1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: btree_map.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines B-tree maps: sorted associative containers mapping
20 // keys to values.
21 //
22 // * `absl::btree_map<>`
23 // * `absl::btree_multimap<>`
24 //
25 // These B-tree types are similar to the corresponding types in the STL
26 // (`std::map` and `std::multimap`) and generally conform to the STL interfaces
27 // of those types. However, because they are implemented using B-trees, they
28 // are more efficient in most situations.
29 //
30 // Unlike `std::map` and `std::multimap`, which are commonly implemented using
31 // red-black tree nodes, B-tree maps use more generic B-tree nodes able to hold
32 // multiple values per node. Holding multiple values per node often makes
33 // B-tree maps perform better than their `std::map` counterparts, because
34 // multiple entries can be checked within the same cache hit.
35 //
36 // However, these types should not be considered drop-in replacements for
37 // `std::map` and `std::multimap` as there are some API differences, which are
38 // noted in this header file. The most consequential differences with respect to
39 // migrating to b-tree from the STL types are listed in the next paragraph.
40 // Other API differences are minor.
41 //
42 // Importantly, insertions and deletions may invalidate outstanding iterators,
43 // pointers, and references to elements. Such invalidations are typically only
44 // an issue if insertion and deletion operations are interleaved with the use of
45 // more than one iterator, pointer, or reference simultaneously. For this
46 // reason, `insert()`, `erase()`, and `extract_and_get_next()` return a valid
47 // iterator at the current position. Another important difference is that
48 // key-types must be copy-constructible.
49 //
50 // There are other API differences: first, btree iterators can be subtracted,
51 // and this is faster than using `std::distance`. Additionally, btree
52 // iterators can be advanced via `operator+=` and `operator-=`, which is faster
53 // than using `std::advance`.
54 //
55 // B-tree maps are not exception-safe.
56
57 #ifndef ABSL_CONTAINER_BTREE_MAP_H_
58 #define ABSL_CONTAINER_BTREE_MAP_H_
59
60 #include "absl/base/attributes.h"
61 #include "absl/container/internal/btree.h" // IWYU pragma: export
62 #include "absl/container/internal/btree_container.h" // IWYU pragma: export
63
64 namespace absl {
65 ABSL_NAMESPACE_BEGIN
66
67 namespace container_internal {
68
69 template <typename Key, typename Data, typename Compare, typename Alloc,
70 int TargetNodeSize, bool IsMulti>
71 struct map_params;
72
73 } // namespace container_internal
74
75 // absl::btree_map<>
76 //
77 // An `absl::btree_map<K, V>` is an ordered associative container of
78 // unique keys and associated values designed to be a more efficient replacement
79 // for `std::map` (in most cases).
80 //
81 // Keys are sorted using an (optional) comparison function, which defaults to
82 // `std::less<K>`.
83 //
84 // An `absl::btree_map<K, V>` uses a default allocator of
85 // `std::allocator<std::pair<const K, V>>` to allocate (and deallocate)
86 // nodes, and construct and destruct values within those nodes. You may
87 // instead specify a custom allocator `A` (which in turn requires specifying a
88 // custom comparator `C`) as in `absl::btree_map<K, V, C, A>`.
