• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright 2017 The Abseil Authors.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //      https://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 // -----------------------------------------------------------------------------
17 // File: optimization.h
18 // -----------------------------------------------------------------------------
19 //
20 // This header file defines portable macros for performance optimization.
21 //
22 // This header is included in both C++ code and legacy C code and thus must
23 // remain compatible with both C and C++. C compatibility will be removed if
24 // the legacy code is removed or converted to C++. Do not include this header in
25 // new code that requires C compatibility or assume C compatibility will remain
26 // indefinitely.
27 
28 // SKIP_ABSL_INLINE_NAMESPACE_CHECK
29 
30 #ifndef ABSL_BASE_OPTIMIZATION_H_
31 #define ABSL_BASE_OPTIMIZATION_H_
32 
33 #include <assert.h>
34 
35 #ifdef __cplusplus
36 // Included for std::unreachable()
37 #include <utility>
38 #endif  // __cplusplus
39 
40 #include "absl/base/config.h"
41 #include "absl/base/options.h"
42 
43 // ABSL_BLOCK_TAIL_CALL_OPTIMIZATION
44 //
45 // Instructs the compiler to avoid optimizing tail-call recursion. This macro is
46 // useful when you wish to preserve the existing function order within a stack
47 // trace for logging, debugging, or profiling purposes.
48 //
49 // Example:
50 //
51 //   int f() {
52 //     int result = g();
53 //     ABSL_BLOCK_TAIL_CALL_OPTIMIZATION();
54 //     return result;
55 //   }
56 #if defined(__pnacl__)
57 #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; }
58 #elif defined(__clang__)
59 // Clang will not tail call given inline volatile assembly.
60 #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("")
61 #elif defined(__GNUC__)
62 // GCC will not tail call given inline volatile assembly.
63 #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("")
64 #elif defined(_MSC_VER)
65 #include <intrin.h>
66 // The __nop() intrinsic blocks the optimisation.
67 #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __nop()
68 #else
69 #define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; }
70 #endif
71 
72 // ABSL_CACHELINE_SIZE
73 //
74 // Explicitly defines the size of the L1 cache for purposes of alignment.
75 // Setting the cacheline size allows you to specify that certain objects be
76 // aligned on a cacheline boundary with `ABSL_CACHELINE_ALIGNED` declarations.
77 // (See below.)
78 //
79 // NOTE: this macro should be replaced with the following C++17 features, when
80 // those are generally available:
81 //
82 //   * `std::hardware_constructive_interference_size`
83 //   * `std::hardware_destructive_interference_size`
84 //
85 // See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html
86 // for more information.
87 #if defined(__GNUC__)
88 // Cache line alignment
89 #if defined(__i386__) || defined(__x86_64__)
90 #define ABSL_CACHELINE_SIZE 64
91 #elif defined(__powerpc64__)
92 #define ABSL_CACHELINE_SIZE 128
93 #elif defined(__aarch64__)
94 // We would need to read special register ctr_el0 to find out L1 dcache size.
95 // This value is a good estimate based on a real aarch64 machine.
96 #define ABSL_CACHELINE_SIZE 64
97 #elif defined(__arm__)
98 // Cache line sizes for ARM: These values are not strictly correct since
99 // cache line sizes depend on implementations, not architectures.  There
100 // are even implementations with cache line sizes configurable at boot
101 // time.
102 #if defined(__ARM_ARCH_5T__)
103 #define ABSL_CACHELINE_SIZE 32
104 #elif defined(__ARM_ARCH_7A__)
105 #define ABSL_CACHELINE_SIZE 64
106 #endif
107 #endif
108 #endif
109 
110 #ifndef ABSL_CACHELINE_SIZE
111 // A reasonable default guess.  Note that overestimates tend to waste more
112 // space, while underestimates tend to waste more time.
113 #define ABSL_CACHELINE_SIZE 64
114 #endif
115 
116 // ABSL_CACHELINE_ALIGNED
117 //
118 // Indicates that the declared object be cache aligned using
119 // `ABSL_CACHELINE_SIZE` (see above). Cacheline aligning objects allows you to
120 // load a set of related objects in the L1 cache for performance improvements.
121 // Cacheline aligning objects properly allows constructive memory sharing and
122 // prevents destructive (or "false") memory sharing.
123 //
124 // NOTE: callers should replace uses of this macro with `alignas()` using
125 // `std::hardware_constructive_interference_size` and/or
126 // `std::hardware_destructive_interference_size` when C++17 becomes available to
127 // them.
128 //
129 // See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html
130 // for more information.
