1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: fixed_array.h
17 // -----------------------------------------------------------------------------
18 //
19 // A `FixedArray<T>` represents a non-resizable array of `T` where the length of
20 // the array can be determined at run-time. It is a good replacement for
21 // non-standard and deprecated uses of `alloca()` and variable length arrays
22 // within the GCC extension. (See
23 // https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html).
24 //
25 // `FixedArray` allocates small arrays inline, keeping performance fast by
26 // avoiding heap operations. It also helps reduce the chances of
27 // accidentally overflowing your stack if large input is passed to
28 // your function.
29
30 #ifndef ABSL_CONTAINER_FIXED_ARRAY_H_
31 #define ABSL_CONTAINER_FIXED_ARRAY_H_
32
33 #include <algorithm>
34 #include <cassert>
35 #include <cstddef>
36 #include <initializer_list>
37 #include <iterator>
38 #include <limits>
39 #include <memory>
40 #include <new>
41 #include <type_traits>
42
43 #include "absl/algorithm/algorithm.h"
44 #include "absl/base/attributes.h"
45 #include "absl/base/config.h"
46 #include "absl/base/dynamic_annotations.h"
47 #include "absl/base/internal/iterator_traits.h"
48 #include "absl/base/internal/throw_delegate.h"
49 #include "absl/base/macros.h"
50 #include "absl/base/optimization.h"
51 #include "absl/base/port.h"
52 #include "absl/container/internal/compressed_tuple.h"
53 #include "absl/memory/memory.h"
54
55 namespace absl {
56 ABSL_NAMESPACE_BEGIN
57
58 constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1);
59
60 // -----------------------------------------------------------------------------
61 // FixedArray
62 // -----------------------------------------------------------------------------
63 //
64 // A `FixedArray` provides a run-time fixed-size array, allocating a small array
65 // inline for efficiency.
66 //
67 // Most users should not specify the `N` template parameter and let `FixedArray`
68 // automatically determine the number of elements to store inline based on
69 // `sizeof(T)`. If `N` is specified, the `FixedArray` implementation will use
70 // inline storage for arrays with a length <= `N`.
71 //
72 // Note that a `FixedArray` constructed with a `size_type` argument will
73 // default-initialize its values by leaving trivially constructible types
74 // uninitialized (e.g. int, int[4], double), and others default-constructed.
75 // This matches the behavior of c-style arrays and `std::array`, but not
76 // `std::vector`.
77 template <typename T, size_t N = kFixedArrayUseDefault,
78 typename A = std::allocator<T>>
79 class ABSL_ATTRIBUTE_WARN_UNUSED FixedArray {
80 static_assert(!std::is_array<T>::value || std::extent<T>::value > 0,
81 "Arrays with unknown bounds cannot be used with FixedArray.");
82
83 static constexpr size_t kInlineBytesDefault = 256;
84
85 using AllocatorTraits = std::allocator_traits<A>;
86 // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17,
87 // but this seems to be mostly pedantic.
