• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // For reference check out:
16 // https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
17 
18 #include "absl/debugging/internal/demangle.h"
19 
20 #include <cstddef>
21 #include <cstdint>
22 #include <cstdio>
23 #include <cstdlib>
24 #include <cstring>
25 #include <limits>
26 #include <string>
27 
28 #include "absl/base/config.h"
29 #include "absl/debugging/internal/demangle_rust.h"
30 
31 #if ABSL_INTERNAL_HAS_CXA_DEMANGLE
32 #include <cxxabi.h>
33 #endif
34 
35 namespace absl {
36 ABSL_NAMESPACE_BEGIN
37 namespace debugging_internal {
38 
39 typedef struct {
40   const char *abbrev;
41   const char *real_name;
42   // Number of arguments in <expression> context, or 0 if disallowed.
43   int arity;
44 } AbbrevPair;
45 
46 // List of operators from Itanium C++ ABI.
47 static const AbbrevPair kOperatorList[] = {
48     // New has special syntax.
49     {"nw", "new", 0},
50     {"na", "new[]", 0},
51 
52     // Special-cased elsewhere to support the optional gs prefix.
53     {"dl", "delete", 1},
54     {"da", "delete[]", 1},
55 
56     {"aw", "co_await", 1},
57 
58     {"ps", "+", 1},  // "positive"
59     {"ng", "-", 1},  // "negative"
60     {"ad", "&", 1},  // "address-of"
61     {"de", "*", 1},  // "dereference"
62     {"co", "~", 1},
63 
64     {"pl", "+", 2},
65     {"mi", "-", 2},
66     {"ml", "*", 2},
67     {"dv", "/", 2},
68     {"rm", "%", 2},
69     {"an", "&", 2},
70     {"or", "|", 2},
71     {"eo", "^", 2},
72     {"aS", "=", 2},
73     {"pL", "+=", 2},
74     {"mI", "-=", 2},
75     {"mL", "*=", 2},
76     {"dV", "/=", 2},
77     {"rM", "%=", 2},
78     {"aN", "&=", 2},
79     {"oR", "|=", 2},
80     {"eO", "^=", 2},
81     {"ls", "<<", 2},
82     {"rs", ">>", 2},
83     {"lS", "<<=", 2},
84     {"rS", ">>=", 2},
85     {"ss", "<=>", 2},
86     {"eq", "==", 2},
87     {"ne", "!=", 2},
88     {"lt", "<", 2},
89     {"gt", ">", 2},
90     {"le", "<=", 2},
91     {"ge", ">=", 2},
92     {"nt", "!", 1},
93     {"aa", "&&", 2},
94     {"oo", "||", 2},
95     {"pp", "++", 1},
96     {"mm", "--", 1},
97     {"cm", ",", 2},
98     {"pm", "->*", 2},
99     {"pt", "->", 0},  // Special syntax
100     {"cl", "()", 0},  // Special syntax
101     {"ix", "[]", 2},
102     {"qu", "?", 3},
103     {"st", "sizeof", 0},  // Special syntax
104     {"sz", "sizeof", 1},  // Not a real operator name, but used in expressions.
105     {"sZ", "sizeof...", 0},  // Special syntax
106     {nullptr, nullptr, 0},
107 };
108 
109 // List of builtin types from Itanium C++ ABI.
110 //
111 // Invariant: only one- or two-character type abbreviations here.
112 static const AbbrevPair kBuiltinTypeList[] = {
113     {"v", "void", 0},
114     {"w", "wchar_t", 0},
115     {"b", "bool", 0},
116     {"c", "char", 0},
117     {"a", "signed char", 0},
118     {"h", "unsigned char", 0},
119     {"s", "short", 0},
120     {"t", "unsigned short", 0},
121     {"i", "int", 0},
122     {"j", "unsigned int", 0},
123     {"l", "long", 0},
124     {"m", "unsigned long", 0},
125     {"x", "long long", 0},
126     {"y", "unsigned long long", 0},
127     {"n", "__int128", 0},
128     {"o", "unsigned __int128", 0},
129     {"f", "float", 0},
130     {"d", "double", 0},
131     {"e", "long double", 0},
132     {"g", "__float128", 0},
133     {"z", "ellipsis", 0},
134 
135     {"De", "decimal128", 0},      // IEEE 754r decimal floating point (128 bits)
136     {"Dd", "decimal64", 0},       // IEEE 754r decimal floating point (64 bits)
137     {"Dc", "decltype(auto)", 0},
138     {"Da", "auto", 0},
139     {"Dn", "std::nullptr_t", 0},  // i.e., decltype(nullptr)
140     {"Df", "decimal32", 0},       // IEEE 754r decimal floating point (32 bits)
141     {"Di", "char32_t", 0},
142     {"Du", "char8_t", 0},
143     {"Ds", "char16_t", 0},
144     {"Dh", "float16", 0},         // IEEE 754r half-precision float (16 bits)
145     {nullptr, nullptr, 0},
146 };
147 
148 // List of substitutions Itanium C++ ABI.
149 static const AbbrevPair kSubstitutionList[] = {
150     {"St", "", 0},
151     {"Sa", "allocator", 0},
152     {"Sb", "basic_string", 0},
153     // std::basic_string<char, std::char_traits<char>,std::allocator<char> >
154     {"Ss", "string", 0},
155     // std::basic_istream<char, std::char_traits<char> >
156     {"Si", "istream", 0},
157     // std::basic_ostream<char, std::char_traits<char> >
158     {"So", "ostream", 0},
159     // std::basic_iostream<char, std::char_traits<char> >
160     {"Sd", "iostream", 0},
161     {nullptr, nullptr, 0},
162 };
163 
164 // State needed for demangling.  This struct is copied in almost every stack
165 // frame, so every byte counts.
166 typedef struct {
167   int mangled_idx;                     // Cursor of mangled name.
