• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 //                           MOTIVATION AND TUTORIAL
16 //
17 // If you want to put in a single heap allocation N doubles followed by M ints,
18 // it's easy if N and M are known at compile time.
19 //
20 //   struct S {
21 //     double a[N];
22 //     int b[M];
23 //   };
24 //
25 //   S* p = new S;
26 //
27 // But what if N and M are known only in run time? Class template Layout to the
28 // rescue! It's a portable generalization of the technique known as struct hack.
29 //
30 //   // This object will tell us everything we need to know about the memory
31 //   // layout of double[N] followed by int[M]. It's structurally identical to
32 //   // size_t[2] that stores N and M. It's very cheap to create.
33 //   const Layout<double, int> layout(N, M);
34 //
35 //   // Allocate enough memory for both arrays. `AllocSize()` tells us how much
36 //   // memory is needed. We are free to use any allocation function we want as
37 //   // long as it returns aligned memory.
38 //   std::unique_ptr<unsigned char[]> p(new unsigned char[layout.AllocSize()]);
39 //
40 //   // Obtain the pointer to the array of doubles.
41 //   // Equivalent to `reinterpret_cast<double*>(p.get())`.
42 //   //
43 //   // We could have written layout.Pointer<0>(p) instead. If all the types are
44 //   // unique you can use either form, but if some types are repeated you must
45 //   // use the index form.
46 //   double* a = layout.Pointer<double>(p.get());
47 //
48 //   // Obtain the pointer to the array of ints.
49 //   // Equivalent to `reinterpret_cast<int*>(p.get() + N * 8)`.
50 //   int* b = layout.Pointer<int>(p);
51 //
52 // If we are unable to specify sizes of all fields, we can pass as many sizes as
53 // we can to `Partial()`. In return, it'll allow us to access the fields whose
54 // locations and sizes can be computed from the provided information.
55 // `Partial()` comes in handy when the array sizes are embedded into the
56 // allocation.
57 //
58 //   // size_t[0] containing N, size_t[1] containing M, double[N], int[M].
59 //   using L = Layout<size_t, size_t, double, int>;
60 //
61 //   unsigned char* Allocate(size_t n, size_t m) {
62 //     const L layout(1, 1, n, m);
63 //     unsigned char* p = new unsigned char[layout.AllocSize()];
64 //     *layout.Pointer<0>(p) = n;
65 //     *layout.Pointer<1>(p) = m;
66 //     return p;
67 //   }
68 //
69 //   void Use(unsigned char* p) {
70 //     // First, extract N and M.
71 //     // Specify that the first array has only one element. Using `prefix` we
72 //     // can access the first two arrays but not more.
73 //     constexpr auto prefix = L::Partial(1);
74 //     size_t n = *prefix.Pointer<0>(p);
75 //     size_t m = *prefix.Pointer<1>(p);
76 //
77 //     // Now we can get pointers to the payload.
78 //     const L layout(1, 1, n, m);
79 //     double* a = layout.Pointer<double>(p);
80 //     int* b = layout.Pointer<int>(p);
81 //   }
82 //
83 // The layout we used above combines fixed-size with dynamically-sized fields.
84 // This is quite common. Layout is optimized for this use case and attempts to
85 // generate optimal code. To help the compiler do that in more cases, you can
86 // specify the fixed sizes using `WithStaticSizes`. This ensures that all
87 // computations that can be performed at compile time are indeed performed at
88 // compile time. Note that sometimes the `template` keyword is needed. E.g.:
89 //
90 //   using SL = L::template WithStaticSizes<1, 1>;
91 //
92 //   void Use(unsigned char* p) {
93 //     // First, extract N and M.
94 //     // Using `prefix` we can access the first three arrays but not more.
95 //     //
96 //     // More details: The first element always has offset 0. `SL`
97 //     // has offsets for the second and third array based on sizes of
98 //     // the first and second array, specified via `WithStaticSizes`.
99 //     constexpr auto prefix = SL::Partial();
100 //     size_t n = *prefix.Pointer<0>(p);
101 //     size_t m = *prefix.Pointer<1>(p);
102 //
103 //     // Now we can get a pointer to the final payload.
104 //     const SL layout(n, m);
105 //     double* a = layout.Pointer<double>(p);
106 //     int* b = layout.Pointer<int>(p);
107 //   }
108 //
109 // Efficiency tip: The order of fields matters. In `Layout<T1, ..., TN>` try to
110 // ensure that `alignof(T1) >= ... >= alignof(TN)`. This way you'll have no
111 // padding in between arrays.