131 //
132 // On some compilers, `ABSL_CACHELINE_ALIGNED` expands to an `__attribute__`
133 // or `__declspec` attribute. For compilers where this is not known to work,
134 // the macro expands to nothing.
135 //
136 // No further guarantees are made here. The result of applying the macro
137 // to variables and types is always implementation-defined.
138 //
139 // WARNING: It is easy to use this attribute incorrectly, even to the point
140 // of causing bugs that are difficult to diagnose, crash, etc. It does not
141 // of itself guarantee that objects are aligned to a cache line.
142 //
143 // NOTE: Some compilers are picky about the locations of annotations such as
144 // this attribute, so prefer to put it at the beginning of your declaration.
145 // For example,
146 //
147 //   ABSL_CACHELINE_ALIGNED static Foo* foo = ...
148 //
149 //   class ABSL_CACHELINE_ALIGNED Bar { ...
150 //
151 // Recommendations:
152 //
153 // 1) Consult compiler documentation; this comment is not kept in sync as
154 //    toolchains evolve.
155 // 2) Verify your use has the intended effect. This often requires inspecting
156 //    the generated machine code.
157 // 3) Prefer applying this attribute to individual variables. Avoid
158 //    applying it to types. This tends to localize the effect.
159 #if defined(__clang__) || defined(__GNUC__)
160 #define ABSL_CACHELINE_ALIGNED __attribute__((aligned(ABSL_CACHELINE_SIZE)))
161 #elif defined(_MSC_VER)
162 #define ABSL_CACHELINE_ALIGNED __declspec(align(ABSL_CACHELINE_SIZE))
163 #else
164 #define ABSL_CACHELINE_ALIGNED
165 #endif
166 
167 // ABSL_PREDICT_TRUE, ABSL_PREDICT_FALSE
168 //
169 // Enables the compiler to prioritize compilation using static analysis for
170 // likely paths within a boolean branch.
171 //
172 // Example:
173 //
174 //   if (ABSL_PREDICT_TRUE(expression)) {
175 //     return result;                        // Faster if more likely
176 //   } else {
177 //     return 0;
178 //   }
179 //
180 // Compilers can use the information that a certain branch is not likely to be
181 // taken (for instance, a CHECK failure) to optimize for the common case in
182 // the absence of better information (ie. compiling gcc with `-fprofile-arcs`).
183 //
184 // Recommendation: Modern CPUs dynamically predict branch execution paths,
185 // typically with accuracy greater than 97%. As a result, annotating every
186 // branch in a codebase is likely counterproductive; however, annotating
187 // specific branches that are both hot and consistently mispredicted is likely
188 // to yield performance improvements.
189 #if ABSL_HAVE_BUILTIN(__builtin_expect) || \
190     (defined(__GNUC__) && !defined(__clang__))
191 #define ABSL_PREDICT_FALSE(x) (__builtin_expect(false || (x), false))
192 #define ABSL_PREDICT_TRUE(x) (__builtin_expect(false || (x), true))
193 #else
194 #define ABSL_PREDICT_FALSE(x) (x)
195 #define ABSL_PREDICT_TRUE(x) (x)
196 #endif
197 
198 // `ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL()` aborts the program in the fastest
199 // possible way, with no attempt at logging. One use is to implement hardening
200 // aborts with ABSL_OPTION_HARDENED.  Since this is an internal symbol, it
201 // should not be used directly outside of Abseil.
202 #if ABSL_HAVE_BUILTIN(__builtin_trap) || \
203     (defined(__GNUC__) && !defined(__clang__))
204 #define ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL() __builtin_trap()
205 #else
206 #define ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL() abort()
207 #endif
208 
209 // `ABSL_INTERNAL_UNREACHABLE_IMPL()` is the platform specific directive to
210 // indicate that a statement is unreachable, and to allow the compiler to
211 // optimize accordingly. Clients should use `ABSL_UNREACHABLE()`, which is
212 // defined below.
213 #if defined(__cpp_lib_unreachable) && __cpp_lib_unreachable >= 202202L
214 #define ABSL_INTERNAL_UNREACHABLE_IMPL() std::unreachable()
215 #elif defined(__GNUC__) || ABSL_HAVE_BUILTIN(__builtin_unreachable)
216 #define ABSL_INTERNAL_UNREACHABLE_IMPL() __builtin_unreachable()
217 #elif ABSL_HAVE_BUILTIN(__builtin_assume)
218 #define ABSL_INTERNAL_UNREACHABLE_IMPL() __builtin_assume(false)
219 #elif defined(_MSC_VER)
220 #define ABSL_INTERNAL_UNREACHABLE_IMPL() __assume(false)
221 #else
222 #define ABSL_INTERNAL_UNREACHABLE_IMPL()
223 #endif
224 
225 // `ABSL_UNREACHABLE()` is an unreachable statement.  A program which reaches
226 // one has undefined behavior, and the compiler may optimize accordingly.