88 template <typename Iterator>
89 using EnableIfForwardIterator = std::enable_if_t<
90 base_internal::IsAtLeastForwardIterator<Iterator>::value>;
NoexceptCopyable()91 static constexpr bool NoexceptCopyable() {
92 return std::is_nothrow_copy_constructible<StorageElement>::value &&
93 absl::allocator_is_nothrow<allocator_type>::value;
94 }
NoexceptMovable()95 static constexpr bool NoexceptMovable() {
96 return std::is_nothrow_move_constructible<StorageElement>::value &&
97 absl::allocator_is_nothrow<allocator_type>::value;
98 }
DefaultConstructorIsNonTrivial()99 static constexpr bool DefaultConstructorIsNonTrivial() {
100 return !absl::is_trivially_default_constructible<StorageElement>::value;
101 }
102
103 public:
104 using allocator_type = typename AllocatorTraits::allocator_type;
105 using value_type = typename AllocatorTraits::value_type;
106 using pointer = typename AllocatorTraits::pointer;
107 using const_pointer = typename AllocatorTraits::const_pointer;
108 using reference = value_type&;
109 using const_reference = const value_type&;
110 using size_type = typename AllocatorTraits::size_type;
111 using difference_type = typename AllocatorTraits::difference_type;
112 using iterator = pointer;
113 using const_iterator = const_pointer;
114 using reverse_iterator = std::reverse_iterator<iterator>;
115 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
116
117 static constexpr size_type inline_elements =
118 (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type)
119 : static_cast<size_type>(N));
120
noexcept(NoexceptCopyable ())121 FixedArray(const FixedArray& other) noexcept(NoexceptCopyable())
122 : FixedArray(other,
123 AllocatorTraits::select_on_container_copy_construction(
124 other.storage_.alloc())) {}
125
FixedArray(const FixedArray & other,const allocator_type & a)126 FixedArray(const FixedArray& other,
127 const allocator_type& a) noexcept(NoexceptCopyable())
128 : FixedArray(other.begin(), other.end(), a) {}
129
noexcept(NoexceptMovable ())130 FixedArray(FixedArray&& other) noexcept(NoexceptMovable())
131 : FixedArray(std::move(other), other.storage_.alloc()) {}
132
FixedArray(FixedArray && other,const allocator_type & a)133 FixedArray(FixedArray&& other,
134 const allocator_type& a) noexcept(NoexceptMovable())
135 : FixedArray(std::make_move_iterator(other.begin()),
136 std::make_move_iterator(other.end()), a) {}
137
138 // Creates an array object that can store `n` elements.
139 // Note that trivially constructible elements will be uninitialized.
140 explicit FixedArray(size_type n, const allocator_type& a = allocator_type())
storage_(n,a)141 : storage_(n, a) {
142 if (DefaultConstructorIsNonTrivial()) {
143 memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
144 storage_.end());
145 }
146 }
147
148 // Creates an array initialized with `n` copies of `val`.
149 FixedArray(size_type n, const value_type& val,
150 const allocator_type& a = allocator_type())
storage_(n,a)151 : storage_(n, a) {
152 memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
153 storage_.end(), val);
154 }
155
156 // Creates an array initialized with the size and contents of `init_list`.
157 FixedArray(std::initializer_list<value_type> init_list,
158 const allocator_type& a = allocator_type())
159 : FixedArray(init_list.begin(), init_list.end(), a) {}
160
161 // Creates an array initialized with the elements from the input
162 // range. The array's size will always be `std::distance(first, last)`.
163 // REQUIRES: Iterator must be a forward_iterator or better.
164 template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr>
165 FixedArray(Iterator first, Iterator last,
166 const allocator_type& a = allocator_type())
storage_(std::distance (first,last),a)167 : storage_(std::distance(first, last), a) {
168 memory_internal::CopyRange(storage_.alloc(), storage_.begin(), first, last);
169 }
170
~FixedArray()171 ~FixedArray() noexcept {
172 for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) {
173 AllocatorTraits::destroy(storage_.alloc(), cur);
174 }
175 }
176
177 // Assignments are deleted because they break the invariant that the size of a
178 // `FixedArray` never changes.
179 void operator=(FixedArray&&) = delete;
180 void operator=(const FixedArray&) = delete;
181
182 // FixedArray::size()
183 //
184 // Returns the length of the fixed array.
size()185 size_type size() const { return storage_.size(); }
186
187 // FixedArray::max_size()
188 //
189 // Returns the largest possible value of `std::distance(begin(), end())` for a
190 // `FixedArray<T>`. This is equivalent to the most possible addressable bytes
191 // over the number of bytes taken by T.
max_size()192 constexpr size_type max_size() const {
193 return (std::numeric_limits<difference_type>::max)() / sizeof(value_type);
194 }
195
196 // FixedArray::empty()
197 //
198 // Returns whether or not the fixed array is empty.
empty()199 bool empty() const { return size() == 0; }
200
201 // FixedArray::memsize()
202 //
203 // Returns the memory size of the fixed array in bytes.