89 //
90 template <typename Key, typename Value, typename Compare = std::less<Key>,
91 typename Alloc = std::allocator<std::pair<const Key, Value>>>
92 class ABSL_ATTRIBUTE_OWNER btree_map
93 : public container_internal::btree_map_container<
94 container_internal::btree<container_internal::map_params<
95 Key, Value, Compare, Alloc, /*TargetNodeSize=*/256,
96 /*IsMulti=*/false>>> {
97 using Base = typename btree_map::btree_map_container;
98
99 public:
100 // Constructors and Assignment Operators
101 //
102 // A `btree_map` supports the same overload set as `std::map`
103 // for construction and assignment:
104 //
105 // * Default constructor
106 //
107 // absl::btree_map<int, std::string> map1;
108 //
109 // * Initializer List constructor
110 //
111 // absl::btree_map<int, std::string> map2 =
112 // {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
113 //
114 // * Copy constructor
115 //
116 // absl::btree_map<int, std::string> map3(map2);
117 //
118 // * Copy assignment operator
119 //
120 // absl::btree_map<int, std::string> map4;
121 // map4 = map3;
122 //
123 // * Move constructor
124 //
125 // // Move is guaranteed efficient
126 // absl::btree_map<int, std::string> map5(std::move(map4));
127 //
128 // * Move assignment operator
129 //
130 // // May be efficient if allocators are compatible
131 // absl::btree_map<int, std::string> map6;
132 // map6 = std::move(map5);
133 //
134 // * Range constructor
135 //
136 // std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
137 // absl::btree_map<int, std::string> map7(v.begin(), v.end());
btree_map()138 btree_map() {}
139 using Base::Base;
140
141 // btree_map::begin()
142 //
143 // Returns an iterator to the beginning of the `btree_map`.
144 using Base::begin;
145
146 // btree_map::cbegin()
147 //
148 // Returns a const iterator to the beginning of the `btree_map`.
149 using Base::cbegin;
150
151 // btree_map::end()
152 //
153 // Returns an iterator to the end of the `btree_map`.
154 using Base::end;
155
156 // btree_map::cend()
157 //
158 // Returns a const iterator to the end of the `btree_map`.
159 using Base::cend;
160
161 // btree_map::empty()
162 //
163 // Returns whether or not the `btree_map` is empty.
164 using Base::empty;
165
166 // btree_map::max_size()
167 //
168 // Returns the largest theoretical possible number of elements within a
169 // `btree_map` under current memory constraints. This value can be thought
170 // of as the largest value of `std::distance(begin(), end())` for a
171 // `btree_map<Key, T>`.
172 using Base::max_size;
173
174 // btree_map::size()
175 //
176 // Returns the number of elements currently within the `btree_map`.
177 using Base::size;
178
179 // btree_map::clear()
180 //
181 // Removes all elements from the `btree_map`. Invalidates any references,
182 // pointers, or iterators referring to contained elements.
183 using Base::clear;
184
185 // btree_map::erase()
186 //
187 // Erases elements within the `btree_map`. If an erase occurs, any references,
188 // pointers, or iterators are invalidated.
189 // Overloads are listed below.
190 //
191 // iterator erase(iterator position):
192 // iterator erase(const_iterator position):
193 //
194 // Erases the element at `position` of the `btree_map`, returning
195 // the iterator pointing to the element after the one that was erased
196 // (or end() if none exists).
197 //
198 // iterator erase(const_iterator first, const_iterator last):
199 //
200 // Erases the elements in the open interval [`first`, `last`), returning
201 // the iterator pointing to the element after the interval that was erased
202 // (or end() if none exists).
203 //
204 // template <typename K> size_type erase(const K& key):
205 //
206 // Erases the element with the matching key, if it exists, returning the
207 // number of elements erased (0 or 1).
208 using Base::erase;
209
210 // btree_map::insert()
211 //
212 // Inserts an element of the specified value into the `btree_map`,
213 // returning an iterator pointing to the newly inserted element, provided that
214 // an element with the given key does not already exist. If an insertion
215 // occurs, any references, pointers, or iterators are invalidated.
216 // Overloads are listed below.
217 //
218 // std::pair<iterator,bool> insert(const value_type& value):
219 //
220 // Inserts a value into the `btree_map`. Returns a pair consisting of an
221 // iterator to the inserted element (or to the element that prevented the
222 // insertion) and a bool denoting whether the insertion took place.
223 //
224 // std::pair<iterator,bool> insert(value_type&& value):
225 //
226 // Inserts a moveable value into the `btree_map`. Returns a pair
227 // consisting of an iterator to the inserted element (or to the element that
228 // prevented the insertion) and a bool denoting whether the insertion took
229 // place.
230 //
231 // iterator insert(const_iterator hint, const value_type& value):
232 // iterator insert(const_iterator hint, value_type&& value):
233 //
234 // Inserts a value, using the position of `hint` as a non-binding suggestion
235 // for where to begin the insertion search. Returns an iterator to the
236 // inserted element, or to the existing element that prevented the
237 // insertion.