168   int out_cur_idx;                     // Cursor of output string.
169   int prev_name_idx;                   // For constructors/destructors.
170   unsigned int prev_name_length : 16;  // For constructors/destructors.
171   signed int nest_level : 15;          // For nested names.
172   unsigned int append : 1;             // Append flag.
173   // Note: for some reason MSVC can't pack "bool append : 1" into the same int
174   // with the above two fields, so we use an int instead.  Amusingly it can pack
175   // "signed bool" as expected, but relying on that to continue to be a legal
176   // type seems ill-advised (as it's illegal in at least clang).
177 } ParseState;
178 
179 static_assert(sizeof(ParseState) == 4 * sizeof(int),
180               "unexpected size of ParseState");
181 
182 // One-off state for demangling that's not subject to backtracking -- either
183 // constant data, data that's intentionally immune to backtracking (steps), or
184 // data that would never be changed by backtracking anyway (recursion_depth).
185 //
186 // Only one copy of this exists for each call to Demangle, so the size of this
187 // struct is nearly inconsequential.
188 typedef struct {
189   const char *mangled_begin;  // Beginning of input string.
190   char *out;                  // Beginning of output string.
191   int out_end_idx;            // One past last allowed output character.
192   int recursion_depth;        // For stack exhaustion prevention.
193   int steps;               // Cap how much work we'll do, regardless of depth.
194   ParseState parse_state;  // Backtrackable state copied for most frames.
195 
196   // Conditionally compiled support for marking the position of the first
197   // construct Demangle couldn't parse.  This preprocessor symbol is intended
198   // for use by Abseil demangler maintainers only; its behavior is not part of
199   // Abseil's public interface.
200 #ifdef ABSL_INTERNAL_DEMANGLE_RECORDS_HIGH_WATER_MARK
201   int high_water_mark;  // Input position where parsing failed.
202   bool too_complex;  // True if any guard.IsTooComplex() call returned true.
203 #endif
204 } State;
205 
206 namespace {
207 
208 #ifdef ABSL_INTERNAL_DEMANGLE_RECORDS_HIGH_WATER_MARK
UpdateHighWaterMark(State * state)209 void UpdateHighWaterMark(State *state) {
210   if (state->high_water_mark < state->parse_state.mangled_idx) {
211     state->high_water_mark = state->parse_state.mangled_idx;
212   }
213 }
214 
ReportHighWaterMark(State * state)215 void ReportHighWaterMark(State *state) {
216   // Write out the mangled name with the trouble point marked, provided that the
217   // output buffer is large enough and the mangled name did not hit a complexity
218   // limit (in which case the high water mark wouldn't point out an unparsable
219   // construct, only the point where a budget ran out).
220   const size_t input_length = std::strlen(state->mangled_begin);
221   if (input_length + 6 > static_cast<size_t>(state->out_end_idx) ||
222       state->too_complex) {
223     if (state->out_end_idx > 0) state->out[0] = '\0';
224     return;
225   }
226   const size_t high_water_mark = static_cast<size_t>(state->high_water_mark);
227   std::memcpy(state->out, state->mangled_begin, high_water_mark);
228   std::memcpy(state->out + high_water_mark, "--!--", 5);
229   std::memcpy(state->out + high_water_mark + 5,
230               state->mangled_begin + high_water_mark,
231               input_length - high_water_mark);
232   state->out[input_length + 5] = '\0';
233 }
234 #else
235 void UpdateHighWaterMark(State *) {}
236 void ReportHighWaterMark(State *) {}
237 #endif
238 
239 // Prevent deep recursion / stack exhaustion.
240 // Also prevent unbounded handling of complex inputs.
241 class ComplexityGuard {
242  public:
ComplexityGuard(State * state)243   explicit ComplexityGuard(State *state) : state_(state) {
244     ++state->recursion_depth;
245     ++state->steps;
246   }
~ComplexityGuard()247   ~ComplexityGuard() { --state_->recursion_depth; }
248 
249   // 256 levels of recursion seems like a reasonable upper limit on depth.
250   // 128 is not enough to demangle synthetic tests from demangle_unittest.txt:
251   // "_ZaaZZZZ..." and "_ZaaZcvZcvZ..."
252   static constexpr int kRecursionDepthLimit = 256;
253 
254   // We're trying to pick a charitable upper-limit on how many parse steps are
255   // necessary to handle something that a human could actually make use of.
256   // This is mostly in place as a bound on how much work we'll do if we are
257   // asked to demangle an mangled name from an untrusted source, so it should be
258   // much larger than the largest expected symbol, but much smaller than the
259   // amount of work we can do in, e.g., a second.
260   //
261   // Some real-world symbols from an arbitrary binary started failing between
262   // 2^12 and 2^13, so we multiply the latter by an extra factor of 16 to set
263   // the limit.
264   //
265   // Spending one second on 2^17 parse steps would require each step to take
266   // 7.6us, or ~30000 clock cycles, so it's safe to say this can be done in
267   // under a second.
268   static constexpr int kParseStepsLimit = 1 << 17;
269 
IsTooComplex() const270   bool IsTooComplex() const {
271     if (state_->recursion_depth > kRecursionDepthLimit ||
272         state_->steps > kParseStepsLimit) {
273 #ifdef ABSL_INTERNAL_DEMANGLE_RECORDS_HIGH_WATER_MARK
274       state_->too_complex = true;
275 #endif
276       return true;
277     }
278     return false;
279   }
280 
281  private:
282   State *state_;
283 };
284 }  // namespace
285 
286 // We don't use strlen() in libc since it's not guaranteed to be async
287 // signal safe.
StrLen(const char * str)288 static size_t StrLen(const char *str) {
289   size_t len = 0;
290   while (*str != '\0') {
291     ++str;
292     ++len;
293   }
294   return len;
295 }
296 
297 // Returns true if "str" has at least "n" characters remaining.