memsize()204 size_t memsize() const { return size() * sizeof(value_type); }
205
206 // FixedArray::data()
207 //
208 // Returns a const T* pointer to elements of the `FixedArray`. This pointer
209 // can be used to access (but not modify) the contained elements.
data()210 const_pointer data() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
211 return AsValueType(storage_.begin());
212 }
213
214 // Overload of FixedArray::data() to return a T* pointer to elements of the
215 // fixed array. This pointer can be used to access and modify the contained
216 // elements.
data()217 pointer data() ABSL_ATTRIBUTE_LIFETIME_BOUND {
218 return AsValueType(storage_.begin());
219 }
220
221 // FixedArray::operator[]
222 //
223 // Returns a reference the ith element of the fixed array.
224 // REQUIRES: 0 <= i < size()
225 reference operator[](size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND {
226 ABSL_HARDENING_ASSERT(i < size());
227 return data()[i];
228 }
229
230 // Overload of FixedArray::operator()[] to return a const reference to the
231 // ith element of the fixed array.
232 // REQUIRES: 0 <= i < size()
233 const_reference operator[](size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
234 ABSL_HARDENING_ASSERT(i < size());
235 return data()[i];
236 }
237
238 // FixedArray::at
239 //
240 // Bounds-checked access. Returns a reference to the ith element of the fixed
241 // array, or throws std::out_of_range
at(size_type i)242 reference at(size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND {
243 if (ABSL_PREDICT_FALSE(i >= size())) {
244 base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
245 }
246 return data()[i];
247 }
248
249 // Overload of FixedArray::at() to return a const reference to the ith element
250 // of the fixed array.
at(size_type i)251 const_reference at(size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
252 if (ABSL_PREDICT_FALSE(i >= size())) {
253 base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
254 }
255 return data()[i];
256 }
257
258 // FixedArray::front()
259 //
260 // Returns a reference to the first element of the fixed array.
front()261 reference front() ABSL_ATTRIBUTE_LIFETIME_BOUND {
262 ABSL_HARDENING_ASSERT(!empty());
263 return data()[0];
264 }
265
266 // Overload of FixedArray::front() to return a reference to the first element
267 // of a fixed array of const values.
front()268 const_reference front() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
269 ABSL_HARDENING_ASSERT(!empty());
270 return data()[0];
271 }
272
273 // FixedArray::back()
274 //
275 // Returns a reference to the last element of the fixed array.
back()276 reference back() ABSL_ATTRIBUTE_LIFETIME_BOUND {
277 ABSL_HARDENING_ASSERT(!empty());
278 return data()[size() - 1];
279 }
280
281 // Overload of FixedArray::back() to return a reference to the last element
282 // of a fixed array of const values.
back()283 const_reference back() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
284 ABSL_HARDENING_ASSERT(!empty());
285 return data()[size() - 1];
286 }
287
288 // FixedArray::begin()
289 //
290 // Returns an iterator to the beginning of the fixed array.
begin()291 iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND { return data(); }
292
293 // Overload of FixedArray::begin() to return a const iterator to the
294 // beginning of the fixed array.
begin()295 const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return data(); }
296
297 // FixedArray::cbegin()
298 //
299 // Returns a const iterator to the beginning of the fixed array.
cbegin()300 const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
301 return begin();
302 }
303
304 // FixedArray::end()
305 //
306 // Returns an iterator to the end of the fixed array.
end()307 iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND { return data() + size(); }
308
309 // Overload of FixedArray::end() to return a const iterator to the end of the
310 // fixed array.
end()311 const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
312 return data() + size();
313 }
314
315 // FixedArray::cend()
316 //
317 // Returns a const iterator to the end of the fixed array.
cend()318 const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return end(); }
319
320 // FixedArray::rbegin()
321 //
322 // Returns a reverse iterator from the end of the fixed array.
rbegin()323 reverse_iterator rbegin() ABSL_ATTRIBUTE_LIFETIME_BOUND {
324 return reverse_iterator(end());
325 }
326
327 // Overload of FixedArray::rbegin() to return a const reverse iterator from
328 // the end of the fixed array.