227 #if ABSL_OPTION_HARDENED == 1 && defined(NDEBUG)
228 // Abort in hardened mode to avoid dangerous undefined behavior.
229 #define ABSL_UNREACHABLE()                \
230   do {                                    \
231     ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL(); \
232     ABSL_INTERNAL_UNREACHABLE_IMPL();     \
233   } while (false)
234 #else
235 // The assert only fires in debug mode to aid in debugging.
236 // When NDEBUG is defined, reaching ABSL_UNREACHABLE() is undefined behavior.
237 #define ABSL_UNREACHABLE()                       \
238   do {                                           \
239     /* NOLINTNEXTLINE: misc-static-assert */     \
240     assert(false && "ABSL_UNREACHABLE reached"); \
241     ABSL_INTERNAL_UNREACHABLE_IMPL();            \
242   } while (false)
243 #endif
244 
245 // ABSL_ASSUME(cond)
246 //
247 // Informs the compiler that a condition is always true and that it can assume
248 // it to be true for optimization purposes.
249 //
250 // WARNING: If the condition is false, the program can produce undefined and
251 // potentially dangerous behavior.
252 //
253 // In !NDEBUG mode, the condition is checked with an assert().
254 //
255 // NOTE: The expression must not have side effects, as it may only be evaluated
256 // in some compilation modes and not others. Some compilers may issue a warning
257 // if the compiler cannot prove the expression has no side effects. For example,
258 // the expression should not use a function call since the compiler cannot prove
259 // that a function call does not have side effects.
260 //
261 // Example:
262 //
263 //   int x = ...;
264 //   ABSL_ASSUME(x >= 0);
265 //   // The compiler can optimize the division to a simple right shift using the
266 //   // assumption specified above.
267 //   int y = x / 16;
268 //
269 #if !defined(NDEBUG)
270 #define ABSL_ASSUME(cond) assert(cond)
271 #elif ABSL_HAVE_BUILTIN(__builtin_assume)
272 #define ABSL_ASSUME(cond) __builtin_assume(cond)
273 #elif defined(_MSC_VER)
274 #define ABSL_ASSUME(cond) __assume(cond)
275 #elif defined(__cpp_lib_unreachable) && __cpp_lib_unreachable >= 202202L
276 #define ABSL_ASSUME(cond) ((cond) ? void() : std::unreachable())
277 #elif defined(__GNUC__) || ABSL_HAVE_BUILTIN(__builtin_unreachable)
278 #define ABSL_ASSUME(cond) ((cond) ? void() : __builtin_unreachable())
279 #elif ABSL_INTERNAL_CPLUSPLUS_LANG >= 202002L
280 // Unimplemented. Uses the same definition as ABSL_ASSERT in the NDEBUG case.
281 #define ABSL_ASSUME(expr) (decltype((expr) ? void() : void())())
282 #else
283 #define ABSL_ASSUME(expr) (false ? ((expr) ? void() : void()) : void())
284 #endif
285 
286 // ABSL_INTERNAL_UNIQUE_SMALL_NAME(cond)
287 // This macro forces small unique name on a static file level symbols like
288 // static local variables or static functions. This is intended to be used in
289 // macro definitions to optimize the cost of generated code. Do NOT use it on
290 // symbols exported from translation unit since it may cause a link time
291 // conflict.
292 //
293 // Example:
294 //
295 // #define MY_MACRO(txt)
296 // namespace {
297 //  char VeryVeryLongVarName[] ABSL_INTERNAL_UNIQUE_SMALL_NAME() = txt;
298 //  const char* VeryVeryLongFuncName() ABSL_INTERNAL_UNIQUE_SMALL_NAME();
299 //  const char* VeryVeryLongFuncName() { return txt; }
300 // }
301 //
302 
303 #if defined(__GNUC__)
304 #define ABSL_INTERNAL_UNIQUE_SMALL_NAME2(x) #x
305 #define ABSL_INTERNAL_UNIQUE_SMALL_NAME1(x) ABSL_INTERNAL_UNIQUE_SMALL_NAME2(x)
306 #define ABSL_INTERNAL_UNIQUE_SMALL_NAME() \
307   asm(ABSL_INTERNAL_UNIQUE_SMALL_NAME1(.absl.__COUNTER__))
308 #else
309 #define ABSL_INTERNAL_UNIQUE_SMALL_NAME()
310 #endif
311 
312 #endif  // ABSL_BASE_OPTIMIZATION_H_
313