AtLeastNumCharsRemaining(const char * str,size_t n)298 static bool AtLeastNumCharsRemaining(const char *str, size_t n) {
299   for (size_t i = 0; i < n; ++i) {
300     if (str[i] == '\0') {
301       return false;
302     }
303   }
304   return true;
305 }
306 
307 // Returns true if "str" has "prefix" as a prefix.
StrPrefix(const char * str,const char * prefix)308 static bool StrPrefix(const char *str, const char *prefix) {
309   size_t i = 0;
310   while (str[i] != '\0' && prefix[i] != '\0' && str[i] == prefix[i]) {
311     ++i;
312   }
313   return prefix[i] == '\0';  // Consumed everything in "prefix".
314 }
315 
InitState(State * state,const char * mangled,char * out,size_t out_size)316 static void InitState(State* state,
317                       const char* mangled,
318                       char* out,
319                       size_t out_size) {
320   state->mangled_begin = mangled;
321   state->out = out;
322   state->out_end_idx = static_cast<int>(out_size);
323   state->recursion_depth = 0;
324   state->steps = 0;
325 #ifdef ABSL_INTERNAL_DEMANGLE_RECORDS_HIGH_WATER_MARK
326   state->high_water_mark = 0;
327   state->too_complex = false;
328 #endif
329 
330   state->parse_state.mangled_idx = 0;
331   state->parse_state.out_cur_idx = 0;
332   state->parse_state.prev_name_idx = 0;
333   state->parse_state.prev_name_length = 0;
334   state->parse_state.nest_level = -1;
335   state->parse_state.append = true;
336 }
337 
RemainingInput(State * state)338 static inline const char *RemainingInput(State *state) {
339   return &state->mangled_begin[state->parse_state.mangled_idx];
340 }
341 
342 // Returns true and advances "mangled_idx" if we find "one_char_token"
343 // at "mangled_idx" position.  It is assumed that "one_char_token" does
344 // not contain '\0'.
ParseOneCharToken(State * state,const char one_char_token)345 static bool ParseOneCharToken(State *state, const char one_char_token) {
346   ComplexityGuard guard(state);
347   if (guard.IsTooComplex()) return false;
348   if (RemainingInput(state)[0] == one_char_token) {
349     ++state->parse_state.mangled_idx;
350     UpdateHighWaterMark(state);
351     return true;
352   }
353   return false;
354 }
355 
356 // Returns true and advances "mangled_idx" if we find "two_char_token"
357 // at "mangled_idx" position.  It is assumed that "two_char_token" does
358 // not contain '\0'.
ParseTwoCharToken(State * state,const char * two_char_token)359 static bool ParseTwoCharToken(State *state, const char *two_char_token) {
360   ComplexityGuard guard(state);
361   if (guard.IsTooComplex()) return false;
362   if (RemainingInput(state)[0] == two_char_token[0] &&
363       RemainingInput(state)[1] == two_char_token[1]) {
364     state->parse_state.mangled_idx += 2;
365     UpdateHighWaterMark(state);
366     return true;
367   }
368   return false;
369 }
370 
371 // Returns true and advances "mangled_idx" if we find "three_char_token"
372 // at "mangled_idx" position.  It is assumed that "three_char_token" does
373 // not contain '\0'.
ParseThreeCharToken(State * state,const char * three_char_token)374 static bool ParseThreeCharToken(State *state, const char *three_char_token) {
375   ComplexityGuard guard(state);
376   if (guard.IsTooComplex()) return false;
377   if (RemainingInput(state)[0] == three_char_token[0] &&
378       RemainingInput(state)[1] == three_char_token[1] &&
379       RemainingInput(state)[2] == three_char_token[2]) {
380     state->parse_state.mangled_idx += 3;
381     UpdateHighWaterMark(state);
382     return true;
383   }
384   return false;
385 }
386 
387 // Returns true and advances "mangled_idx" if we find a copy of the
388 // NUL-terminated string "long_token" at "mangled_idx" position.
ParseLongToken(State * state,const char * long_token)389 static bool ParseLongToken(State *state, const char *long_token) {
390   ComplexityGuard guard(state);
391   if (guard.IsTooComplex()) return false;
392   int i = 0;
393   for (; long_token[i] != '\0'; ++i) {
394     // Note that we cannot run off the end of the NUL-terminated input here.
395     // Inside the loop body, long_token[i] is known to be different from NUL.
396     // So if we read the NUL on the end of the input here, we return at once.
397     if (RemainingInput(state)[i] != long_token[i]) return false;
398   }
399   state->parse_state.mangled_idx += i;
400   UpdateHighWaterMark(state);
401   return true;
402 }
403 
404 // Returns true and advances "mangled_cur" if we find any character in
405 // "char_class" at "mangled_cur" position.
ParseCharClass(State * state,const char * char_class)406 static bool ParseCharClass(State *state, const char *char_class) {
407   ComplexityGuard guard(state);
408   if (guard.IsTooComplex()) return false;
409   if (RemainingInput(state)[0] == '\0') {
410     return false;
411   }
412   const char *p = char_class;
413   for (; *p != '\0'; ++p) {
414     if (RemainingInput(state)[0] == *p) {
415       ++state->parse_state.mangled_idx;
416       UpdateHighWaterMark(state);
417       return true;
418     }
419   }
420   return false;
421 }
422 
ParseDigit(State * state,int * digit)423 static bool ParseDigit(State *state, int *digit) {
424   char c = RemainingInput(state)[0];
425   if (ParseCharClass(state, "0123456789")) {
426     if (digit != nullptr) {
427       *digit = c - '0';
428     }
429     return true;
430   }
431   return false;
432 }
433 
434 // This function is used for handling an optional non-terminal.