112 //
113 // You can manually override the alignment of an array by wrapping the type in
114 // `Aligned<T, N>`. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
115 // and behavior as `Layout<..., T, ...>` except that the first element of the
116 // array of `T` is aligned to `N` (the rest of the elements follow without
117 // padding). `N` cannot be less than `alignof(T)`.
118 //
119 // `AllocSize()` and `Pointer()` are the most basic methods for dealing with
120 // memory layouts. Check out the reference or code below to discover more.
121 //
122 //                            EXAMPLE
123 //
124 //   // Immutable move-only string with sizeof equal to sizeof(void*). The
125 //   // string size and the characters are kept in the same heap allocation.
126 //   class CompactString {
127 //    public:
128 //     CompactString(const char* s = "") {
129 //       const size_t size = strlen(s);
130 //       // size_t[1] followed by char[size + 1].
131 //       const L layout(size + 1);
132 //       p_.reset(new unsigned char[layout.AllocSize()]);
133 //       // If running under ASAN, mark the padding bytes, if any, to catch
134 //       // memory errors.
135 //       layout.PoisonPadding(p_.get());
136 //       // Store the size in the allocation.
137 //       *layout.Pointer<size_t>(p_.get()) = size;
138 //       // Store the characters in the allocation.
139 //       memcpy(layout.Pointer<char>(p_.get()), s, size + 1);
140 //     }
141 //
142 //     size_t size() const {
143 //       // Equivalent to reinterpret_cast<size_t&>(*p).
144 //       return *L::Partial().Pointer<size_t>(p_.get());
145 //     }
146 //
147 //     const char* c_str() const {
148 //       // Equivalent to reinterpret_cast<char*>(p.get() + sizeof(size_t)).
149 //       return L::Partial().Pointer<char>(p_.get());
150 //     }
151 //
152 //    private:
153 //     // Our heap allocation contains a single size_t followed by an array of
154 //     // chars.
155 //     using L = Layout<size_t, char>::WithStaticSizes<1>;
156 //     std::unique_ptr<unsigned char[]> p_;
157 //   };
158 //
159 //   int main() {
160 //     CompactString s = "hello";
161 //     assert(s.size() == 5);
162 //     assert(strcmp(s.c_str(), "hello") == 0);
163 //   }
164 //
165 //                               DOCUMENTATION
166 //
167 // The interface exported by this file consists of:
168 // - class `Layout<>` and its public members.
169 // - The public members of classes `internal_layout::LayoutWithStaticSizes<>`
170 //   and `internal_layout::LayoutImpl<>`. Those classes aren't intended to be
171 //   used directly, and their name and template parameter list are internal
172 //   implementation details, but the classes themselves provide most of the
173 //   functionality in this file. See comments on their members for detailed
174 //   documentation.
175 //
176 // `Layout<T1,... Tn>::Partial(count1,..., countm)` (where `m` <= `n`) returns a
177 // `LayoutImpl<>` object. `Layout<T1,..., Tn> layout(count1,..., countn)`
178 // creates a `Layout` object, which exposes the same functionality by inheriting
179 // from `LayoutImpl<>`.
180 
181 #ifndef ABSL_CONTAINER_INTERNAL_LAYOUT_H_
182 #define ABSL_CONTAINER_INTERNAL_LAYOUT_H_
183 
184 #include <assert.h>
185 #include <stddef.h>
186 #include <stdint.h>
187 
188 #include <array>
189 #include <string>
190 #include <tuple>
191 #include <type_traits>
192 #include <typeinfo>
193 #include <utility>
194 
195 #include "absl/base/config.h"
196 #include "absl/debugging/internal/demangle.h"
197 #include "absl/meta/type_traits.h"
198 #include "absl/strings/str_cat.h"
199 #include "absl/types/span.h"
200 #include "absl/utility/utility.h"
201 
202 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
203 #include <sanitizer/asan_interface.h>
204 #endif
205 
206 namespace absl {
207 ABSL_NAMESPACE_BEGIN
208 namespace container_internal {
209 
210 // A type wrapper that instructs `Layout` to use the specific alignment for the
211 // array. `Layout<..., Aligned<T, N>, ...>` has exactly the same API
212 // and behavior as `Layout<..., T, ...>` except that the first element of the
213 // array of `T` is aligned to `N` (the rest of the elements follow without
214 // padding).
215 //
216 // Requires: `N >= alignof(T)` and `N` is a power of 2.