rbegin()329 const_reverse_iterator rbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
330 return const_reverse_iterator(end());
331 }
332
333 // FixedArray::crbegin()
334 //
335 // Returns a const reverse iterator from the end of the fixed array.
crbegin()336 const_reverse_iterator crbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
337 return rbegin();
338 }
339
340 // FixedArray::rend()
341 //
342 // Returns a reverse iterator from the beginning of the fixed array.
rend()343 reverse_iterator rend() ABSL_ATTRIBUTE_LIFETIME_BOUND {
344 return reverse_iterator(begin());
345 }
346
347 // Overload of FixedArray::rend() for returning a const reverse iterator
348 // from the beginning of the fixed array.
rend()349 const_reverse_iterator rend() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
350 return const_reverse_iterator(begin());
351 }
352
353 // FixedArray::crend()
354 //
355 // Returns a reverse iterator from the beginning of the fixed array.
crend()356 const_reverse_iterator crend() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
357 return rend();
358 }
359
360 // FixedArray::fill()
361 //
362 // Assigns the given `value` to all elements in the fixed array.
fill(const value_type & val)363 void fill(const value_type& val) { std::fill(begin(), end(), val); }
364
365 // Relational operators. Equality operators are elementwise using
366 // `operator==`, while order operators order FixedArrays lexicographically.
367 friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) {
368 return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
369 }
370
371 friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) {
372 return !(lhs == rhs);
373 }
374
375 friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) {
376 return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(),
377 rhs.end());
378 }
379
380 friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) {
381 return rhs < lhs;
382 }
383
384 friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) {
385 return !(rhs < lhs);
386 }
387
388 friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) {
389 return !(lhs < rhs);
390 }
391
392 template <typename H>
AbslHashValue(H h,const FixedArray & v)393 friend H AbslHashValue(H h, const FixedArray& v) {
394 return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()),
395 v.size());
396 }
397
398 private:
399 // StorageElement
400 //
401 // For FixedArrays with a C-style-array value_type, StorageElement is a POD
402 // wrapper struct called StorageElementWrapper that holds the value_type
403 // instance inside. This is needed for construction and destruction of the
404 // entire array regardless of how many dimensions it has. For all other cases,
405 // StorageElement is just an alias of value_type.
406 //
407 // Maintainer's Note: The simpler solution would be to simply wrap value_type
408 // in a struct whether it's an array or not. That causes some paranoid
409 // diagnostics to misfire, believing that 'data()' returns a pointer to a
410 // single element, rather than the packed array that it really is.
411 // e.g.:
412 //
413 // FixedArray<char> buf(1);
414 // sprintf(buf.data(), "foo");
415 //
416 // error: call to int __builtin___sprintf_chk(etc...)
417 // will always overflow destination buffer [-Werror]
418 //
419 template <typename OuterT, typename InnerT = absl::remove_extent_t<OuterT>,
420 size_t InnerN = std::extent<OuterT>::value>
421 struct StorageElementWrapper {
422 InnerT array[InnerN];
423 };
424
425 using StorageElement =
426 absl::conditional_t<std::is_array<value_type>::value,
427 StorageElementWrapper<value_type>, value_type>;
428
AsValueType(pointer ptr)429 static pointer AsValueType(pointer ptr) { return ptr; }
AsValueType(StorageElementWrapper<value_type> * ptr)430 static pointer AsValueType(StorageElementWrapper<value_type>* ptr) {
431 return std::addressof(ptr->array);
432 }
433
434 static_assert(sizeof(StorageElement) == sizeof(value_type), "");
435 static_assert(alignof(StorageElement) == alignof(value_type), "");
436
437 class NonEmptyInlinedStorage {
438 public:
data()439 StorageElement* data() { return reinterpret_cast<StorageElement*>(buff_); }
440 void AnnotateConstruct(size_type n);
441 void AnnotateDestruct(size_type n);
442
443 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
RedzoneBegin()444 void* RedzoneBegin() { return &redzone_begin_; }
RedzoneEnd()445 void* RedzoneEnd() { return &redzone_end_ + 1; }
446 #endif // ABSL_HAVE_ADDRESS_SANITIZER
447
448 private:
449 ABSL_ADDRESS_SANITIZER_REDZONE(redzone_begin_);
450 alignas(StorageElement) char buff_[sizeof(StorageElement[inline_elements])];
451 ABSL_ADDRESS_SANITIZER_REDZONE(redzone_end_);
452 };
453
454 class EmptyInlinedStorage {
455 public:
data()456 StorageElement* data() { return nullptr; }
AnnotateConstruct(size_type)457 void AnnotateConstruct(size_type) {}
AnnotateDestruct(size_type)458 void AnnotateDestruct(size_type) {}
459 };
460
461 using InlinedStorage =
462 absl::conditional_t<inline_elements == 0, EmptyInlinedStorage,
463 NonEmptyInlinedStorage>;
464
465 // Storage
466 //
467 // An instance of Storage manages the inline and out-of-line memory for
468 // instances of FixedArray. This guarantees that even when construction of
469 // individual elements fails in the FixedArray constructor body, the
470 // destructor for Storage will still be called and out-of-line memory will be
471 // properly deallocated.