Optional(bool)435 static bool Optional(bool /*status*/) { return true; }
436 
437 // This function is used for handling <non-terminal>+ syntax.
438 typedef bool (*ParseFunc)(State *);
OneOrMore(ParseFunc parse_func,State * state)439 static bool OneOrMore(ParseFunc parse_func, State *state) {
440   if (parse_func(state)) {
441     while (parse_func(state)) {
442     }
443     return true;
444   }
445   return false;
446 }
447 
448 // This function is used for handling <non-terminal>* syntax. The function
449 // always returns true and must be followed by a termination token or a
450 // terminating sequence not handled by parse_func (e.g.
451 // ParseOneCharToken(state, 'E')).
ZeroOrMore(ParseFunc parse_func,State * state)452 static bool ZeroOrMore(ParseFunc parse_func, State *state) {
453   while (parse_func(state)) {
454   }
455   return true;
456 }
457 
458 // Append "str" at "out_cur_idx".  If there is an overflow, out_cur_idx is
459 // set to out_end_idx+1.  The output string is ensured to
460 // always terminate with '\0' as long as there is no overflow.
Append(State * state,const char * const str,const size_t length)461 static void Append(State *state, const char *const str, const size_t length) {
462   for (size_t i = 0; i < length; ++i) {
463     if (state->parse_state.out_cur_idx + 1 <
464         state->out_end_idx) {  // +1 for '\0'
465       state->out[state->parse_state.out_cur_idx++] = str[i];
466     } else {
467       // signal overflow
468       state->parse_state.out_cur_idx = state->out_end_idx + 1;
469       break;
470     }
471   }
472   if (state->parse_state.out_cur_idx < state->out_end_idx) {
473     state->out[state->parse_state.out_cur_idx] =
474         '\0';  // Terminate it with '\0'
475   }
476 }
477 
478 // We don't use equivalents in libc to avoid locale issues.
IsLower(char c)479 static bool IsLower(char c) { return c >= 'a' && c <= 'z'; }
480 
IsAlpha(char c)481 static bool IsAlpha(char c) {
482   return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
483 }
484 
IsDigit(char c)485 static bool IsDigit(char c) { return c >= '0' && c <= '9'; }
486 
487 // Returns true if "str" is a function clone suffix.  These suffixes are used
488 // by GCC 4.5.x and later versions (and our locally-modified version of GCC
489 // 4.4.x) to indicate functions which have been cloned during optimization.
490 // We treat any sequence (.<alpha>+.<digit>+)+ as a function clone suffix.
491 // Additionally, '_' is allowed along with the alphanumeric sequence.
IsFunctionCloneSuffix(const char * str)492 static bool IsFunctionCloneSuffix(const char *str) {
493   size_t i = 0;
494   while (str[i] != '\0') {
495     bool parsed = false;
496     // Consume a single [.<alpha> | _]*[.<digit>]* sequence.
497     if (str[i] == '.' && (IsAlpha(str[i + 1]) || str[i + 1] == '_')) {
498       parsed = true;
499       i += 2;
500       while (IsAlpha(str[i]) || str[i] == '_') {
501         ++i;
502       }
503     }
504     if (str[i] == '.' && IsDigit(str[i + 1])) {
505       parsed = true;
506       i += 2;
507       while (IsDigit(str[i])) {
508         ++i;
509       }
510     }
511     if (!parsed)
512       return false;
513   }
514   return true;  // Consumed everything in "str".
515 }
516 
EndsWith(State * state,const char chr)517 static bool EndsWith(State *state, const char chr) {
518   return state->parse_state.out_cur_idx > 0 &&
519          state->parse_state.out_cur_idx < state->out_end_idx &&
520          chr == state->out[state->parse_state.out_cur_idx - 1];
521 }
522 
523 // Append "str" with some tweaks, iff "append" state is true.
MaybeAppendWithLength(State * state,const char * const str,const size_t length)524 static void MaybeAppendWithLength(State *state, const char *const str,
525                                   const size_t length) {
526   if (state->parse_state.append && length > 0) {
527     // Append a space if the output buffer ends with '<' and "str"
528     // starts with '<' to avoid <<<.
529     if (str[0] == '<' && EndsWith(state, '<')) {
530       Append(state, " ", 1);
531     }
532     // Remember the last identifier name for ctors/dtors,
533     // but only if we haven't yet overflown the buffer.
534     if (state->parse_state.out_cur_idx < state->out_end_idx &&
535         (IsAlpha(str[0]) || str[0] == '_')) {
536       state->parse_state.prev_name_idx = state->parse_state.out_cur_idx;
537       state->parse_state.prev_name_length = static_cast<unsigned int>(length);
538     }
539     Append(state, str, length);
540   }
541 }
542 
543 // Appends a positive decimal number to the output if appending is enabled.
MaybeAppendDecimal(State * state,int val)544 static bool MaybeAppendDecimal(State *state, int val) {
545   // Max {32-64}-bit unsigned int is 20 digits.
546   constexpr size_t kMaxLength = 20;
547   char buf[kMaxLength];
548 
549   // We can't use itoa or sprintf as neither is specified to be
550   // async-signal-safe.
551   if (state->parse_state.append) {
552     // We can't have a one-before-the-beginning pointer, so instead start with
553     // one-past-the-end and manipulate one character before the pointer.
554     char *p = &buf[kMaxLength];
555     do {  // val=0 is the only input that should write a leading zero digit.
556       *--p = static_cast<char>((val % 10) + '0');
557       val /= 10;
558     } while (p > buf && val != 0);
559 
560     // 'p' landed on the last character we set.  How convenient.
561     Append(state, p, kMaxLength - static_cast<size_t>(p - buf));
562   }
563 
564   return true;
565 }
566 
567 // A convenient wrapper around MaybeAppendWithLength().
568 // Returns true so that it can be placed in "if" conditions.
