• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
16 #define ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
17 
18 #include <cassert>
19 #include <cstddef>
20 #include <cstdint>
21 #include <cstring>
22 #include <memory>
23 #include <new>
24 #include <tuple>
25 #include <type_traits>
26 #include <utility>
27 
28 #include "absl/base/config.h"
29 #include "absl/memory/memory.h"
30 #include "absl/meta/type_traits.h"
31 #include "absl/utility/utility.h"
32 
33 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
34 #include <sanitizer/asan_interface.h>
35 #endif
36 
37 #ifdef ABSL_HAVE_MEMORY_SANITIZER
38 #include <sanitizer/msan_interface.h>
39 #endif
40 
41 namespace absl {
42 ABSL_NAMESPACE_BEGIN
43 namespace container_internal {
44 
45 template <size_t Alignment>
46 struct alignas(Alignment) AlignedType {};
47 
48 // Allocates at least n bytes aligned to the specified alignment.
49 // Alignment must be a power of 2. It must be positive.
50 //
51 // Note that many allocators don't honor alignment requirements above certain
52 // threshold (usually either alignof(std::max_align_t) or alignof(void*)).
53 // Allocate() doesn't apply alignment corrections. If the underlying allocator
54 // returns insufficiently alignment pointer, that's what you are going to get.
55 template <size_t Alignment, class Alloc>
Allocate(Alloc * alloc,size_t n)56 void* Allocate(Alloc* alloc, size_t n) {
57   static_assert(Alignment > 0, "");
58   assert(n && "n must be positive");
59   using M = AlignedType<Alignment>;
60   using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
61   using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
62   // On macOS, "mem_alloc" is a #define with one argument defined in
63   // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it
64   // with the "foo(bar)" syntax.
65   A my_mem_alloc(*alloc);
66   void* p = AT::allocate(my_mem_alloc, (n + sizeof(M) - 1) / sizeof(M));
67   assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 &&
68          "allocator does not respect alignment");
69   return p;
70 }
71 
72 // Returns true if the destruction of the value with given Allocator will be
73 // trivial.
74 template <class Allocator, class ValueType>
IsDestructionTrivial()75 constexpr auto IsDestructionTrivial() {
76   constexpr bool result =
77       std::is_trivially_destructible<ValueType>::value &&
78       std::is_same<typename absl::allocator_traits<
79                        Allocator>::template rebind_alloc<char>,
80                    std::allocator<char>>::value;
81   return std::integral_constant<bool, result>();
82 }
83 
84 // The pointer must have been previously obtained by calling
85 // Allocate<Alignment>(alloc, n).
86 template <size_t Alignment, class Alloc>
Deallocate(Alloc * alloc,void * p,size_t n)87 void Deallocate(Alloc* alloc, void* p, size_t n) {
88   static_assert(Alignment > 0, "");
89   assert(n && "n must be positive");
90   using M = AlignedType<Alignment>;
91   using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
92   using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
93   // On macOS, "mem_alloc" is a #define with one argument defined in
94   // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it
95   // with the "foo(bar)" syntax.
96   A my_mem_alloc(*alloc);
97   AT::deallocate(my_mem_alloc, static_cast<M*>(p),
98                  (n + sizeof(M) - 1) / sizeof(M));
99 }
100 
101 namespace memory_internal {
102 
103 // Constructs T into uninitialized storage pointed by `ptr` using the args
104 // specified in the tuple.
105 template <class Alloc, class T, class Tuple, size_t... I>
ConstructFromTupleImpl(Alloc * alloc,T * ptr,Tuple && t,absl::index_sequence<I...>)106 void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t,
107                             absl::index_sequence<I...>) {
108   absl::allocator_traits<Alloc>::construct(
109       *alloc, ptr, std::get<I>(std::forward<Tuple>(t))...);
110 }
111 
112 template <class T, class F>
113 struct WithConstructedImplF {
114   template <class... Args>
decltypeWithConstructedImplF115   decltype(std::declval<F>()(std::declval<T>())) operator()(
116       Args&&... args) const {
117     return std::forward<F>(f)(T(std::forward<Args>(args)...));
118   }
119   F&& f;
120 };
121 
122 template <class T, class Tuple, size_t... Is, class F>
decltype(std::declval<F> ()(std::declval<T> ()))123 decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl(
124     Tuple&& t, absl::index_sequence<Is...>, F&& f) {
125   return WithConstructedImplF<T, F>{std::forward<F>(f)}(
126       std::get<Is>(std::forward<Tuple>(t))...);
127 }
128 
129 template <class T, size_t... Is>
130 auto TupleRefImpl(T&& t, absl::index_sequence<Is...>)
131     -> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) {
132   return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...);
133 }
134 
135 // Returns a tuple of references to the elements of the input tuple. T must be a
136 // tuple.
