• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: fixed_array.h
17 // -----------------------------------------------------------------------------
18 //
19 // A `FixedArray<T>` represents a non-resizable array of `T` where the length of
20 // the array can be determined at run-time. It is a good replacement for
21 // non-standard and deprecated uses of `alloca()` and variable length arrays
22 // within the GCC extension. (See
23 // https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html).
24 //
25 // `FixedArray` allocates small arrays inline, keeping performance fast by
26 // avoiding heap operations. It also helps reduce the chances of
27 // accidentally overflowing your stack if large input is passed to
28 // your function.
29 
30 #ifndef ABSL_CONTAINER_FIXED_ARRAY_H_
31 #define ABSL_CONTAINER_FIXED_ARRAY_H_
32 
33 #include <algorithm>
34 #include <cassert>
35 #include <cstddef>
36 #include <initializer_list>
37 #include <iterator>
38 #include <limits>
39 #include <memory>
40 #include <new>
41 #include <type_traits>
42 
43 #include "absl/algorithm/algorithm.h"
44 #include "absl/base/attributes.h"
45 #include "absl/base/config.h"
46 #include "absl/base/dynamic_annotations.h"
47 #include "absl/base/internal/iterator_traits.h"
48 #include "absl/base/internal/throw_delegate.h"
49 #include "absl/base/macros.h"
50 #include "absl/base/optimization.h"
51 #include "absl/base/port.h"
52 #include "absl/container/internal/compressed_tuple.h"
53 #include "absl/memory/memory.h"
54 
55 namespace absl {
56 ABSL_NAMESPACE_BEGIN
57 
58 constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1);
59 
60 // -----------------------------------------------------------------------------
61 // FixedArray
62 // -----------------------------------------------------------------------------
63 //
64 // A `FixedArray` provides a run-time fixed-size array, allocating a small array
65 // inline for efficiency.
66 //
67 // Most users should not specify the `N` template parameter and let `FixedArray`
68 // automatically determine the number of elements to store inline based on
69 // `sizeof(T)`. If `N` is specified, the `FixedArray` implementation will use
70 // inline storage for arrays with a length <= `N`.
71 //
72 // Note that a `FixedArray` constructed with a `size_type` argument will
73 // default-initialize its values by leaving trivially constructible types
74 // uninitialized (e.g. int, int[4], double), and others default-constructed.
75 // This matches the behavior of c-style arrays and `std::array`, but not
76 // `std::vector`.
77 template <typename T, size_t N = kFixedArrayUseDefault,
78           typename A = std::allocator<T>>
79 class ABSL_ATTRIBUTE_WARN_UNUSED FixedArray {
80   static_assert(!std::is_array<T>::value || std::extent<T>::value > 0,
81                 "Arrays with unknown bounds cannot be used with FixedArray.");
82 
83   static constexpr size_t kInlineBytesDefault = 256;
84 
85   using AllocatorTraits = std::allocator_traits<A>;
86   // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17,
87   // but this seems to be mostly pedantic.