217 template <class T, size_t N>
218 struct Aligned;
219 
220 namespace internal_layout {
221 
222 template <class T>
223 struct NotAligned {};
224 
225 template <class T, size_t N>
226 struct NotAligned<const Aligned<T, N>> {
227   static_assert(sizeof(T) == 0, "Aligned<T, N> cannot be const-qualified");
228 };
229 
230 template <size_t>
231 using IntToSize = size_t;
232 
233 template <class T>
234 struct Type : NotAligned<T> {
235   using type = T;
236 };
237 
238 template <class T, size_t N>
239 struct Type<Aligned<T, N>> {
240   using type = T;
241 };
242 
243 template <class T>
244 struct SizeOf : NotAligned<T>, std::integral_constant<size_t, sizeof(T)> {};
245 
246 template <class T, size_t N>
247 struct SizeOf<Aligned<T, N>> : std::integral_constant<size_t, sizeof(T)> {};
248 
249 // Note: workaround for https://gcc.gnu.org/PR88115
250 template <class T>
251 struct AlignOf : NotAligned<T> {
252   static constexpr size_t value = alignof(T);
253 };
254 
255 template <class T, size_t N>
256 struct AlignOf<Aligned<T, N>> {
257   static_assert(N % alignof(T) == 0,
258                 "Custom alignment can't be lower than the type's alignment");
259   static constexpr size_t value = N;
260 };
261 
262 // Does `Ts...` contain `T`?
263 template <class T, class... Ts>
264 using Contains = absl::disjunction<std::is_same<T, Ts>...>;
265 
266 template <class From, class To>
267 using CopyConst =
268     typename std::conditional<std::is_const<From>::value, const To, To>::type;
269 
270 // Note: We're not qualifying this with absl:: because it doesn't compile under
271 // MSVC.
272 template <class T>
273 using SliceType = Span<T>;
274 
275 // This namespace contains no types. It prevents functions defined in it from
276 // being found by ADL.
277 namespace adl_barrier {
278 
279 template <class Needle, class... Ts>
280 constexpr size_t Find(Needle, Needle, Ts...) {
281   static_assert(!Contains<Needle, Ts...>(), "Duplicate element type");
282   return 0;
283 }
284 
285 template <class Needle, class T, class... Ts>
286 constexpr size_t Find(Needle, T, Ts...) {
287   return adl_barrier::Find(Needle(), Ts()...) + 1;
288 }
289 
290 constexpr bool IsPow2(size_t n) { return !(n & (n - 1)); }
291 
292 // Returns `q * m` for the smallest `q` such that `q * m >= n`.
293 // Requires: `m` is a power of two. It's enforced by IsLegalElementType below.
294 constexpr size_t Align(size_t n, size_t m) { return (n + m - 1) & ~(m - 1); }
295 
296 constexpr size_t Min(size_t a, size_t b) { return b < a ? b : a; }
297 
298 constexpr size_t Max(size_t a) { return a; }
299 
300 template <class... Ts>
301 constexpr size_t Max(size_t a, size_t b, Ts... rest) {
302   return adl_barrier::Max(b < a ? a : b, rest...);
303 }
304 
305 template <class T>
306 std::string TypeName() {
307   std::string out;
308 #ifdef ABSL_INTERNAL_HAS_RTTI
309   absl::StrAppend(&out, "<",
310                   absl::debugging_internal::DemangleString(typeid(T).name()),
311                   ">");
312 #endif
313   return out;
314 }
315 
316 }  // namespace adl_barrier
317 
318 // Can `T` be a template argument of `Layout`?
319 template <class T>
320 using IsLegalElementType = std::integral_constant<
321     bool, !std::is_reference<T>::value && !std::is_volatile<T>::value &&
322               !std::is_reference<typename Type<T>::type>::value &&
323               !std::is_volatile<typename Type<T>::type>::value &&
324               adl_barrier::IsPow2(AlignOf<T>::value)>;
325 
326 template <class Elements, class StaticSizeSeq, class RuntimeSizeSeq,
327           class SizeSeq, class OffsetSeq>
328 class LayoutImpl;
329 
330 // Public base class of `Layout` and the result type of `Layout::Partial()`.
331 //
332 // `Elements...` contains all template arguments of `Layout` that created this
333 // instance.
334 //
335 // `StaticSizeSeq...` is an index_sequence containing the sizes specified at
336 // compile-time.
337 //
338 // `RuntimeSizeSeq...` is `[0, NumRuntimeSizes)`, where `NumRuntimeSizes` is the
339 // number of arguments passed to `Layout::Partial()` or `Layout::Layout()`.