137 template <class T>
138 auto TupleRef(T&& t) -> decltype(TupleRefImpl(
139     std::forward<T>(t),
140     absl::make_index_sequence<
141         std::tuple_size<typename std::decay<T>::type>::value>())) {
142   return TupleRefImpl(
143       std::forward<T>(t),
144       absl::make_index_sequence<
145           std::tuple_size<typename std::decay<T>::type>::value>());
146 }
147 
148 template <class F, class K, class V>
decltype(std::declval<F> ()(std::declval<const K &> (),std::piecewise_construct,std::declval<std::tuple<K>> (),std::declval<V> ()))149 decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct,
150                            std::declval<std::tuple<K>>(), std::declval<V>()))
151 DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) {
152   const auto& key = std::get<0>(p.first);
153   return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first),
154                             std::move(p.second));
155 }
156 
157 }  // namespace memory_internal
158 
159 // Constructs T into uninitialized storage pointed by `ptr` using the args
160 // specified in the tuple.
161 template <class Alloc, class T, class Tuple>
ConstructFromTuple(Alloc * alloc,T * ptr,Tuple && t)162 void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) {
163   memory_internal::ConstructFromTupleImpl(
164       alloc, ptr, std::forward<Tuple>(t),
165       absl::make_index_sequence<
166           std::tuple_size<typename std::decay<Tuple>::type>::value>());
167 }
168 
169 // Constructs T using the args specified in the tuple and calls F with the
170 // constructed value.
171 template <class T, class Tuple, class F>
decltype(std::declval<F> ()(std::declval<T> ()))172 decltype(std::declval<F>()(std::declval<T>())) WithConstructed(Tuple&& t,
173                                                                F&& f) {
174   return memory_internal::WithConstructedImpl<T>(
175       std::forward<Tuple>(t),
176       absl::make_index_sequence<
177           std::tuple_size<typename std::decay<Tuple>::type>::value>(),
178       std::forward<F>(f));
179 }
180 
181 // Given arguments of an std::pair's constructor, PairArgs() returns a pair of
182 // tuples with references to the passed arguments. The tuples contain
183 // constructor arguments for the first and the second elements of the pair.
184 //
185 // The following two snippets are equivalent.
186 //
187 // 1. std::pair<F, S> p(args...);
188 //
189 // 2. auto a = PairArgs(args...);
190 //    std::pair<F, S> p(std::piecewise_construct,
191 //                      std::move(a.first), std::move(a.second));
PairArgs()192 inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; }
193 template <class F, class S>
PairArgs(F && f,S && s)194 std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) {
195   return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)),
196           std::forward_as_tuple(std::forward<S>(s))};
197 }
198 template <class F, class S>
PairArgs(const std::pair<F,S> & p)199 std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs(
200     const std::pair<F, S>& p) {
201   return PairArgs(p.first, p.second);
202 }
203 template <class F, class S>
PairArgs(std::pair<F,S> && p)204 std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) {
205   return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second));
206 }
207 template <class F, class S>
208 auto PairArgs(std::piecewise_construct_t, F&& f, S&& s)
209     -> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
210                                memory_internal::TupleRef(std::forward<S>(s)))) {
211   return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
212                         memory_internal::TupleRef(std::forward<S>(s)));
213 }
214 
215 // A helper function for implementing apply() in map policies.
216 template <class F, class... Args>
217 auto DecomposePair(F&& f, Args&&... args)
218     -> decltype(memory_internal::DecomposePairImpl(
219         std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) {
220   return memory_internal::DecomposePairImpl(
221       std::forward<F>(f), PairArgs(std::forward<Args>(args)...));
222 }
223 
224 // A helper function for implementing apply() in set policies.
225 template <class F, class Arg>
decltype(std::declval<F> ()(std::declval<const Arg &> (),std::declval<Arg> ()))226 decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>()))
227 DecomposeValue(F&& f, Arg&& arg) {
228   const auto& key = arg;
229   return std::forward<F>(f)(key, std::forward<Arg>(arg));
230 }
231 
232 // Helper functions for asan and msan.
SanitizerPoisonMemoryRegion(const void * m,size_t s)233 inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) {
234 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
235   ASAN_POISON_MEMORY_REGION(m, s);
236 #endif
237 #ifdef ABSL_HAVE_MEMORY_SANITIZER
238   __msan_poison(m, s);
239 #endif
240   (void)m;
241   (void)s;
242 }
243 
SanitizerUnpoisonMemoryRegion(const void * m,size_t s)244 inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) {
245 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
246   ASAN_UNPOISON_MEMORY_REGION(m, s);
247 #endif
248 #ifdef ABSL_HAVE_MEMORY_SANITIZER
249   __msan_unpoison(m, s);
250 #endif
251   (void)m;
252   (void)s;
253 }
254 
255 template <typename T>
SanitizerPoisonObject(const T * object)256 inline void SanitizerPoisonObject(const T* object) {
257   SanitizerPoisonMemoryRegion(object, sizeof(T));
258 }
259 
260 template <typename T>
SanitizerUnpoisonObject(const T * object)261 inline void SanitizerUnpoisonObject(const T* object) {
262   SanitizerUnpoisonMemoryRegion(object, sizeof(T));
263 }
264 
265 namespace memory_internal {
266 
267 // If Pair is a standard-layout type, OffsetOf<Pair>::kFirst and
268 // OffsetOf<Pair>::kSecond are equivalent to offsetof(Pair, first) and
269 // offsetof(Pair, second) respectively. Otherwise they are -1.