238 //
239 // void insert(InputIterator first, InputIterator last):
240 //
241 // Inserts a range of values [`first`, `last`).
242 //
243 // void insert(std::initializer_list<init_type> ilist):
244 //
245 // Inserts the elements within the initializer list `ilist`.
246 using Base::insert;
247
248 // btree_map::insert_or_assign()
249 //
250 // Inserts an element of the specified value into the `btree_map` provided
251 // that a value with the given key does not already exist, or replaces the
252 // corresponding mapped type with the forwarded `obj` argument if a key for
253 // that value already exists, returning an iterator pointing to the newly
254 // inserted element. Overloads are listed below.
255 //
256 // pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj):
257 // pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj):
258 //
259 // Inserts/Assigns (or moves) the element of the specified key into the
260 // `btree_map`. If the returned bool is true, insertion took place, and if
261 // it's false, assignment took place.
262 //
263 // iterator insert_or_assign(const_iterator hint,
264 // const key_type& k, M&& obj):
265 // iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj):
266 //
267 // Inserts/Assigns (or moves) the element of the specified key into the
268 // `btree_map` using the position of `hint` as a non-binding suggestion
269 // for where to begin the insertion search.
270 using Base::insert_or_assign;
271
272 // btree_map::emplace()
273 //
274 // Inserts an element of the specified value by constructing it in-place
275 // within the `btree_map`, provided that no element with the given key
276 // already exists.
277 //
278 // The element may be constructed even if there already is an element with the
279 // key in the container, in which case the newly constructed element will be
280 // destroyed immediately. Prefer `try_emplace()` unless your key is not
281 // copyable or moveable.
282 //
283 // If an insertion occurs, any references, pointers, or iterators are
284 // invalidated.
285 using Base::emplace;
286
287 // btree_map::emplace_hint()
288 //
289 // Inserts an element of the specified value by constructing it in-place
290 // within the `btree_map`, using the position of `hint` as a non-binding
291 // suggestion for where to begin the insertion search, and only inserts
292 // provided that no element with the given key already exists.
293 //
294 // The element may be constructed even if there already is an element with the
295 // key in the container, in which case the newly constructed element will be
296 // destroyed immediately. Prefer `try_emplace()` unless your key is not
297 // copyable or moveable.
298 //
299 // If an insertion occurs, any references, pointers, or iterators are
300 // invalidated.
301 using Base::emplace_hint;
302
303 // btree_map::try_emplace()
304 //
305 // Inserts an element of the specified value by constructing it in-place
306 // within the `btree_map`, provided that no element with the given key
307 // already exists. Unlike `emplace()`, if an element with the given key
308 // already exists, we guarantee that no element is constructed.
309 //
310 // If an insertion occurs, any references, pointers, or iterators are
311 // invalidated.
312 //
313 // Overloads are listed below.
314 //
315 // std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
316 // std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
317 //
318 // Inserts (via copy or move) the element of the specified key into the
319 // `btree_map`.
320 //
321 // iterator try_emplace(const_iterator hint,
322 // const key_type& k, Args&&... args):
323 // iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args):
324 //
325 // Inserts (via copy or move) the element of the specified key into the
326 // `btree_map` using the position of `hint` as a non-binding suggestion
327 // for where to begin the insertion search.
328 using Base::try_emplace;
329
330 // btree_map::extract()
331 //
332 // Extracts the indicated element, erasing it in the process, and returns it
333 // as a C++17-compatible node handle. Any references, pointers, or iterators
334 // are invalidated. Overloads are listed below.
335 //
336 // node_type extract(const_iterator position):
337 //
338 // Extracts the element at the indicated position and returns a node handle
339 // owning that extracted data.
340 //
341 // template <typename K> node_type extract(const K& k):
342 //
343 // Extracts the element with the key matching the passed key value and
344 // returns a node handle owning that extracted data. If the `btree_map`
345 // does not contain an element with a matching key, this function returns an
346 // empty node handle.