340 //
341 // `SizeSeq...` is `[0, NumSizes)` where `NumSizes` is `NumRuntimeSizes` plus
342 // the number of sizes in `StaticSizeSeq`.
343 //
344 // `OffsetSeq...` is `[0, NumOffsets)` where `NumOffsets` is
345 // `Min(sizeof...(Elements), NumSizes + 1)` (the number of arrays for which we
346 // can compute offsets).
347 template <class... Elements, size_t... StaticSizeSeq, size_t... RuntimeSizeSeq,
348           size_t... SizeSeq, size_t... OffsetSeq>
349 class LayoutImpl<
350     std::tuple<Elements...>, absl::index_sequence<StaticSizeSeq...>,
351     absl::index_sequence<RuntimeSizeSeq...>, absl::index_sequence<SizeSeq...>,
352     absl::index_sequence<OffsetSeq...>> {
353  private:
354   static_assert(sizeof...(Elements) > 0, "At least one field is required");
355   static_assert(absl::conjunction<IsLegalElementType<Elements>...>::value,
356                 "Invalid element type (see IsLegalElementType)");
357   static_assert(sizeof...(StaticSizeSeq) <= sizeof...(Elements),
358                 "Too many static sizes specified");
359 
360   enum {
361     NumTypes = sizeof...(Elements),
362     NumStaticSizes = sizeof...(StaticSizeSeq),
363     NumRuntimeSizes = sizeof...(RuntimeSizeSeq),
364     NumSizes = sizeof...(SizeSeq),
365     NumOffsets = sizeof...(OffsetSeq),
366   };
367 
368   // These are guaranteed by `Layout`.
369   static_assert(NumStaticSizes + NumRuntimeSizes == NumSizes, "Internal error");
370   static_assert(NumSizes <= NumTypes, "Internal error");
371   static_assert(NumOffsets == adl_barrier::Min(NumTypes, NumSizes + 1),
372                 "Internal error");
373   static_assert(NumTypes > 0, "Internal error");
374 
375   static constexpr std::array<size_t, sizeof...(StaticSizeSeq)> kStaticSizes = {
376       StaticSizeSeq...};
377 
378   // Returns the index of `T` in `Elements...`. Results in a compilation error
379   // if `Elements...` doesn't contain exactly one instance of `T`.
380   template <class T>
381   static constexpr size_t ElementIndex() {
382     static_assert(Contains<Type<T>, Type<typename Type<Elements>::type>...>(),
383                   "Type not found");
384     return adl_barrier::Find(Type<T>(),
385                              Type<typename Type<Elements>::type>()...);
386   }
387 
388   template <size_t N>
389   using ElementAlignment =
390       AlignOf<typename std::tuple_element<N, std::tuple<Elements...>>::type>;
391 
392  public:
393   // Element types of all arrays packed in a tuple.
394   using ElementTypes = std::tuple<typename Type<Elements>::type...>;
395 
396   // Element type of the Nth array.
397   template <size_t N>
398   using ElementType = typename std::tuple_element<N, ElementTypes>::type;
399 
400   constexpr explicit LayoutImpl(IntToSize<RuntimeSizeSeq>... sizes)
401       : size_{sizes...} {}
402 
403   // Alignment of the layout, equal to the strictest alignment of all elements.
404   // All pointers passed to the methods of layout must be aligned to this value.
405   static constexpr size_t Alignment() {
406     return adl_barrier::Max(AlignOf<Elements>::value...);
407   }
408 
409   // Offset in bytes of the Nth array.
410   //
411   //   // int[3], 4 bytes of padding, double[4].
412   //   Layout<int, double> x(3, 4);
413   //   assert(x.Offset<0>() == 0);   // The ints starts from 0.
414   //   assert(x.Offset<1>() == 16);  // The doubles starts from 16.
415   //
416   // Requires: `N <= NumSizes && N < sizeof...(Ts)`.
417   template <size_t N>
418   constexpr size_t Offset() const {
419     if constexpr (N == 0) {
420       return 0;
421     } else {
422       static_assert(N < NumOffsets, "Index out of bounds");
423       return adl_barrier::Align(
424           Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * Size<N - 1>(),
425           ElementAlignment<N>::value);
426     }
427   }
428 
429   // Offset in bytes of the array with the specified element type. There must
430   // be exactly one such array and its zero-based index must be at most
431   // `NumSizes`.
432   //
433   //   // int[3], 4 bytes of padding, double[4].