MaybeAppend(State * state,const char * const str)569 static bool MaybeAppend(State *state, const char *const str) {
570   if (state->parse_state.append) {
571     size_t length = StrLen(str);
572     MaybeAppendWithLength(state, str, length);
573   }
574   return true;
575 }
576 
577 // This function is used for handling nested names.
EnterNestedName(State * state)578 static bool EnterNestedName(State *state) {
579   state->parse_state.nest_level = 0;
580   return true;
581 }
582 
583 // This function is used for handling nested names.
LeaveNestedName(State * state,int16_t prev_value)584 static bool LeaveNestedName(State *state, int16_t prev_value) {
585   state->parse_state.nest_level = prev_value;
586   return true;
587 }
588 
589 // Disable the append mode not to print function parameters, etc.
DisableAppend(State * state)590 static bool DisableAppend(State *state) {
591   state->parse_state.append = false;
592   return true;
593 }
594 
595 // Restore the append mode to the previous state.
RestoreAppend(State * state,bool prev_value)596 static bool RestoreAppend(State *state, bool prev_value) {
597   state->parse_state.append = prev_value;
598   return true;
599 }
600 
601 // Increase the nest level for nested names.
MaybeIncreaseNestLevel(State * state)602 static void MaybeIncreaseNestLevel(State *state) {
603   if (state->parse_state.nest_level > -1) {
604     ++state->parse_state.nest_level;
605   }
606 }
607 
608 // Appends :: for nested names if necessary.
MaybeAppendSeparator(State * state)609 static void MaybeAppendSeparator(State *state) {
610   if (state->parse_state.nest_level >= 1) {
611     MaybeAppend(state, "::");
612   }
613 }
614 
615 // Cancel the last separator if necessary.
MaybeCancelLastSeparator(State * state)616 static void MaybeCancelLastSeparator(State *state) {
617   if (state->parse_state.nest_level >= 1 && state->parse_state.append &&
618       state->parse_state.out_cur_idx >= 2) {
619     state->parse_state.out_cur_idx -= 2;
620     state->out[state->parse_state.out_cur_idx] = '\0';
621   }
622 }
623 
624 // Returns true if the identifier of the given length pointed to by
625 // "mangled_cur" is anonymous namespace.
IdentifierIsAnonymousNamespace(State * state,size_t length)626 static bool IdentifierIsAnonymousNamespace(State *state, size_t length) {
627   // Returns true if "anon_prefix" is a proper prefix of "mangled_cur".
628   static const char anon_prefix[] = "_GLOBAL__N_";
629   return (length > (sizeof(anon_prefix) - 1) &&
630           StrPrefix(RemainingInput(state), anon_prefix));
631 }
632 
633 // Forward declarations of our parsing functions.
634 static bool ParseMangledName(State *state);
635 static bool ParseEncoding(State *state);
636 static bool ParseName(State *state);
637 static bool ParseUnscopedName(State *state);
638 static bool ParseNestedName(State *state);
639 static bool ParsePrefix(State *state);
640 static bool ParseUnqualifiedName(State *state);
641 static bool ParseSourceName(State *state);
642 static bool ParseLocalSourceName(State *state);
643 static bool ParseUnnamedTypeName(State *state);
644 static bool ParseNumber(State *state, int *number_out);
645 static bool ParseFloatNumber(State *state);
646 static bool ParseSeqId(State *state);
647 static bool ParseIdentifier(State *state, size_t length);
648 static bool ParseOperatorName(State *state, int *arity);
649 static bool ParseConversionOperatorType(State *state);
650 static bool ParseSpecialName(State *state);
651 static bool ParseCallOffset(State *state);
652 static bool ParseNVOffset(State *state);
653 static bool ParseVOffset(State *state);
654 static bool ParseAbiTags(State *state);
655 static bool ParseCtorDtorName(State *state);
656 static bool ParseDecltype(State *state);
657 static bool ParseType(State *state);
658 static bool ParseCVQualifiers(State *state);
659 static bool ParseExtendedQualifier(State *state);
660 static bool ParseBuiltinType(State *state);
661 static bool ParseVendorExtendedType(State *state);
662 static bool ParseFunctionType(State *state);
663 static bool ParseBareFunctionType(State *state);
664 static bool ParseOverloadAttribute(State *state);
665 static bool ParseClassEnumType(State *state);
666 static bool ParseArrayType(State *state);
667 static bool ParsePointerToMemberType(State *state);
668 static bool ParseTemplateParam(State *state);
669 static bool ParseTemplateParamDecl(State *state);
670 static bool ParseTemplateTemplateParam(State *state);
671 static bool ParseTemplateArgs(State *state);
672 static bool ParseTemplateArg(State *state);
673 static bool ParseBaseUnresolvedName(State *state);
674 static bool ParseUnresolvedName(State *state);
675 static bool ParseUnresolvedQualifierLevel(State *state);
676 static bool ParseUnionSelector(State* state);
677 static bool ParseFunctionParam(State* state);
678 static bool ParseBracedExpression(State *state);
679 static bool ParseExpression(State *state);
680 static bool ParseInitializer(State *state);
681 static bool ParseExprPrimary(State *state);
682 static bool ParseExprCastValueAndTrailingE(State *state);
683 static bool ParseQRequiresClauseExpr(State *state);
684 static bool ParseRequirement(State *state);
685 static bool ParseTypeConstraint(State *state);
686 static bool ParseLocalName(State *state);
687 static bool ParseLocalNameSuffix(State *state);
688 static bool ParseDiscriminator(State *state);
689 static bool ParseSubstitution(State *state, bool accept_std);
690 
691 // Implementation note: the following code is a straightforward
692 // translation of the Itanium C++ ABI defined in BNF with a couple of
693 // exceptions.
