref(absl::Span<CordRep* const> edges) {
670   for (CordRep* edge : edges) {
671     if (ABSL_PREDICT_FALSE(!edge->refcount.Decrement())) {
672       CordRep::Destroy(edge);
673     }
674   }
675 }
676 
CopyRaw(size_t new_length)677 inline CordRepBtree* CordRepBtree::CopyRaw(size_t new_length) const {
678   CordRepBtree* tree = new CordRepBtree;
679 
680   // `length` and `refcount` are the first members of `CordRepBtree`.
681   // We initialize `length` using the given length, have `refcount` be set to
682   // ref = 1 through its default constructor, and copy all data beyond
683   // 'refcount' which starts with `tag` using a single memcpy: all contents
684   // except `refcount` is trivially copyable, and the compiler does not
685   // efficiently coalesce member-wise copy of these members.
686   // See https://gcc.godbolt.org/z/qY8zsca6z
687   // LINT.IfChange(copy_raw)
688   tree->length = new_length;
689   uint8_t* dst = &tree->tag;
690   const uint8_t* src = &tag;
691   const ptrdiff_t offset = src - reinterpret_cast<const uint8_t*>(this);
692   memcpy(dst, src, sizeof(CordRepBtree) - static_cast<size_t>(offset));
693   return tree;
694   // LINT.ThenChange()
695 }
696 
Copy()697 inline CordRepBtree* CordRepBtree::Copy() const {
698   CordRepBtree* tree = CopyRaw(length);
699   for (CordRep* rep : Edges()) CordRep::Ref(rep);
700   return tree;
701 }
702 
CopyToEndFrom(size_t begin,size_t new_length)703 inline CordRepBtree* CordRepBtree::CopyToEndFrom(size_t begin,
704                                                  size_t new_length) const {
705   assert(begin >= this->begin());
706   assert(begin <= this->end());
707   CordRepBtree* tree = CopyRaw(new_length);
708   tree->set_begin(begin);
709   for (CordRep* edge : tree->Edges()) CordRep::Ref(edge);
710   return tree;
711 }
712 
CopyBeginTo(size_t end,size_t new_length)713 inline CordRepBtree* CordRepBtree::CopyBeginTo(size_t end,
714                                                size_t new_length) const {
715   assert(end <= capacity());
716   assert(end >= this->begin());
717   CordRepBtree* tree = CopyRaw(new_length);
718   tree->set_end(end);
719   for (CordRep* edge : tree->Edges()) CordRep::Ref(edge);
720   return tree;
721 }
722 
AlignBegin()723 inline void CordRepBtree::AlignBegin() {
724   // The below code itself does not need to be fast as typically we have
725   // mono-directional append/prepend calls, and `begin` / `end` are typically
726   // adjusted no more than once. But we want to avoid potential register clobber
727   // effects, making the compiler emit register save/store/spills, and minimize
728   // the size of code.
729   const size_t delta = begin();
730   if (ABSL_PREDICT_FALSE(delta != 0)) {
731     const size_t new_end = end() - delta;
732     set_begin(0);
733     set_end(new_end);
734     // TODO(mvels): we can write this using 2 loads / 2 stores depending on
735     // total size for the kMaxCapacity = 6 case. I.e., we can branch (switch) on
736     // size, and then do overlapping load/store of up to 4 pointers (inlined as
737     // XMM, YMM or ZMM load/store) and up to 2 pointers (XMM / YMM), which is a)
738     // compact and b) not clobbering any registers.
739     ABSL_ASSUME(new_end <= kMaxCapacity);
740 #ifdef __clang__
741 #pragma unroll 1
742 #endif
743     for (size_t i = 0; i < new_end; ++i) {
744       edges_[i] = edges_[i + delta];
745     }
746   }
747 }
748 
AlignEnd()749 inline void CordRepBtree::AlignEnd() {
750   // See comments in `AlignBegin` for motivation on the hand-rolled for loops.