270 //
271 // The purpose of OffsetOf is to avoid calling offsetof() on non-standard-layout
272 // type, which is non-portable.
273 template <class Pair, class = std::true_type>
274 struct OffsetOf {
275   static constexpr size_t kFirst = static_cast<size_t>(-1);
276   static constexpr size_t kSecond = static_cast<size_t>(-1);
277 };
278 
279 template <class Pair>
280 struct OffsetOf<Pair, typename std::is_standard_layout<Pair>::type> {
281   static constexpr size_t kFirst = offsetof(Pair, first);
282   static constexpr size_t kSecond = offsetof(Pair, second);
283 };
284 
285 template <class K, class V>
286 struct IsLayoutCompatible {
287  private:
288   struct Pair {
289     K first;
290     V second;
291   };
292 
293   // Is P layout-compatible with Pair?
294   template <class P>
295   static constexpr bool LayoutCompatible() {
296     return std::is_standard_layout<P>() && sizeof(P) == sizeof(Pair) &&
297            alignof(P) == alignof(Pair) &&
298            memory_internal::OffsetOf<P>::kFirst ==
299                memory_internal::OffsetOf<Pair>::kFirst &&
300            memory_internal::OffsetOf<P>::kSecond ==
301                memory_internal::OffsetOf<Pair>::kSecond;
302   }
303 
304  public:
305   // Whether pair<const K, V> and pair<K, V> are layout-compatible. If they are,
306   // then it is safe to store them in a union and read from either.
307   static constexpr bool value = std::is_standard_layout<K>() &&
308                                 std::is_standard_layout<Pair>() &&
309                                 memory_internal::OffsetOf<Pair>::kFirst == 0 &&
310                                 LayoutCompatible<std::pair<K, V>>() &&
311                                 LayoutCompatible<std::pair<const K, V>>();
312 };
313 
314 }  // namespace memory_internal
315 
316 // The internal storage type for key-value containers like flat_hash_map.
317 //
318 // It is convenient for the value_type of a flat_hash_map<K, V> to be
319 // pair<const K, V>; the "const K" prevents accidental modification of the key
320 // when dealing with the reference returned from find() and similar methods.
321 // However, this creates other problems; we want to be able to emplace(K, V)
322 // efficiently with move operations, and similarly be able to move a
323 // pair<K, V> in insert().
324 //
325 // The solution is this union, which aliases the const and non-const versions
326 // of the pair. This also allows flat_hash_map<const K, V> to work, even though
327 // that has the same efficiency issues with move in emplace() and insert() -
328 // but people do it anyway.
329 //
330 // If kMutableKeys is false, only the value member can be accessed.
331 //
332 // If kMutableKeys is true, key can be accessed through all slots while value
333 // and mutable_value must be accessed only via INITIALIZED slots. Slots are
334 // created and destroyed via mutable_value so that the key can be moved later.
335 //
336 // Accessing one of the union fields while the other is active is safe as
337 // long as they are layout-compatible, which is guaranteed by the definition of
338 // kMutableKeys. For C++11, the relevant section of the standard is
339 // https://timsong-cpp.github.io/cppwp/n3337/class.mem#19 (9.2.19)
340 template <class K, class V>
341 union map_slot_type {
342   map_slot_type() {}
343   ~map_slot_type() = delete;
344   using value_type = std::pair<const K, V>;
345   using mutable_value_type =
346       std::pair<absl::remove_const_t<K>, absl::remove_const_t<V>>;
347 
348   value_type value;
349   mutable_value_type mutable_value;
350   absl::remove_const_t<K> key;
351 };
352 
353 template <class K, class V>
354 struct map_slot_policy {
355   using slot_type = map_slot_type<K, V>;
356   using value_type = std::pair<const K, V>;
357   using mutable_value_type =
358       std::pair<absl::remove_const_t<K>, absl::remove_const_t<V>>;
359 
360  private:
361   static void emplace(slot_type* slot) {
362     // The construction of union doesn't do anything at runtime but it allows us
363     // to access its members without violating aliasing rules.