472 //
473 class Storage : public InlinedStorage {
474 public:
Storage(size_type n,const allocator_type & a)475 Storage(size_type n, const allocator_type& a)
476 : size_alloc_(n, a), data_(InitializeData()) {}
477
~Storage()478 ~Storage() noexcept {
479 if (UsingInlinedStorage(size())) {
480 InlinedStorage::AnnotateDestruct(size());
481 } else {
482 AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size());
483 }
484 }
485
size()486 size_type size() const { return size_alloc_.template get<0>(); }
begin()487 StorageElement* begin() const { return data_; }
end()488 StorageElement* end() const { return begin() + size(); }
alloc()489 allocator_type& alloc() { return size_alloc_.template get<1>(); }
alloc()490 const allocator_type& alloc() const {
491 return size_alloc_.template get<1>();
492 }
493
494 private:
UsingInlinedStorage(size_type n)495 static bool UsingInlinedStorage(size_type n) {
496 return n <= inline_elements;
497 }
498
499 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
500 ABSL_ATTRIBUTE_NOINLINE
501 #endif // ABSL_HAVE_ADDRESS_SANITIZER
InitializeData()502 StorageElement* InitializeData() {
503 if (UsingInlinedStorage(size())) {
504 InlinedStorage::AnnotateConstruct(size());
505 return InlinedStorage::data();
506 } else {
507 return reinterpret_cast<StorageElement*>(
508 AllocatorTraits::allocate(alloc(), size()));
509 }
510 }
511
512 // `CompressedTuple` takes advantage of EBCO for stateless `allocator_type`s
513 container_internal::CompressedTuple<size_type, allocator_type> size_alloc_;
514 StorageElement* data_;
515 };
516
517 Storage storage_;
518 };
519
520 template <typename T, size_t N, typename A>
AnnotateConstruct(typename FixedArray<T,N,A>::size_type n)521 void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct(
522 typename FixedArray<T, N, A>::size_type n) {
523 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
524 if (!n) return;
525 ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(),
526 data() + n);
527 ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(),
528 RedzoneBegin());
529 #endif // ABSL_HAVE_ADDRESS_SANITIZER
530 static_cast<void>(n); // Mark used when not in asan mode
531 }
532
533 template <typename T, size_t N, typename A>
AnnotateDestruct(typename FixedArray<T,N,A>::size_type n)534 void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct(
535 typename FixedArray<T, N, A>::size_type n) {
536 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
537 if (!n) return;
538 ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n,
539 RedzoneEnd());
540 ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(),
541 data());
542 #endif // ABSL_HAVE_ADDRESS_SANITIZER
543 static_cast<void>(n); // Mark used when not in asan mode
544 }
545 ABSL_NAMESPACE_END
546 } // namespace absl
547
548 #endif // ABSL_CONTAINER_FIXED_ARRAY_H_
549