347 //
348 // NOTE: when compiled in an earlier version of C++ than C++17,
349 // `node_type::key()` returns a const reference to the key instead of a
350 // mutable reference. We cannot safely return a mutable reference without
351 // std::launder (which is not available before C++17).
352 //
353 // NOTE: In this context, `node_type` refers to the C++17 concept of a
354 // move-only type that owns and provides access to the elements in associative
355 // containers (https://en.cppreference.com/w/cpp/container/node_handle).
356 // It does NOT refer to the data layout of the underlying btree.
357 using Base::extract;
358
359 // btree_map::extract_and_get_next()
360 //
361 // Extracts the indicated element, erasing it in the process, and returns it
362 // as a C++17-compatible node handle along with an iterator to the next
363 // element.
364 //
365 // extract_and_get_next_return_type extract_and_get_next(
366 // const_iterator position):
367 //
368 // Extracts the element at the indicated position, returns a struct
369 // containing a member named `node`: a node handle owning that extracted
370 // data and a member named `next`: an iterator pointing to the next element
371 // in the btree.
372 using Base::extract_and_get_next;
373
374 // btree_map::merge()
375 //
376 // Extracts elements from a given `source` btree_map into this
377 // `btree_map`. If the destination `btree_map` already contains an
378 // element with an equivalent key, that element is not extracted.
379 using Base::merge;
380
381 // btree_map::swap(btree_map& other)
382 //
383 // Exchanges the contents of this `btree_map` with those of the `other`
384 // btree_map, avoiding invocation of any move, copy, or swap operations on
385 // individual elements.
386 //
387 // All iterators and references on the `btree_map` remain valid, excepting
388 // for the past-the-end iterator, which is invalidated.
389 using Base::swap;
390
391 // btree_map::at()
392 //
393 // Returns a reference to the mapped value of the element with key equivalent
394 // to the passed key.
395 using Base::at;
396
397 // btree_map::contains()
398 //
399 // template <typename K> bool contains(const K& key) const:
400 //
401 // Determines whether an element comparing equal to the given `key` exists
402 // within the `btree_map`, returning `true` if so or `false` otherwise.
403 //
404 // Supports heterogeneous lookup, provided that the map has a compatible
405 // heterogeneous comparator.
406 using Base::contains;
407
408 // btree_map::count()
409 //
410 // template <typename K> size_type count(const K& key) const:
411 //
412 // Returns the number of elements comparing equal to the given `key` within
413 // the `btree_map`. Note that this function will return either `1` or `0`
414 // since duplicate elements are not allowed within a `btree_map`.
415 //
416 // Supports heterogeneous lookup, provided that the map has a compatible
417 // heterogeneous comparator.
418 using Base::count;
419
420 // btree_map::equal_range()
421 //
422 // Returns a half-open range [first, last), defined by a `std::pair` of two
423 // iterators, containing all elements with the passed key in the `btree_map`.
424 using Base::equal_range;
425
426 // btree_map::find()
427 //
428 // template <typename K> iterator find(const K& key):
429 // template <typename K> const_iterator find(const K& key) const:
430 //
431 // Finds an element with the passed `key` within the `btree_map`.
432 //
433 // Supports heterogeneous lookup, provided that the map has a compatible
434 // heterogeneous comparator.
435 using Base::find;
436
437 // btree_map::lower_bound()
438 //
439 // template <typename K> iterator lower_bound(const K& key):
440 // template <typename K> const_iterator lower_bound(const K& key) const:
441 //
442 // Finds the first element with a key that is not less than `key` within the
443 // `btree_map`.
444 //
445 // Supports heterogeneous lookup, provided that the map has a compatible
446 // heterogeneous comparator.
447 using Base::lower_bound;
448
449 // btree_map::upper_bound()
450 //
451 // template <typename K> iterator upper_bound(const K& key):
452 // template <typename K> const_iterator upper_bound(const K& key) const:
453 //
454 // Finds the first element with a key that is greater than `key` within the
455 // `btree_map`.
456 //
457 // Supports heterogeneous lookup, provided that the map has a compatible
458 // heterogeneous comparator.