694 //
695 // - Support GNU extensions not defined in the Itanium C++ ABI
696 // - <prefix> and <template-prefix> are combined to avoid infinite loop
697 // - Reorder patterns to shorten the code
698 // - Reorder patterns to give greedier functions precedence
699 //   We'll mark "Less greedy than" for these cases in the code
700 //
701 // Each parsing function changes the parse state and returns true on
702 // success, or returns false and doesn't change the parse state (note:
703 // the parse-steps counter increases regardless of success or failure).
704 // To ensure that the parse state isn't changed in the latter case, we
705 // save the original state before we call multiple parsing functions
706 // consecutively with &&, and restore it if unsuccessful.  See
707 // ParseEncoding() as an example of this convention.  We follow the
708 // convention throughout the code.
709 //
710 // Originally we tried to do demangling without following the full ABI
711 // syntax but it turned out we needed to follow the full syntax to
712 // parse complicated cases like nested template arguments.  Note that
713 // implementing a full-fledged demangler isn't trivial (libiberty's
714 // cp-demangle.c has +4300 lines).
715 //
716 // Note that (foo) in <(foo) ...> is a modifier to be ignored.
717 //
718 // Reference:
719 // - Itanium C++ ABI
720 //   <https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling>
721 
722 // <mangled-name> ::= _Z <encoding>
ParseMangledName(State * state)723 static bool ParseMangledName(State *state) {
724   ComplexityGuard guard(state);
725   if (guard.IsTooComplex()) return false;
726   return ParseTwoCharToken(state, "_Z") && ParseEncoding(state);
727 }
728 
729 // <encoding> ::= <(function) name> <bare-function-type>
730 //                [`Q` <requires-clause expr>]
731 //            ::= <(data) name>
732 //            ::= <special-name>
733 //
734 // NOTE: Based on http://shortn/_Hoq9qG83rx
ParseEncoding(State * state)735 static bool ParseEncoding(State *state) {
736   ComplexityGuard guard(state);
737   if (guard.IsTooComplex()) return false;
738   // Since the first two productions both start with <name>, attempt
739   // to parse it only once to avoid exponential blowup of backtracking.
740   //
741   // We're careful about exponential blowup because <encoding> recursively
742   // appears in other productions downstream of its first two productions,
743   // which means that every call to `ParseName` would possibly indirectly
744   // result in two calls to `ParseName` etc.
745   if (ParseName(state)) {
746     if (!ParseBareFunctionType(state)) {
747       return true;  // <(data) name>
748     }
749 
750     // Parsed: <(function) name> <bare-function-type>
751     // Pending: [`Q` <requires-clause expr>]
752     ParseQRequiresClauseExpr(state);  // restores state on failure
753     return true;
754   }
755 
756   if (ParseSpecialName(state)) {
757     return true;  // <special-name>
758   }
759   return false;
760 }
761 
762 // <name> ::= <nested-name>
763 //        ::= <unscoped-template-name> <template-args>
764 //        ::= <unscoped-name>
765 //        ::= <local-name>
ParseName(State * state)766 static bool ParseName(State *state) {
767   ComplexityGuard guard(state);
768   if (guard.IsTooComplex()) return false;
769   if (ParseNestedName(state) || ParseLocalName(state)) {
770     return true;
771   }
772 
773   // We reorganize the productions to avoid re-parsing unscoped names.
774   // - Inline <unscoped-template-name> productions:
775   //   <name> ::= <substitution> <template-args>
776   //          ::= <unscoped-name> <template-args>
777   //          ::= <unscoped-name>
778   // - Merge the two productions that start with unscoped-name:
779   //   <name> ::= <unscoped-name> [<template-args>]
780 
781   ParseState copy = state->parse_state;
782   // "std<...>" isn't a valid name.
783   if (ParseSubstitution(state, /*accept_std=*/false) &&
784       ParseTemplateArgs(state)) {
785     return true;
786   }
787   state->parse_state = copy;
788 
789   // Note there's no need to restore state after this since only the first
790   // subparser can fail.
791   return ParseUnscopedName(state) && Optional(ParseTemplateArgs(state));
792 }
793 
794 // <unscoped-name> ::= <unqualified-name>
795 //                 ::= St <unqualified-name>
ParseUnscopedName(State * state)796 static bool ParseUnscopedName(State *state) {
797   ComplexityGuard guard(state);
798   if (guard.IsTooComplex()) return false;
799   if (ParseUnqualifiedName(state)) {
800     return true;
801   }
802 
803   ParseState copy = state->parse_state;
804   if (ParseTwoCharToken(state, "St") && MaybeAppend(state, "std::") &&
805       ParseUnqualifiedName(state)) {
806     return true;
807   }
808   state->parse_state = copy;
809   return false;
810 }
811 
812 // <ref-qualifer> ::= R // lvalue method reference qualifier
813 //                ::= O // rvalue method reference qualifier
ParseRefQualifier(State * state)814 static inline bool ParseRefQualifier(State *state) {
815   return ParseCharClass(state, "OR");
816 }
817 
818 // <nested-name> ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix>
819 //                   <unqualified-name> E
820 //               ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
821 //                   <template-args> E
ParseNestedName(State * state)822 static bool ParseNestedName(State *state) {
823   ComplexityGuard guard(state);
824   if (guard.IsTooComplex()) return false;
825   ParseState copy = state->parse_state;
826   if (ParseOneCharToken(state, 'N') && EnterNestedName(state) &&
827       Optional(ParseCVQualifiers(state)) &&
828       Optional(ParseRefQualifier(state)) && ParsePrefix(state) &&
829       LeaveNestedName(state, copy.nest_level) &&
830       ParseOneCharToken(state, 'E')) {
831     return true;
832   }
833   state->parse_state = copy;
834   return false;
835 }
836 
837 // This part is tricky.  If we literally translate them to code, we'll
838 // end up infinite loop.  Hence we merge them to avoid the case.