364     new (slot) slot_type;
365   }
366   // If pair<const K, V> and pair<K, V> are layout-compatible, we can accept one
367   // or the other via slot_type. We are also free to access the key via
368   // slot_type::key in this case.
369   using kMutableKeys = memory_internal::IsLayoutCompatible<K, V>;
370 
371  public:
372   static value_type& element(slot_type* slot) { return slot->value; }
373   static const value_type& element(const slot_type* slot) {
374     return slot->value;
375   }
376 
377   static K& mutable_key(slot_type* slot) {
378     // Still check for kMutableKeys so that we can avoid calling std::launder
379     // unless necessary because it can interfere with optimizations.
380     return kMutableKeys::value ? slot->key
381                                : *std::launder(const_cast<K*>(
382                                      std::addressof(slot->value.first)));
383   }
384 
385   static const K& key(const slot_type* slot) {
386     return kMutableKeys::value ? slot->key : slot->value.first;
387   }
388 
389   template <class Allocator, class... Args>
390   static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
391     emplace(slot);
392     if (kMutableKeys::value) {
393       absl::allocator_traits<Allocator>::construct(*alloc, &slot->mutable_value,
394                                                    std::forward<Args>(args)...);
395     } else {
396       absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
397                                                    std::forward<Args>(args)...);
398     }
399   }
400 
401   // Construct this slot by moving from another slot.
402   template <class Allocator>
403   static void construct(Allocator* alloc, slot_type* slot, slot_type* other) {
404     emplace(slot);
405     if (kMutableKeys::value) {
406       absl::allocator_traits<Allocator>::construct(
407           *alloc, &slot->mutable_value, std::move(other->mutable_value));
408     } else {
409       absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
410                                                    std::move(other->value));
411     }
412   }
413 
414   // Construct this slot by copying from another slot.
415   template <class Allocator>
416   static void construct(Allocator* alloc, slot_type* slot,
417                         const slot_type* other) {
418     emplace(slot);
419     absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
420                                                  other->value);
421   }
422 
423   template <class Allocator>
424   static auto destroy(Allocator* alloc, slot_type* slot) {
425     if (kMutableKeys::value) {
426       absl::allocator_traits<Allocator>::destroy(*alloc, &slot->mutable_value);
427     } else {
428       absl::allocator_traits<Allocator>::destroy(*alloc, &slot->value);
429     }
430     return IsDestructionTrivial<Allocator, value_type>();
431   }
432 
433   template <class Allocator>
434   static auto transfer(Allocator* alloc, slot_type* new_slot,
435                        slot_type* old_slot) {
436     // This should really just be
437     // typename absl::is_trivially_relocatable<value_type>::type()
438     // but std::pair is not trivially copyable in C++23 in some standard
439     // library versions.
440     // See https://github.com/llvm/llvm-project/pull/95444 for instance.
441     auto is_relocatable = typename std::conjunction<
442         absl::is_trivially_relocatable<typename value_type::first_type>,
443         absl::is_trivially_relocatable<typename value_type::second_type>>::
444         type();
445 
446     emplace(new_slot);
447     if (is_relocatable) {
448       // TODO(b/247130232,b/251814870): remove casts after fixing warnings.
449       std::memcpy(static_cast<void*>(std::launder(&new_slot->value)),
450                   static_cast<const void*>(&old_slot->value),
451                   sizeof(value_type));
452       return is_relocatable;
453     }
454 
455     if (kMutableKeys::value) {
456       absl::allocator_traits<Allocator>::construct(
457           *alloc, &new_slot->mutable_value, std::move(old_slot->mutable_value));
458     } else {
459       absl::allocator_traits<Allocator>::construct(*alloc, &new_slot->value,
460                                                    std::move(old_slot->value));
461     }
462     destroy(alloc, old_slot);
463     return is_relocatable;
464   }
465 };
466 
467 // Type erased function for computing hash of the slot.
468 using HashSlotFn = size_t (*)(const void* hash_fn, void* slot);
469 
470 // Type erased function to apply `Fn` to data inside of the `slot`.
471 // The data is expected to have type `T`.
472 template <class Fn, class T>
473 size_t TypeErasedApplyToSlotFn(const void* fn, void* slot) {
474   const auto* f = static_cast<const Fn*>(fn);
475   return (*f)(*static_cast<const T*>(slot));
476 }
477 
478 // Type erased function to apply `Fn` to data inside of the `*slot_ptr`.
479 // The data is expected to have type `T`.
480 template <class Fn, class T>
481 size_t TypeErasedDerefAndApplyToSlotFn(const void* fn, void* slot_ptr) {
482   const auto* f = static_cast<const Fn*>(fn);
483   const T* slot = *static_cast<const T**>(slot_ptr);
484   return (*f)(*slot);
485 }
486 
487 }  // namespace container_internal
488 ABSL_NAMESPACE_END
489 }  // namespace absl
490 
491 #endif  // ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
492