459 using Base::upper_bound;
460
461 // btree_map::operator[]()
462 //
463 // Returns a reference to the value mapped to the passed key within the
464 // `btree_map`, performing an `insert()` if the key does not already
465 // exist.
466 //
467 // If an insertion occurs, any references, pointers, or iterators are
468 // invalidated. Otherwise iterators are not affected and references are not
469 // invalidated. Overloads are listed below.
470 //
471 // T& operator[](key_type&& key):
472 // T& operator[](const key_type& key):
473 //
474 // Inserts a value_type object constructed in-place if the element with the
475 // given key does not exist.
476 using Base::operator[];
477
478 // btree_map::get_allocator()
479 //
480 // Returns the allocator function associated with this `btree_map`.
481 using Base::get_allocator;
482
483 // btree_map::key_comp();
484 //
485 // Returns the key comparator associated with this `btree_map`.
486 using Base::key_comp;
487
488 // btree_map::value_comp();
489 //
490 // Returns the value comparator associated with this `btree_map`.
491 using Base::value_comp;
492 };
493
494 // absl::swap(absl::btree_map<>, absl::btree_map<>)
495 //
496 // Swaps the contents of two `absl::btree_map` containers.
497 template <typename K, typename V, typename C, typename A>
swap(btree_map<K,V,C,A> & x,btree_map<K,V,C,A> & y)498 void swap(btree_map<K, V, C, A> &x, btree_map<K, V, C, A> &y) {
499 return x.swap(y);
500 }
501
502 // absl::erase_if(absl::btree_map<>, Pred)
503 //
504 // Erases all elements that satisfy the predicate pred from the container.
505 // Returns the number of erased elements.
506 template <typename K, typename V, typename C, typename A, typename Pred>
erase_if(btree_map<K,V,C,A> & map,Pred pred)507 typename btree_map<K, V, C, A>::size_type erase_if(
508 btree_map<K, V, C, A> &map, Pred pred) {
509 return container_internal::btree_access::erase_if(map, std::move(pred));
510 }
511
512 // absl::btree_multimap
513 //
514 // An `absl::btree_multimap<K, V>` is an ordered associative container of
515 // keys and associated values designed to be a more efficient replacement for
516 // `std::multimap` (in most cases). Unlike `absl::btree_map`, a B-tree multimap
517 // allows multiple elements with equivalent keys.
518 //
519 // Keys are sorted using an (optional) comparison function, which defaults to
520 // `std::less<K>`.
521 //
522 // An `absl::btree_multimap<K, V>` uses a default allocator of
523 // `std::allocator<std::pair<const K, V>>` to allocate (and deallocate)
524 // nodes, and construct and destruct values within those nodes. You may
525 // instead specify a custom allocator `A` (which in turn requires specifying a
526 // custom comparator `C`) as in `absl::btree_multimap<K, V, C, A>`.
527 //
528 template <typename Key, typename Value, typename Compare = std::less<Key>,
529 typename Alloc = std::allocator<std::pair<const Key, Value>>>
530 class ABSL_ATTRIBUTE_OWNER btree_multimap
531 : public container_internal::btree_multimap_container<
532 container_internal::btree<container_internal::map_params<
533 Key, Value, Compare, Alloc, /*TargetNodeSize=*/256,
534 /*IsMulti=*/true>>> {
535 using Base = typename btree_multimap::btree_multimap_container;
536
537 public:
538 // Constructors and Assignment Operators
539 //
540 // A `btree_multimap` supports the same overload set as `std::multimap`
541 // for construction and assignment:
542 //
543 // * Default constructor
544 //
545 // absl::btree_multimap<int, std::string> map1;
546 //
547 // * Initializer List constructor
548 //
549 // absl::btree_multimap<int, std::string> map2 =
550 // {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
551 //
552 // * Copy constructor
553 //
554 // absl::btree_multimap<int, std::string> map3(map2);
555 //
556 // * Copy assignment operator
557 //
558 // absl::btree_multimap<int, std::string> map4;
559 // map4 = map3;
560 //
561 // * Move constructor
562 //
563 // // Move is guaranteed efficient
564 // absl::btree_multimap<int, std::string> map5(std::move(map4));
565 //
566 // * Move assignment operator
567 //
568 // // May be efficient if allocators are compatible
569 // absl::btree_multimap<int, std::string> map6;
570 // map6 = std::move(map5);
571 //
572 // * Range constructor
573 //
574 // std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
575 // absl::btree_multimap<int, std::string> map7(v.begin(), v.end());
btree_multimap()576 btree_multimap() {}
577 using Base::Base;
578
579 // btree_multimap::begin()
580 //
581 // Returns an iterator to the beginning of the `btree_multimap`.