751   const size_t delta = capacity() - end();
752   if (delta != 0) {
753     const size_t new_begin = begin() + delta;
754     const size_t new_end = end() + delta;
755     set_begin(new_begin);
756     set_end(new_end);
757     ABSL_ASSUME(new_end <= kMaxCapacity);
758 #ifdef __clang__
759 #pragma unroll 1
760 #endif
761     for (size_t i = new_end - 1; i >= new_begin; --i) {
762       edges_[i] = edges_[i - delta];
763     }
764   }
765 }
766 
767 template <>
768 inline void CordRepBtree::Add<CordRepBtree::kBack>(CordRep* rep) {
769   AlignBegin();
770   edges_[fetch_add_end(1)] = rep;
771 }
772 
773 template <>
774 inline void CordRepBtree::Add<CordRepBtree::kBack>(
775     absl::Span<CordRep* const> edges) {
776   AlignBegin();
777   size_t new_end = end();
778   for (CordRep* edge : edges) edges_[new_end++] = edge;
779   set_end(new_end);
780 }
781 
782 template <>
783 inline void CordRepBtree::Add<CordRepBtree::kFront>(CordRep* rep) {
784   AlignEnd();
785   edges_[sub_fetch_begin(1)] = rep;
786 }
787 
788 template <>
789 inline void CordRepBtree::Add<CordRepBtree::kFront>(
790     absl::Span<CordRep* const> edges) {
791   AlignEnd();
792   size_t new_begin = begin() - edges.size();
793   set_begin(new_begin);
794   for (CordRep* edge : edges) edges_[new_begin++] = edge;
795 }
796 
797 template <CordRepBtree::EdgeType edge_type>
SetEdge(CordRep * edge)798 inline void CordRepBtree::SetEdge(CordRep* edge) {
799   const int idx = edge_type == kFront ? begin() : back();
800   CordRep::Unref(edges_[idx]);
801   edges_[idx] = edge;
802 }
803 
ToOpResult(bool owned)804 inline CordRepBtree::OpResult CordRepBtree::ToOpResult(bool owned) {
805   return owned ? OpResult{this, kSelf} : OpResult{Copy(), kCopied};
806 }
807 
IndexOf(size_t offset)808 inline CordRepBtree::Position CordRepBtree::IndexOf(size_t offset) const {
809   assert(offset < length);
810   size_t index = begin();
811   while (offset >= edges_[index]->length) offset -= edges_[index++]->length;
812   return {index, offset};
813 }
814 
IndexBefore(size_t offset)815 inline CordRepBtree::Position CordRepBtree::IndexBefore(size_t offset) const {
816   assert(offset > 0);
817   assert(offset <= length);
818   size_t index = begin();
819   while (offset > edges_[index]->length) offset -= edges_[index++]->length;
820   return {index, offset};
821 }
822 
IndexBefore(Position front,size_t offset)823 inline CordRepBtree::Position CordRepBtree::IndexBefore(Position front,
824                                                         size_t offset) const {
825   size_t index = front.index;
826   offset = offset + front.n;
827   while (offset > edges_[index]->length) offset -= edges_[index++]->length;
828   return {index, offset};
829 }
830 
IndexOfLength(size_t n)831 inline CordRepBtree::Position CordRepBtree::IndexOfLength(size_t n) const {
832   assert(n <= length);
833   size_t index = back();
834   size_t strip = length - n;
835   while (strip >= edges_[index]->length) strip -= edges_[index--]->length;
836   return {index, edges_[index]->length - strip};
837 }
838 
IndexBeyond(const size_t offset)839 inline CordRepBtree::Position CordRepBtree::IndexBeyond(
840     const size_t offset) const {
841   // We need to find the edge which `starting offset` is beyond (>=)`offset`.
842   // For this we can't use the `offset -= length` logic of IndexOf. Instead, we
843   // track the offset of the `current edge` in `off`, which we increase as we
844   // iterate over the edges until we find the matching edge.