88   template <typename Iterator>
89   using EnableIfForwardIterator = std::enable_if_t<
90       base_internal::IsAtLeastForwardIterator<Iterator>::value>;
NoexceptCopyable()91   static constexpr bool NoexceptCopyable() {
92     return std::is_nothrow_copy_constructible<StorageElement>::value &&
93            absl::allocator_is_nothrow<allocator_type>::value;
94   }
NoexceptMovable()95   static constexpr bool NoexceptMovable() {
96     return std::is_nothrow_move_constructible<StorageElement>::value &&
97            absl::allocator_is_nothrow<allocator_type>::value;
98   }
DefaultConstructorIsNonTrivial()99   static constexpr bool DefaultConstructorIsNonTrivial() {
100     return !absl::is_trivially_default_constructible<StorageElement>::value;
101   }
102 
103  public:
104   using allocator_type = typename AllocatorTraits::allocator_type;
105   using value_type = typename AllocatorTraits::value_type;
106   using pointer = typename AllocatorTraits::pointer;
107   using const_pointer = typename AllocatorTraits::const_pointer;
108   using reference = value_type&;
109   using const_reference = const value_type&;
110   using size_type = typename AllocatorTraits::size_type;
111   using difference_type = typename AllocatorTraits::difference_type;
112   using iterator = pointer;
113   using const_iterator = const_pointer;
114   using reverse_iterator = std::reverse_iterator<iterator>;
115   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
116 
117   static constexpr size_type inline_elements =
118       (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type)
119                                   : static_cast<size_type>(N));
120 
noexcept(NoexceptCopyable ())121   FixedArray(const FixedArray& other) noexcept(NoexceptCopyable())
122       : FixedArray(other,
123                    AllocatorTraits::select_on_container_copy_construction(
124                        other.storage_.alloc())) {}
125 
FixedArray(const FixedArray & other,const allocator_type & a)126   FixedArray(const FixedArray& other,
127              const allocator_type& a) noexcept(NoexceptCopyable())
128       : FixedArray(other.begin(), other.end(), a) {}
129 
noexcept(NoexceptMovable ())130   FixedArray(FixedArray&& other) noexcept(NoexceptMovable())
131       : FixedArray(std::move(other), other.storage_.alloc()) {}
132 
FixedArray(FixedArray && other,const allocator_type & a)133   FixedArray(FixedArray&& other,
134              const allocator_type& a) noexcept(NoexceptMovable())
135       : FixedArray(std::make_move_iterator(other.begin()),
136                    std::make_move_iterator(other.end()), a) {}
137 
138   // Creates an array object that can store `n` elements.
139   // Note that trivially constructible elements will be uninitialized.
140   explicit FixedArray(size_type n, const allocator_type& a = allocator_type())
storage_(n,a)141       : storage_(n, a) {
142     if (DefaultConstructorIsNonTrivial()) {
143       memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
144                                       storage_.end());
145     }
146   }
147 
148   // Creates an array initialized with `n` copies of `val`.
149   FixedArray(size_type n, const value_type& val,
150              const allocator_type& a = allocator_type())
storage_(n,a)151       : storage_(n, a) {
152     memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
153                                     storage_.end(), val);
154   }
155 
156   // Creates an array initialized with the size and contents of `init_list`.
157   FixedArray(std::initializer_list<value_type> init_list,
158              const allocator_type& a = allocator_type())
159       : FixedArray(init_list.begin(), init_list.end(), a) {}
160 
161   // Creates an array initialized with the elements from the input
162   // range. The array's size will always be `std::distance(first, last)`.
163   // REQUIRES: Iterator must be a forward_iterator or better.
164   template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr>
165   FixedArray(Iterator first, Iterator last,
166              const allocator_type& a = allocator_type())
storage_(std::distance (first,last),a)167       : storage_(std::distance(first, last), a) {
168     memory_internal::CopyRange(storage_.alloc(), storage_.begin(), first, last);
169   }
170 
~FixedArray()171   ~FixedArray() noexcept {
172     for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) {
173       AllocatorTraits::destroy(storage_.alloc(), cur);
174     }
175   }
176 
177   // Assignments are deleted because they break the invariant that the size of a
178   // `FixedArray` never changes.
179   void operator=(FixedArray&&) = delete;
180   void operator=(const FixedArray&) = delete;
181 
182   // FixedArray::size()
183   //
184   // Returns the length of the fixed array.
size()185   size_type size() const { return storage_.size(); }
186 
187   // FixedArray::max_size()
188   //
189   // Returns the largest possible value of `std::distance(begin(), end())` for a
190   // `FixedArray<T>`. This is equivalent to the most possible addressable bytes
191   // over the number of bytes taken by T.
max_size()192   constexpr size_type max_size() const {
193     return (std::numeric_limits<difference_type>::max)() / sizeof(value_type);
194   }
195 
196   // FixedArray::empty()
197   //
198   // Returns whether or not the fixed array is empty.
empty()199   bool empty() const { return size() == 0; }
200 
201   // FixedArray::memsize()
202   //
203   // Returns the memory size of the fixed array in bytes.