582 using Base::begin;
583
584 // btree_multimap::cbegin()
585 //
586 // Returns a const iterator to the beginning of the `btree_multimap`.
587 using Base::cbegin;
588
589 // btree_multimap::end()
590 //
591 // Returns an iterator to the end of the `btree_multimap`.
592 using Base::end;
593
594 // btree_multimap::cend()
595 //
596 // Returns a const iterator to the end of the `btree_multimap`.
597 using Base::cend;
598
599 // btree_multimap::empty()
600 //
601 // Returns whether or not the `btree_multimap` is empty.
602 using Base::empty;
603
604 // btree_multimap::max_size()
605 //
606 // Returns the largest theoretical possible number of elements within a
607 // `btree_multimap` under current memory constraints. This value can be
608 // thought of as the largest value of `std::distance(begin(), end())` for a
609 // `btree_multimap<Key, T>`.
610 using Base::max_size;
611
612 // btree_multimap::size()
613 //
614 // Returns the number of elements currently within the `btree_multimap`.
615 using Base::size;
616
617 // btree_multimap::clear()
618 //
619 // Removes all elements from the `btree_multimap`. Invalidates any references,
620 // pointers, or iterators referring to contained elements.
621 using Base::clear;
622
623 // btree_multimap::erase()
624 //
625 // Erases elements within the `btree_multimap`. If an erase occurs, any
626 // references, pointers, or iterators are invalidated.
627 // Overloads are listed below.
628 //
629 // iterator erase(iterator position):
630 // iterator erase(const_iterator position):
631 //
632 // Erases the element at `position` of the `btree_multimap`, returning
633 // the iterator pointing to the element after the one that was erased
634 // (or end() if none exists).
635 //
636 // iterator erase(const_iterator first, const_iterator last):
637 //
638 // Erases the elements in the open interval [`first`, `last`), returning
639 // the iterator pointing to the element after the interval that was erased
640 // (or end() if none exists).
641 //
642 // template <typename K> size_type erase(const K& key):
643 //
644 // Erases the elements matching the key, if any exist, returning the
645 // number of elements erased.
646 using Base::erase;
647
648 // btree_multimap::insert()
649 //
650 // Inserts an element of the specified value into the `btree_multimap`,
651 // returning an iterator pointing to the newly inserted element.
652 // Any references, pointers, or iterators are invalidated. Overloads are
653 // listed below.
654 //
655 // iterator insert(const value_type& value):
656 //
657 // Inserts a value into the `btree_multimap`, returning an iterator to the
658 // inserted element.
659 //
660 // iterator insert(value_type&& value):
661 //
662 // Inserts a moveable value into the `btree_multimap`, returning an iterator
663 // to the inserted element.
664 //
665 // iterator insert(const_iterator hint, const value_type& value):
666 // iterator insert(const_iterator hint, value_type&& value):
667 //
668 // Inserts a value, using the position of `hint` as a non-binding suggestion
669 // for where to begin the insertion search. Returns an iterator to the
670 // inserted element.
671 //
672 // void insert(InputIterator first, InputIterator last):
673 //
674 // Inserts a range of values [`first`, `last`).
675 //
676 // void insert(std::initializer_list<init_type> ilist):
677 //
678 // Inserts the elements within the initializer list `ilist`.
679 using Base::insert;
680
681 // btree_multimap::emplace()
682 //
683 // Inserts an element of the specified value by constructing it in-place
684 // within the `btree_multimap`. Any references, pointers, or iterators are
685 // invalidated.