434   //   Layout<int, double> x(3, 4);
435   //   assert(x.Offset<int>() == 0);      // The ints starts from 0.
436   //   assert(x.Offset<double>() == 16);  // The doubles starts from 16.
437   template <class T>
438   constexpr size_t Offset() const {
439     return Offset<ElementIndex<T>()>();
440   }
441 
442   // Offsets in bytes of all arrays for which the offsets are known.
443   constexpr std::array<size_t, NumOffsets> Offsets() const {
444     return {{Offset<OffsetSeq>()...}};
445   }
446 
447   // The number of elements in the Nth array (zero-based).
448   //
449   //   // int[3], 4 bytes of padding, double[4].
450   //   Layout<int, double> x(3, 4);
451   //   assert(x.Size<0>() == 3);
452   //   assert(x.Size<1>() == 4);
453   //
454   // Requires: `N < NumSizes`.
455   template <size_t N>
456   constexpr size_t Size() const {
457     if constexpr (N < NumStaticSizes) {
458       return kStaticSizes[N];
459     } else {
460       static_assert(N < NumSizes, "Index out of bounds");
461       return size_[N - NumStaticSizes];
462     }
463   }
464 
465   // The number of elements in the array with the specified element type.
466   // There must be exactly one such array and its zero-based index must be
467   // at most `NumSizes`.
468   //
469   //   // int[3], 4 bytes of padding, double[4].
470   //   Layout<int, double> x(3, 4);
471   //   assert(x.Size<int>() == 3);
472   //   assert(x.Size<double>() == 4);
473   template <class T>
474   constexpr size_t Size() const {
475     return Size<ElementIndex<T>()>();
476   }
477 
478   // The number of elements of all arrays for which they are known.
479   constexpr std::array<size_t, NumSizes> Sizes() const {
480     return {{Size<SizeSeq>()...}};
481   }
482 
483   // Pointer to the beginning of the Nth array.
484   //
485   // `Char` must be `[const] [signed|unsigned] char`.
486   //
487   //   // int[3], 4 bytes of padding, double[4].
488   //   Layout<int, double> x(3, 4);
489   //   unsigned char* p = new unsigned char[x.AllocSize()];
490   //   int* ints = x.Pointer<0>(p);
491   //   double* doubles = x.Pointer<1>(p);
492   //
493   // Requires: `N <= NumSizes && N < sizeof...(Ts)`.
494   // Requires: `p` is aligned to `Alignment()`.
495   template <size_t N, class Char>
496   CopyConst<Char, ElementType<N>>* Pointer(Char* p) const {
497     using C = typename std::remove_const<Char>::type;
498     static_assert(
499         std::is_same<C, char>() || std::is_same<C, unsigned char>() ||
500             std::is_same<C, signed char>(),
501         "The argument must be a pointer to [const] [signed|unsigned] char");
502     constexpr size_t alignment = Alignment();
503     (void)alignment;
504     assert(reinterpret_cast<uintptr_t>(p) % alignment == 0);
505     return reinterpret_cast<CopyConst<Char, ElementType<N>>*>(p + Offset<N>());
506   }
507 
508   // Pointer to the beginning of the array with the specified element type.
509   // There must be exactly one such array and its zero-based index must be at
510   // most `NumSizes`.
511   //
512   // `Char` must be `[const] [signed|unsigned] char`.
513   //
514   //   // int[3], 4 bytes of padding, double[4].
515   //   Layout<int, double> x(3, 4);
516   //   unsigned char* p = new unsigned char[x.AllocSize()];
517   //   int* ints = x.Pointer<int>(p);
518   //   double* doubles = x.Pointer<double>(p);
519   //
520   // Requires: `p` is aligned to `Alignment()`.
521   template <class T, class Char>
522   CopyConst<Char, T>* Pointer(Char* p) const {
523     return Pointer<ElementIndex<T>()>(p);
524   }
525 
526   // Pointers to all arrays for which pointers are known.
527   //
528   // `Char` must be `[const] [signed|unsigned] char`.
529   //
530   //   // int[3], 4 bytes of padding, double[4].
531   //   Layout<int, double> x(3, 4);
532   //   unsigned char* p = new unsigned char[x.AllocSize()];
533   //
534   //   int* ints;
535   //   double* doubles;
536   //   std::tie(ints, doubles) = x.Pointers(p);
537   //
538   // Requires: `p` is aligned to `Alignment()`.
539   template <class Char>
540   auto Pointers(Char* p) const {
541     return std::tuple<CopyConst<Char, ElementType<OffsetSeq>>*...>(
542         Pointer<OffsetSeq>(p)...);
543   }
544 
545   // The Nth array.