839 //
840 // <prefix> ::= <prefix> <unqualified-name>
841 //          ::= <template-prefix> <template-args>
842 //          ::= <template-param>
843 //          ::= <decltype>
844 //          ::= <substitution>
845 //          ::= # empty
846 // <template-prefix> ::= <prefix> <(template) unqualified-name>
847 //                   ::= <template-param>
848 //                   ::= <substitution>
849 //                   ::= <vendor-extended-type>
ParsePrefix(State * state)850 static bool ParsePrefix(State *state) {
851   ComplexityGuard guard(state);
852   if (guard.IsTooComplex()) return false;
853   bool has_something = false;
854   while (true) {
855     MaybeAppendSeparator(state);
856     if (ParseTemplateParam(state) || ParseDecltype(state) ||
857         ParseSubstitution(state, /*accept_std=*/true) ||
858         // Although the official grammar does not mention it, nested-names
859         // shaped like Nu14__some_builtinIiE6memberE occur in practice, and it
860         // is not clear what else a compiler is supposed to do when a
861         // vendor-extended type has named members.
862         ParseVendorExtendedType(state) ||
863         ParseUnscopedName(state) ||
864         (ParseOneCharToken(state, 'M') && ParseUnnamedTypeName(state))) {
865       has_something = true;
866       MaybeIncreaseNestLevel(state);
867       continue;
868     }
869     MaybeCancelLastSeparator(state);
870     if (has_something && ParseTemplateArgs(state)) {
871       return ParsePrefix(state);
872     } else {
873       break;
874     }
875   }
876   return true;
877 }
878 
879 // <unqualified-name> ::= <operator-name> [<abi-tags>]
880 //                    ::= <ctor-dtor-name> [<abi-tags>]
881 //                    ::= <source-name> [<abi-tags>]
882 //                    ::= <local-source-name> [<abi-tags>]
883 //                    ::= <unnamed-type-name> [<abi-tags>]
884 //                    ::= DC <source-name>+ E  # C++17 structured binding
885 //                    ::= F <source-name>  # C++20 constrained friend
886 //                    ::= F <operator-name>  # C++20 constrained friend
887 //
888 // <local-source-name> is a GCC extension; see below.
889 //
890 // For the F notation for constrained friends, see
891 // https://github.com/itanium-cxx-abi/cxx-abi/issues/24#issuecomment-1491130332.
ParseUnqualifiedName(State * state)892 static bool ParseUnqualifiedName(State *state) {
893   ComplexityGuard guard(state);
894   if (guard.IsTooComplex()) return false;
895   if (ParseOperatorName(state, nullptr) || ParseCtorDtorName(state) ||
896       ParseSourceName(state) || ParseLocalSourceName(state) ||
897       ParseUnnamedTypeName(state)) {
898     return ParseAbiTags(state);
899   }
900 
901   // DC <source-name>+ E
902   ParseState copy = state->parse_state;
903   if (ParseTwoCharToken(state, "DC") && OneOrMore(ParseSourceName, state) &&
904       ParseOneCharToken(state, 'E')) {
905     return true;
906   }
907   state->parse_state = copy;
908 
909   // F <source-name>
910   // F <operator-name>
911   if (ParseOneCharToken(state, 'F') && MaybeAppend(state, "friend ") &&
912       (ParseSourceName(state) || ParseOperatorName(state, nullptr))) {
913     return true;
914   }
915   state->parse_state = copy;
916 
917   return false;
918 }
919 
920 // <abi-tags> ::= <abi-tag> [<abi-tags>]
921 // <abi-tag>  ::= B <source-name>
ParseAbiTags(State * state)922 static bool ParseAbiTags(State *state) {
923   ComplexityGuard guard(state);
924   if (guard.IsTooComplex()) return false;
925 
926   while (ParseOneCharToken(state, 'B')) {
927     ParseState copy = state->parse_state;
928     MaybeAppend(state, "[abi:");
929 
930     if (!ParseSourceName(state)) {
931       state->parse_state = copy;
932       return false;
933     }
934     MaybeAppend(state, "]");
935   }
936 
937   return true;
938 }
939 
940 // <source-name> ::= <positive length number> <identifier>
ParseSourceName(State * state)941 static bool ParseSourceName(State *state) {
942   ComplexityGuard guard(state);
943   if (guard.IsTooComplex()) return false;
944   ParseState copy = state->parse_state;
945   int length = -1;
946   if (ParseNumber(state, &length) &&
947       ParseIdentifier(state, static_cast<size_t>(length))) {
948     return true;
949   }
950   state->parse_state = copy;
951   return false;
952 }
953 
954 // <local-source-name> ::= L <source-name> [<discriminator>]
955 //
956 // References:
957 //   https://gcc.gnu.org/bugzilla/show_bug.cgi?id=31775
958 //   https://gcc.gnu.org/viewcvs?view=rev&revision=124467
ParseLocalSourceName(State * state)959 static bool ParseLocalSourceName(State *state) {
960   ComplexityGuard guard(state);
961   if (guard.IsTooComplex()) return false;
962   ParseState copy = state->parse_state;
963   if (ParseOneCharToken(state, 'L') && ParseSourceName(state) &&
964       Optional(ParseDiscriminator(state))) {
965     return true;
966   }
967   state->parse_state = copy;
968   return false;
969 }
970 
971 // <unnamed-type-name> ::= Ut [<(nonnegative) number>] _
972 //                     ::= <closure-type-name>
973 // <closure-type-name> ::= Ul <lambda-sig> E [<(nonnegative) number>] _
974 // <lambda-sig>        ::= <template-param-decl>* <(parameter) type>+
975 //
976 // For <template-param-decl>* in <lambda-sig> see:
977 //
978 // https://github.com/itanium-cxx-abi/cxx-abi/issues/31
ParseUnnamedTypeName(State * state)979 static bool ParseUnnamedTypeName(State *state) {
980   ComplexityGuard guard(state);
981   if (guard.IsTooComplex()) return false;
982   ParseState copy = state->parse_state;
983   // Type's 1-based index n is encoded as { "", n == 1; itoa(n-2), otherwise }.