memsize()204   size_t memsize() const { return size() * sizeof(value_type); }
205 
206   // FixedArray::data()
207   //
208   // Returns a const T* pointer to elements of the `FixedArray`. This pointer
209   // can be used to access (but not modify) the contained elements.
data()210   const_pointer data() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
211     return AsValueType(storage_.begin());
212   }
213 
214   // Overload of FixedArray::data() to return a T* pointer to elements of the
215   // fixed array. This pointer can be used to access and modify the contained
216   // elements.
data()217   pointer data() ABSL_ATTRIBUTE_LIFETIME_BOUND {
218     return AsValueType(storage_.begin());
219   }
220 
221   // FixedArray::operator[]
222   //
223   // Returns a reference the ith element of the fixed array.
224   // REQUIRES: 0 <= i < size()
225   reference operator[](size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND {
226     ABSL_HARDENING_ASSERT(i < size());
227     return data()[i];
228   }
229 
230   // Overload of FixedArray::operator()[] to return a const reference to the
231   // ith element of the fixed array.
232   // REQUIRES: 0 <= i < size()
233   const_reference operator[](size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
234     ABSL_HARDENING_ASSERT(i < size());
235     return data()[i];
236   }
237 
238   // FixedArray::at
239   //
240   // Bounds-checked access.  Returns a reference to the ith element of the fixed
241   // array, or throws std::out_of_range
at(size_type i)242   reference at(size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND {
243     if (ABSL_PREDICT_FALSE(i >= size())) {
244       base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
245     }
246     return data()[i];
247   }
248 
249   // Overload of FixedArray::at() to return a const reference to the ith element
250   // of the fixed array.
at(size_type i)251   const_reference at(size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
252     if (ABSL_PREDICT_FALSE(i >= size())) {
253       base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
254     }
255     return data()[i];
256   }
257 
258   // FixedArray::front()
259   //
260   // Returns a reference to the first element of the fixed array.
front()261   reference front() ABSL_ATTRIBUTE_LIFETIME_BOUND {
262     ABSL_HARDENING_ASSERT(!empty());
263     return data()[0];
264   }
265 
266   // Overload of FixedArray::front() to return a reference to the first element
267   // of a fixed array of const values.
front()268   const_reference front() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
269     ABSL_HARDENING_ASSERT(!empty());
270     return data()[0];
271   }
272 
273   // FixedArray::back()
274   //
275   // Returns a reference to the last element of the fixed array.
back()276   reference back() ABSL_ATTRIBUTE_LIFETIME_BOUND {
277     ABSL_HARDENING_ASSERT(!empty());
278     return data()[size() - 1];
279   }
280 
281   // Overload of FixedArray::back() to return a reference to the last element
282   // of a fixed array of const values.
back()283   const_reference back() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
284     ABSL_HARDENING_ASSERT(!empty());
285     return data()[size() - 1];
286   }
287 
288   // FixedArray::begin()
289   //
290   // Returns an iterator to the beginning of the fixed array.
begin()291   iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND { return data(); }
292 
293   // Overload of FixedArray::begin() to return a const iterator to the
294   // beginning of the fixed array.
begin()295   const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return data(); }
296 
297   // FixedArray::cbegin()
298   //
299   // Returns a const iterator to the beginning of the fixed array.
cbegin()300   const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
301     return begin();
302   }
303 
304   // FixedArray::end()
305   //
306   // Returns an iterator to the end of the fixed array.
end()307   iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND { return data() + size(); }
308 
309   // Overload of FixedArray::end() to return a const iterator to the end of the
310   // fixed array.
end()311   const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
312     return data() + size();
313   }
314 
315   // FixedArray::cend()
316   //
317   // Returns a const iterator to the end of the fixed array.
cend()318   const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return end(); }
319 
320   // FixedArray::rbegin()
321   //
322   // Returns a reverse iterator from the end of the fixed array.
rbegin()323   reverse_iterator rbegin() ABSL_ATTRIBUTE_LIFETIME_BOUND {
324     return reverse_iterator(end());
325   }
326 
327   // Overload of FixedArray::rbegin() to return a const reverse iterator from
328   // the end of the fixed array.