546   //
547   // `Char` must be `[const] [signed|unsigned] char`.
548   //
549   //   // int[3], 4 bytes of padding, double[4].
550   //   Layout<int, double> x(3, 4);
551   //   unsigned char* p = new unsigned char[x.AllocSize()];
552   //   Span<int> ints = x.Slice<0>(p);
553   //   Span<double> doubles = x.Slice<1>(p);
554   //
555   // Requires: `N < NumSizes`.
556   // Requires: `p` is aligned to `Alignment()`.
557   template <size_t N, class Char>
558   SliceType<CopyConst<Char, ElementType<N>>> Slice(Char* p) const {
559     return SliceType<CopyConst<Char, ElementType<N>>>(Pointer<N>(p), Size<N>());
560   }
561 
562   // The array with the specified element type. There must be exactly one
563   // such array and its zero-based index must be less than `NumSizes`.
564   //
565   // `Char` must be `[const] [signed|unsigned] char`.
566   //
567   //   // int[3], 4 bytes of padding, double[4].
568   //   Layout<int, double> x(3, 4);
569   //   unsigned char* p = new unsigned char[x.AllocSize()];
570   //   Span<int> ints = x.Slice<int>(p);
571   //   Span<double> doubles = x.Slice<double>(p);
572   //
573   // Requires: `p` is aligned to `Alignment()`.
574   template <class T, class Char>
575   SliceType<CopyConst<Char, T>> Slice(Char* p) const {
576     return Slice<ElementIndex<T>()>(p);
577   }
578 
579   // All arrays with known sizes.
580   //
581   // `Char` must be `[const] [signed|unsigned] char`.
582   //
583   //   // int[3], 4 bytes of padding, double[4].
584   //   Layout<int, double> x(3, 4);
585   //   unsigned char* p = new unsigned char[x.AllocSize()];
586   //
587   //   Span<int> ints;
588   //   Span<double> doubles;
589   //   std::tie(ints, doubles) = x.Slices(p);
590   //
591   // Requires: `p` is aligned to `Alignment()`.
592   //
593   // Note: We mark the parameter as maybe_unused because GCC detects it is not
594   // used when `SizeSeq` is empty [-Werror=unused-but-set-parameter].
595   template <class Char>
596   auto Slices([[maybe_unused]] Char* p) const {
597     return std::tuple<SliceType<CopyConst<Char, ElementType<SizeSeq>>>...>(
598         Slice<SizeSeq>(p)...);
599   }
600 
601   // The size of the allocation that fits all arrays.
602   //
603   //   // int[3], 4 bytes of padding, double[4].
604   //   Layout<int, double> x(3, 4);
605   //   unsigned char* p = new unsigned char[x.AllocSize()];  // 48 bytes
606   //
607   // Requires: `NumSizes == sizeof...(Ts)`.
608   constexpr size_t AllocSize() const {
609     static_assert(NumTypes == NumSizes, "You must specify sizes of all fields");
610     return Offset<NumTypes - 1>() +
611            SizeOf<ElementType<NumTypes - 1>>::value * Size<NumTypes - 1>();
612   }
613 
614   // If built with --config=asan, poisons padding bytes (if any) in the
615   // allocation. The pointer must point to a memory block at least
616   // `AllocSize()` bytes in length.
617   //
618   // `Char` must be `[const] [signed|unsigned] char`.
619   //
620   // Requires: `p` is aligned to `Alignment()`.
621   template <class Char, size_t N = NumOffsets - 1>
622   void PoisonPadding(const Char* p) const {
623     if constexpr (N == 0) {
624       Pointer<0>(p);  // verify the requirements on `Char` and `p`
625     } else {
626       static_assert(N < NumOffsets, "Index out of bounds");
627       (void)p;
628 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
629     PoisonPadding<Char, N - 1>(p);
630     // The `if` is an optimization. It doesn't affect the observable behaviour.
631     if (ElementAlignment<N - 1>::value % ElementAlignment<N>::value) {
632       size_t start =
633           Offset<N - 1>() + SizeOf<ElementType<N - 1>>::value * Size<N - 1>();
634       ASAN_POISON_MEMORY_REGION(p + start, Offset<N>() - start);
635     }
636 #endif
637     }
638   }
639 
640   // Human-readable description of the memory layout. Useful for debugging.
641   // Slow.
642   //
643   //   // char[5], 3 bytes of padding, int[3], 4 bytes of padding, followed
644   //   // by an unknown number of doubles.