686 using Base::emplace;
687
688 // btree_multimap::emplace_hint()
689 //
690 // Inserts an element of the specified value by constructing it in-place
691 // within the `btree_multimap`, using the position of `hint` as a non-binding
692 // suggestion for where to begin the insertion search.
693 //
694 // Any references, pointers, or iterators are invalidated.
695 using Base::emplace_hint;
696
697 // btree_multimap::extract()
698 //
699 // Extracts the indicated element, erasing it in the process, and returns it
700 // as a C++17-compatible node handle. Overloads are listed below.
701 //
702 // node_type extract(const_iterator position):
703 //
704 // Extracts the element at the indicated position and returns a node handle
705 // owning that extracted data.
706 //
707 // template <typename K> node_type extract(const K& k):
708 //
709 // Extracts the element with the key matching the passed key value and
710 // returns a node handle owning that extracted data. If the `btree_multimap`
711 // does not contain an element with a matching key, this function returns an
712 // empty node handle.
713 //
714 // NOTE: when compiled in an earlier version of C++ than C++17,
715 // `node_type::key()` returns a const reference to the key instead of a
716 // mutable reference. We cannot safely return a mutable reference without
717 // std::launder (which is not available before C++17).
718 //
719 // NOTE: In this context, `node_type` refers to the C++17 concept of a
720 // move-only type that owns and provides access to the elements in associative
721 // containers (https://en.cppreference.com/w/cpp/container/node_handle).
722 // It does NOT refer to the data layout of the underlying btree.
723 using Base::extract;
724
725 // btree_multimap::extract_and_get_next()
726 //
727 // Extracts the indicated element, erasing it in the process, and returns it
728 // as a C++17-compatible node handle along with an iterator to the next
729 // element.
730 //
731 // extract_and_get_next_return_type extract_and_get_next(
732 // const_iterator position):
733 //
734 // Extracts the element at the indicated position, returns a struct
735 // containing a member named `node`: a node handle owning that extracted
736 // data and a member named `next`: an iterator pointing to the next element
737 // in the btree.
738 using Base::extract_and_get_next;
739
740 // btree_multimap::merge()
741 //
742 // Extracts all elements from a given `source` btree_multimap into this
743 // `btree_multimap`.
744 using Base::merge;
745
746 // btree_multimap::swap(btree_multimap& other)
747 //
748 // Exchanges the contents of this `btree_multimap` with those of the `other`
749 // btree_multimap, avoiding invocation of any move, copy, or swap operations
750 // on individual elements.
751 //
752 // All iterators and references on the `btree_multimap` remain valid,
753 // excepting for the past-the-end iterator, which is invalidated.
754 using Base::swap;
755
756 // btree_multimap::contains()
757 //
758 // template <typename K> bool contains(const K& key) const:
759 //
760 // Determines whether an element comparing equal to the given `key` exists
761 // within the `btree_multimap`, returning `true` if so or `false` otherwise.
762 //
763 // Supports heterogeneous lookup, provided that the map has a compatible
764 // heterogeneous comparator.
765 using Base::contains;
766
767 // btree_multimap::count()
768 //
769 // template <typename K> size_type count(const K& key) const:
770 //
771 // Returns the number of elements comparing equal to the given `key` within
772 // the `btree_multimap`.
773 //
774 // Supports heterogeneous lookup, provided that the map has a compatible
775 // heterogeneous comparator.
776 using Base::count;
777
778 // btree_multimap::equal_range()
779 //
780 // Returns a half-open range [first, last), defined by a `std::pair` of two
781 // iterators, containing all elements with the passed key in the
782 // `btree_multimap`.
783 using Base::equal_range;
784
785 // btree_multimap::find()
786 //
787 // template <typename K> iterator find(const K& key):
788 // template <typename K> const_iterator find(const K& key) const:
789 //
790 // Finds an element with the passed `key` within the `btree_multimap`.
791 //
792 // Supports heterogeneous lookup, provided that the map has a compatible
793 // heterogeneous comparator.