845   size_t off = 0;
846   size_t index = begin();
847   while (offset > off) off += edges_[index++]->length;
848   return {index, off - offset};
849 }
850 
Create(CordRep * rep)851 inline CordRepBtree* CordRepBtree::Create(CordRep* rep) {
852   if (IsDataEdge(rep)) return New(rep);
853   return CreateSlow(rep);
854 }
855 
GetAppendBuffer(size_t size)856 inline Span<char> CordRepBtree::GetAppendBuffer(size_t size) {
857   assert(refcount.IsOne());
858   CordRepBtree* tree = this;
859   const int height = this->height();
860   CordRepBtree* n1 = tree;
861   CordRepBtree* n2 = tree;
862   CordRepBtree* n3 = tree;
863   switch (height) {
864     case 3:
865       tree = tree->Edge(kBack)->btree();
866       if (!tree->refcount.IsOne()) return {};
867       n2 = tree;
868       ABSL_FALLTHROUGH_INTENDED;
869     case 2:
870       tree = tree->Edge(kBack)->btree();
871       if (!tree->refcount.IsOne()) return {};
872       n1 = tree;
873       ABSL_FALLTHROUGH_INTENDED;
874     case 1:
875       tree = tree->Edge(kBack)->btree();
876       if (!tree->refcount.IsOne()) return {};
877       ABSL_FALLTHROUGH_INTENDED;
878     case 0:
879       CordRep* edge = tree->Edge(kBack);
880       if (!edge->refcount.IsOne()) return {};
881       if (edge->tag < FLAT) return {};
882       size_t avail = edge->flat()->Capacity() - edge->length;
883       if (avail == 0) return {};
884       size_t delta = (std::min)(size, avail);
885       Span<char> span = {edge->flat()->Data() + edge->length, delta};
886       edge->length += delta;
887       switch (height) {
888         case 3:
889           n3->length += delta;
890           ABSL_FALLTHROUGH_INTENDED;
891         case 2:
892           n2->length += delta;
893           ABSL_FALLTHROUGH_INTENDED;
894         case 1:
895           n1->length += delta;
896           ABSL_FALLTHROUGH_INTENDED;
897         case 0:
898           tree->length += delta;
899           return span;
900       }
901       break;
902   }
903   return GetAppendBufferSlow(size);
904 }
905 
906 extern template CordRepBtree* CordRepBtree::AddCordRep<CordRepBtree::kBack>(
907     CordRepBtree* tree, CordRep* rep);
908 
909 extern template CordRepBtree* CordRepBtree::AddCordRep<CordRepBtree::kFront>(
910     CordRepBtree* tree, CordRep* rep);
911 
Append(CordRepBtree * tree,CordRep * rep)912 inline CordRepBtree* CordRepBtree::Append(CordRepBtree* tree, CordRep* rep) {
913   if (ABSL_PREDICT_TRUE(IsDataEdge(rep))) {
914     return CordRepBtree::AddCordRep<kBack>(tree, rep);
915   }
916   return AppendSlow(tree, rep);
917 }
918 
Prepend(CordRepBtree * tree,CordRep * rep)919 inline CordRepBtree* CordRepBtree::Prepend(CordRepBtree* tree, CordRep* rep) {
920   if (ABSL_PREDICT_TRUE(IsDataEdge(rep))) {
921     return CordRepBtree::AddCordRep<kFront>(tree, rep);
922   }
923   return PrependSlow(tree, rep);
924 }
925 
926 #ifdef NDEBUG
927 
AssertValid(CordRepBtree * tree,bool)928 inline CordRepBtree* CordRepBtree::AssertValid(CordRepBtree* tree,
929                                                bool /* shallow */) {
930   return tree;
931 }
932 
AssertValid(const CordRepBtree * tree,bool)933 inline const CordRepBtree* CordRepBtree::AssertValid(const CordRepBtree* tree,
934                                                      bool /* shallow */) {
935   return tree;
936 }
937 
938 #endif
939 
940 }  // namespace cord_internal
941 ABSL_NAMESPACE_END
942 }  // namespace absl
943 
944 #endif  // ABSL_STRINGS_INTERNAL_CORD_REP_BTREE_H_
945