rbegin()329   const_reverse_iterator rbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
330     return const_reverse_iterator(end());
331   }
332 
333   // FixedArray::crbegin()
334   //
335   // Returns a const reverse iterator from the end of the fixed array.
crbegin()336   const_reverse_iterator crbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
337     return rbegin();
338   }
339 
340   // FixedArray::rend()
341   //
342   // Returns a reverse iterator from the beginning of the fixed array.
rend()343   reverse_iterator rend() ABSL_ATTRIBUTE_LIFETIME_BOUND {
344     return reverse_iterator(begin());
345   }
346 
347   // Overload of FixedArray::rend() for returning a const reverse iterator
348   // from the beginning of the fixed array.
rend()349   const_reverse_iterator rend() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
350     return const_reverse_iterator(begin());
351   }
352 
353   // FixedArray::crend()
354   //
355   // Returns a reverse iterator from the beginning of the fixed array.
crend()356   const_reverse_iterator crend() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
357     return rend();
358   }
359 
360   // FixedArray::fill()
361   //
362   // Assigns the given `value` to all elements in the fixed array.
fill(const value_type & val)363   void fill(const value_type& val) { std::fill(begin(), end(), val); }
364 
365   // Relational operators. Equality operators are elementwise using
366   // `operator==`, while order operators order FixedArrays lexicographically.
367   friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) {
368     return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
369   }
370 
371   friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) {
372     return !(lhs == rhs);
373   }
374 
375   friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) {
376     return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(),
377                                         rhs.end());
378   }
379 
380   friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) {
381     return rhs < lhs;
382   }
383 
384   friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) {
385     return !(rhs < lhs);
386   }
387 
388   friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) {
389     return !(lhs < rhs);
390   }
391 
392   template <typename H>
AbslHashValue(H h,const FixedArray & v)393   friend H AbslHashValue(H h, const FixedArray& v) {
394     return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()),
395                       v.size());
396   }
397 
398  private:
399   // StorageElement
400   //
401   // For FixedArrays with a C-style-array value_type, StorageElement is a POD
402   // wrapper struct called StorageElementWrapper that holds the value_type
403   // instance inside. This is needed for construction and destruction of the
404   // entire array regardless of how many dimensions it has. For all other cases,
405   // StorageElement is just an alias of value_type.
406   //
407   // Maintainer's Note: The simpler solution would be to simply wrap value_type
408   // in a struct whether it's an array or not. That causes some paranoid
409   // diagnostics to misfire, believing that 'data()' returns a pointer to a
410   // single element, rather than the packed array that it really is.
411   // e.g.:
412   //
413   //     FixedArray<char> buf(1);
414   //     sprintf(buf.data(), "foo");
415   //
416   //     error: call to int __builtin___sprintf_chk(etc...)
417   //     will always overflow destination buffer [-Werror]
418   //
419   template <typename OuterT, typename InnerT = absl::remove_extent_t<OuterT>,
420             size_t InnerN = std::extent<OuterT>::value>
421   struct StorageElementWrapper {
422     InnerT array[InnerN];
423   };
424 
425   using StorageElement =
426       absl::conditional_t<std::is_array<value_type>::value,
427                           StorageElementWrapper<value_type>, value_type>;
428 
AsValueType(pointer ptr)429   static pointer AsValueType(pointer ptr) { return ptr; }
AsValueType(StorageElementWrapper<value_type> * ptr)430   static pointer AsValueType(StorageElementWrapper<value_type>* ptr) {
431     return std::addressof(ptr->array);
432   }
433 
434   static_assert(sizeof(StorageElement) == sizeof(value_type), "");
435   static_assert(alignof(StorageElement) == alignof(value_type), "");
436 
437   class NonEmptyInlinedStorage {
438    public:
data()439     StorageElement* data() { return reinterpret_cast<StorageElement*>(buff_); }
440     void AnnotateConstruct(size_type n);
441     void AnnotateDestruct(size_type n);
442 
443 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
RedzoneBegin()444     void* RedzoneBegin() { return &redzone_begin_; }
RedzoneEnd()445     void* RedzoneEnd() { return &redzone_end_ + 1; }
446 #endif  // ABSL_HAVE_ADDRESS_SANITIZER
447 
448    private:
449     ABSL_ADDRESS_SANITIZER_REDZONE(redzone_begin_);
450     alignas(StorageElement) char buff_[sizeof(StorageElement[inline_elements])];
451     ABSL_ADDRESS_SANITIZER_REDZONE(redzone_end_);
452   };
453 
454   class EmptyInlinedStorage {
455    public:
data()456     StorageElement* data() { return nullptr; }
AnnotateConstruct(size_type)457     void AnnotateConstruct(size_type) {}
AnnotateDestruct(size_type)458     void AnnotateDestruct(size_type) {}
459   };
460 
461   using InlinedStorage =
462       absl::conditional_t<inline_elements == 0, EmptyInlinedStorage,
463                           NonEmptyInlinedStorage>;
464 
465   // Storage
466   //
467   // An instance of Storage manages the inline and out-of-line memory for
468   // instances of FixedArray. This guarantees that even when construction of
469   // individual elements fails in the FixedArray constructor body, the
470   // destructor for Storage will still be called and out-of-line memory will be
471   // properly deallocated.