645   //   auto x = Layout<char, int, double>::Partial(5, 3);
646   //   assert(x.DebugString() ==
647   //          "@0<char>(1)[5]; @8<int>(4)[3]; @24<double>(8)");
648   //
649   // Each field is in the following format: @offset<type>(sizeof)[size] (<type>
650   // may be missing depending on the target platform). For example,
651   // @8<int>(4)[3] means that at offset 8 we have an array of ints, where each
652   // int is 4 bytes, and we have 3 of those ints. The size of the last field may
653   // be missing (as in the example above). Only fields with known offsets are
654   // described. Type names may differ across platforms: one compiler might
655   // produce "unsigned*" where another produces "unsigned int *".
656   std::string DebugString() const {
657     const auto offsets = Offsets();
658     const size_t sizes[] = {SizeOf<ElementType<OffsetSeq>>::value...};
659     const std::string types[] = {
660         adl_barrier::TypeName<ElementType<OffsetSeq>>()...};
661     std::string res = absl::StrCat("@0", types[0], "(", sizes[0], ")");
662     for (size_t i = 0; i != NumOffsets - 1; ++i) {
663       absl::StrAppend(&res, "[", DebugSize(i), "]; @", offsets[i + 1],
664                       types[i + 1], "(", sizes[i + 1], ")");
665     }
666     // NumSizes is a constant that may be zero. Some compilers cannot see that
667     // inside the if statement "size_[NumSizes - 1]" must be valid.
668     int last = static_cast<int>(NumSizes) - 1;
669     if (NumTypes == NumSizes && last >= 0) {
670       absl::StrAppend(&res, "[", DebugSize(static_cast<size_t>(last)), "]");
671     }
672     return res;
673   }
674 
675  private:
676   size_t DebugSize(size_t n) const {
677     if (n < NumStaticSizes) {
678       return kStaticSizes[n];
679     } else {
680       return size_[n - NumStaticSizes];
681     }
682   }
683 
684   // Arguments of `Layout::Partial()` or `Layout::Layout()`.
685   size_t size_[NumRuntimeSizes > 0 ? NumRuntimeSizes : 1];
686 };
687 
688 template <class StaticSizeSeq, size_t NumRuntimeSizes, class... Ts>
689 using LayoutType = LayoutImpl<
690     std::tuple<Ts...>, StaticSizeSeq,
691     absl::make_index_sequence<NumRuntimeSizes>,
692     absl::make_index_sequence<NumRuntimeSizes + StaticSizeSeq::size()>,
693     absl::make_index_sequence<adl_barrier::Min(
694         sizeof...(Ts), NumRuntimeSizes + StaticSizeSeq::size() + 1)>>;
695 
696 template <class StaticSizeSeq, class... Ts>
697 class LayoutWithStaticSizes
698     : public LayoutType<StaticSizeSeq,
699                         sizeof...(Ts) - adl_barrier::Min(sizeof...(Ts),
700                                                          StaticSizeSeq::size()),
701                         Ts...> {
702  private:
703   using Super =
704       LayoutType<StaticSizeSeq,
705                  sizeof...(Ts) -
706                      adl_barrier::Min(sizeof...(Ts), StaticSizeSeq::size()),
707                  Ts...>;
708 
709  public:
710   // The result type of `Partial()` with `NumSizes` arguments.
711   template <size_t NumSizes>
712   using PartialType =
713       internal_layout::LayoutType<StaticSizeSeq, NumSizes, Ts...>;
714 
715   // `Layout` knows the element types of the arrays we want to lay out in
716   // memory but not the number of elements in each array.
717   // `Partial(size1, ..., sizeN)` allows us to specify the latter. The
718   // resulting immutable object can be used to obtain pointers to the
719   // individual arrays.
720   //
721   // It's allowed to pass fewer array sizes than the number of arrays. E.g.,
722   // if all you need is to the offset of the second array, you only need to
723   // pass one argument -- the number of elements in the first array.
724   //
725   //   // int[3] followed by 4 bytes of padding and an unknown number of
726   //   // doubles.
727   //   auto x = Layout<int, double>::Partial(3);
728   //   // doubles start at byte 16.
729   //   assert(x.Offset<1>() == 16);
730   //
731   // If you know the number of elements in all arrays, you can still call
732   // `Partial()` but it's more convenient to use the constructor of `Layout`.
733   //
734   //   Layout<int, double> x(3, 5);
735   //
736   // Note: The sizes of the arrays must be specified in number of elements,
737   // not in bytes.