794 using Base::find;
795
796 // btree_multimap::lower_bound()
797 //
798 // template <typename K> iterator lower_bound(const K& key):
799 // template <typename K> const_iterator lower_bound(const K& key) const:
800 //
801 // Finds the first element with a key that is not less than `key` within the
802 // `btree_multimap`.
803 //
804 // Supports heterogeneous lookup, provided that the map has a compatible
805 // heterogeneous comparator.
806 using Base::lower_bound;
807
808 // btree_multimap::upper_bound()
809 //
810 // template <typename K> iterator upper_bound(const K& key):
811 // template <typename K> const_iterator upper_bound(const K& key) const:
812 //
813 // Finds the first element with a key that is greater than `key` within the
814 // `btree_multimap`.
815 //
816 // Supports heterogeneous lookup, provided that the map has a compatible
817 // heterogeneous comparator.
818 using Base::upper_bound;
819
820 // btree_multimap::get_allocator()
821 //
822 // Returns the allocator function associated with this `btree_multimap`.
823 using Base::get_allocator;
824
825 // btree_multimap::key_comp();
826 //
827 // Returns the key comparator associated with this `btree_multimap`.
828 using Base::key_comp;
829
830 // btree_multimap::value_comp();
831 //
832 // Returns the value comparator associated with this `btree_multimap`.
833 using Base::value_comp;
834 };
835
836 // absl::swap(absl::btree_multimap<>, absl::btree_multimap<>)
837 //
838 // Swaps the contents of two `absl::btree_multimap` containers.
839 template <typename K, typename V, typename C, typename A>
swap(btree_multimap<K,V,C,A> & x,btree_multimap<K,V,C,A> & y)840 void swap(btree_multimap<K, V, C, A> &x, btree_multimap<K, V, C, A> &y) {
841 return x.swap(y);
842 }
843
844 // absl::erase_if(absl::btree_multimap<>, Pred)
845 //
846 // Erases all elements that satisfy the predicate pred from the container.
847 // Returns the number of erased elements.
848 template <typename K, typename V, typename C, typename A, typename Pred>
erase_if(btree_multimap<K,V,C,A> & map,Pred pred)849 typename btree_multimap<K, V, C, A>::size_type erase_if(
850 btree_multimap<K, V, C, A> &map, Pred pred) {
851 return container_internal::btree_access::erase_if(map, std::move(pred));
852 }
853
854 namespace container_internal {
855
856 // A parameters structure for holding the type parameters for a btree_map.
857 // Compare and Alloc should be nothrow copy-constructible.
858 template <typename Key, typename Data, typename Compare, typename Alloc,
859 int TargetNodeSize, bool IsMulti>
860 struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, IsMulti,
861 /*IsMap=*/true, map_slot_policy<Key, Data>> {
862 using super_type = typename map_params::common_params;
863 using mapped_type = Data;
864 // This type allows us to move keys when it is safe to do so. It is safe
865 // for maps in which value_type and mutable_value_type are layout compatible.
866 using slot_policy = typename super_type::slot_policy;
867 using slot_type = typename super_type::slot_type;
868 using value_type = typename super_type::value_type;
869 using init_type = typename super_type::init_type;
870
871 template <typename V>
872 static auto key(const V &value ABSL_ATTRIBUTE_LIFETIME_BOUND)
873 -> decltype((value.first)) {
874 return value.first;
875 }
keymap_params876 static const Key &key(const slot_type *s) { return slot_policy::key(s); }
keymap_params877 static const Key &key(slot_type *s) { return slot_policy::key(s); }
878 // For use in node handle.
879 static auto mutable_key(slot_type *s)
880 -> decltype(slot_policy::mutable_key(s)) {
881 return slot_policy::mutable_key(s);
882 }
valuemap_params883 static mapped_type &value(value_type *value) { return value->second; }
884 };
885
886 } // namespace container_internal
887
888 ABSL_NAMESPACE_END
889 } // namespace absl
890
891 #endif // ABSL_CONTAINER_BTREE_MAP_H_
892