472   //
473   class Storage : public InlinedStorage {
474    public:
Storage(size_type n,const allocator_type & a)475     Storage(size_type n, const allocator_type& a)
476         : size_alloc_(n, a), data_(InitializeData()) {}
477 
~Storage()478     ~Storage() noexcept {
479       if (UsingInlinedStorage(size())) {
480         InlinedStorage::AnnotateDestruct(size());
481       } else {
482         AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size());
483       }
484     }
485 
size()486     size_type size() const { return size_alloc_.template get<0>(); }
begin()487     StorageElement* begin() const { return data_; }
end()488     StorageElement* end() const { return begin() + size(); }
alloc()489     allocator_type& alloc() { return size_alloc_.template get<1>(); }
alloc()490     const allocator_type& alloc() const {
491       return size_alloc_.template get<1>();
492     }
493 
494    private:
UsingInlinedStorage(size_type n)495     static bool UsingInlinedStorage(size_type n) {
496       return n <= inline_elements;
497     }
498 
499 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
500     ABSL_ATTRIBUTE_NOINLINE
501 #endif  // ABSL_HAVE_ADDRESS_SANITIZER
InitializeData()502     StorageElement* InitializeData() {
503       if (UsingInlinedStorage(size())) {
504         InlinedStorage::AnnotateConstruct(size());
505         return InlinedStorage::data();
506       } else {
507         return reinterpret_cast<StorageElement*>(
508             AllocatorTraits::allocate(alloc(), size()));
509       }
510     }
511 
512     // `CompressedTuple` takes advantage of EBCO for stateless `allocator_type`s
513     container_internal::CompressedTuple<size_type, allocator_type> size_alloc_;
514     StorageElement* data_;
515   };
516 
517   Storage storage_;
518 };
519 
520 template <typename T, size_t N, typename A>
AnnotateConstruct(typename FixedArray<T,N,A>::size_type n)521 void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct(
522     typename FixedArray<T, N, A>::size_type n) {
523 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
524   if (!n) return;
525   ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(),
526                                      data() + n);
527   ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(),
528                                      RedzoneBegin());
529 #endif  // ABSL_HAVE_ADDRESS_SANITIZER
530   static_cast<void>(n);  // Mark used when not in asan mode
531 }
532 
533 template <typename T, size_t N, typename A>
AnnotateDestruct(typename FixedArray<T,N,A>::size_type n)534 void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct(
535     typename FixedArray<T, N, A>::size_type n) {
536 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
537   if (!n) return;
538   ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n,
539                                      RedzoneEnd());
540   ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(),
541                                      data());
542 #endif  // ABSL_HAVE_ADDRESS_SANITIZER
543   static_cast<void>(n);  // Mark used when not in asan mode
544 }
545 ABSL_NAMESPACE_END
546 }  // namespace absl
547 
548 #endif  // ABSL_CONTAINER_FIXED_ARRAY_H_
549