738   //
739   // Requires: `sizeof...(Sizes) + NumStaticSizes <= sizeof...(Ts)`.
740   // Requires: all arguments are convertible to `size_t`.
741   template <class... Sizes>
742   static constexpr PartialType<sizeof...(Sizes)> Partial(Sizes&&... sizes) {
743     static_assert(sizeof...(Sizes) + StaticSizeSeq::size() <= sizeof...(Ts),
744                   "");
745     return PartialType<sizeof...(Sizes)>(
746         static_cast<size_t>(std::forward<Sizes>(sizes))...);
747   }
748 
749   // Inherit LayoutType's constructor.
750   //
751   // Creates a layout with the sizes of all arrays specified. If you know
752   // only the sizes of the first N arrays (where N can be zero), you can use
753   // `Partial()` defined above. The constructor is essentially equivalent to
754   // calling `Partial()` and passing in all array sizes; the constructor is
755   // provided as a convenient abbreviation.
756   //
757   // Note: The sizes of the arrays must be specified in number of elements,
758   // not in bytes.
759   //
760   // Implementation note: we do this via a `using` declaration instead of
761   // defining our own explicit constructor because the signature of LayoutType's
762   // constructor depends on RuntimeSizeSeq, which we don't have access to here.
763   // If we defined our own constructor here, it would have to use a parameter
764   // pack and then cast the arguments to size_t when calling the superclass
765   // constructor, similar to what Partial() does. But that would suffer from the
766   // same problem that Partial() has, which is that the parameter types are
767   // inferred from the arguments, which may be signed types, which must then be
768   // cast to size_t. This can lead to negative values being silently (i.e. with
769   // no compiler warnings) cast to an unsigned type. Having a constructor with
770   // size_t parameters helps the compiler generate better warnings about
771   // potential bad casts, while avoiding false warnings when positive literal
772   // arguments are used. If an argument is a positive literal integer (e.g.
773   // `1`), the compiler will understand that it can be safely converted to
774   // size_t, and hence not generate a warning. But if a negative literal (e.g.
775   // `-1`) or a variable with signed type is used, then it can generate a
776   // warning about a potentially unsafe implicit cast. It would be great if we
777   // could do this for Partial() too, but unfortunately as of C++23 there seems
778   // to be no way to define a function with a variable number of parameters of a
779   // certain type, a.k.a. homogeneous function parameter packs. So we're forced
780   // to choose between explicitly casting the arguments to size_t, which
781   // suppresses all warnings, even potentially valid ones, or implicitly casting
782   // them to size_t, which generates bogus warnings whenever literal arguments
783   // are used, even if they're positive.
784   using Super::Super;
785 };
786 
787 }  // namespace internal_layout
788 
789 // Descriptor of arrays of various types and sizes laid out in memory one after
790 // another. See the top of the file for documentation.
791 //
792 // Check out the public API of internal_layout::LayoutWithStaticSizes and
793 // internal_layout::LayoutImpl above. Those types are internal to the library
794 // but their methods are public, and they are inherited by `Layout`.
795 template <class... Ts>
796 class Layout : public internal_layout::LayoutWithStaticSizes<
797                    absl::make_index_sequence<0>, Ts...> {
798  private:
799   using Super =
800       internal_layout::LayoutWithStaticSizes<absl::make_index_sequence<0>,
801                                              Ts...>;
802 
803  public:
804   // If you know the sizes of some or all of the arrays at compile time, you can
805   // use `WithStaticSizes` or `WithStaticSizeSequence` to create a `Layout` type
806   // with those sizes baked in. This can help the compiler generate optimal code
807   // for calculating array offsets and AllocSize().
808   //
809   // Like `Partial()`, the N sizes you specify are for the first N arrays, and
810   // they specify the number of elements in each array, not the number of bytes.
811   template <class StaticSizeSeq>
812   using WithStaticSizeSequence =
813       internal_layout::LayoutWithStaticSizes<StaticSizeSeq, Ts...>;
814 
815   template <size_t... StaticSizes>
816   using WithStaticSizes =
817       WithStaticSizeSequence<std::index_sequence<StaticSizes...>>;
818 
819   // Inherit LayoutWithStaticSizes's constructor, which requires you to specify
820   // all the array sizes.
821   using Super::Super;
822 };
823 
824 }  // namespace container_internal
825 ABSL_NAMESPACE_END
826 }  // namespace absl
827 
828 #endif  // ABSL_CONTAINER_INTERNAL_LAYOUT_H_
829