984   // Optionally parse the encoded value into 'which' and add 2 to get the index.
985   int which = -1;
986 
987   // Unnamed type local to function or class.
988   if (ParseTwoCharToken(state, "Ut") && Optional(ParseNumber(state, &which)) &&
989       which <= std::numeric_limits<int>::max() - 2 &&  // Don't overflow.
990       ParseOneCharToken(state, '_')) {
991     MaybeAppend(state, "{unnamed type#");
992     MaybeAppendDecimal(state, 2 + which);
993     MaybeAppend(state, "}");
994     return true;
995   }
996   state->parse_state = copy;
997 
998   // Closure type.
999   which = -1;
1000   if (ParseTwoCharToken(state, "Ul") && DisableAppend(state) &&
1001       ZeroOrMore(ParseTemplateParamDecl, state) &&
1002       OneOrMore(ParseType, state) && RestoreAppend(state, copy.append) &&
1003       ParseOneCharToken(state, 'E') && Optional(ParseNumber(state, &which)) &&
1004       which <= std::numeric_limits<int>::max() - 2 &&  // Don't overflow.
1005       ParseOneCharToken(state, '_')) {
1006     MaybeAppend(state, "{lambda()#");
1007     MaybeAppendDecimal(state, 2 + which);
1008     MaybeAppend(state, "}");
1009     return true;
1010   }
1011   state->parse_state = copy;
1012 
1013   return false;
1014 }
1015 
1016 // <number> ::= [n] <non-negative decimal integer>
1017 // If "number_out" is non-null, then *number_out is set to the value of the
1018 // parsed number on success.
ParseNumber(State * state,int * number_out)1019 static bool ParseNumber(State *state, int *number_out) {
1020   ComplexityGuard guard(state);
1021   if (guard.IsTooComplex()) return false;
1022   bool negative = false;
1023   if (ParseOneCharToken(state, 'n')) {
1024     negative = true;
1025   }
1026   const char *p = RemainingInput(state);
1027   uint64_t number = 0;
1028   for (; *p != '\0'; ++p) {
1029     if (IsDigit(*p)) {
1030       number = number * 10 + static_cast<uint64_t>(*p - '0');
1031     } else {
1032       break;
1033     }
1034   }
1035   // Apply the sign with uint64_t arithmetic so overflows aren't UB.  Gives
1036   // "incorrect" results for out-of-range inputs, but negative values only
1037   // appear for literals, which aren't printed.
1038   if (negative) {
1039     number = ~number + 1;
1040   }
1041   if (p != RemainingInput(state)) {  // Conversion succeeded.
1042     state->parse_state.mangled_idx +=
1043         static_cast<int>(p - RemainingInput(state));
1044     UpdateHighWaterMark(state);
1045     if (number_out != nullptr) {
1046       // Note: possibly truncate "number".
1047       *number_out = static_cast<int>(number);
1048     }
1049     return true;
1050   }
1051   return false;
1052 }
1053 
1054 // Floating-point literals are encoded using a fixed-length lowercase
1055 // hexadecimal string.
ParseFloatNumber(State * state)1056 static bool ParseFloatNumber(State *state) {
1057   ComplexityGuard guard(state);
1058   if (guard.IsTooComplex()) return false;
1059   const char *p = RemainingInput(state);
1060   for (; *p != '\0'; ++p) {
1061     if (!IsDigit(*p) && !(*p >= 'a' && *p <= 'f')) {
1062       break;
1063     }
1064   }
1065   if (p != RemainingInput(state)) {  // Conversion succeeded.
1066     state->parse_state.mangled_idx +=
1067         static_cast<int>(p - RemainingInput(state));
1068     UpdateHighWaterMark(state);
1069     return true;
1070   }
1071   return false;
1072 }
1073 
1074 // The <seq-id> is a sequence number in base 36,
1075 // using digits and upper case letters
ParseSeqId(State * state)1076 static bool ParseSeqId(State *state) {
1077   ComplexityGuard guard(state);
1078   if (guard.IsTooComplex()) return false;
1079   const char *p = RemainingInput(state);
1080   for (; *p != '\0'; ++p) {
1081     if (!IsDigit(*p) && !(*p >= 'A' && *p <= 'Z')) {
1082       break;
1083     }
1084   }
1085   if (p != RemainingInput(state)) {  // Conversion succeeded.
1086     state->parse_state.mangled_idx +=
1087         static_cast<int>(p - RemainingInput(state));
1088     UpdateHighWaterMark(state);
1089     return true;
1090   }
1091   return false;
1092 }
1093 
1094 // <identifier> ::= <unqualified source code identifier> (of given length)
ParseIdentifier(State * state,size_t length)1095 static bool ParseIdentifier(State *state, size_t length) {
1096   ComplexityGuard guard(state);
1097   if (guard.IsTooComplex()) return false;
1098   if (!AtLeastNumCharsRemaining(RemainingInput(state), length)) {
1099     return false;
1100   }
1101   if (IdentifierIsAnonymousNamespace(state, length)) {
1102     MaybeAppend(state, "(anonymous namespace)");
1103   } else {
1104     MaybeAppendWithLength(state, RemainingInput(state), length);
1105   }
1106   state->parse_state.mangled_idx += static_cast<int>(length);
1107   UpdateHighWaterMark(state);
1108   return true;
1109 }
1110 
1111 // <operator-name> ::= nw, and other two letters cases
1112 //                 ::= cv <type>  # (cast)
1113 //                 ::= li <source-name>  # C++11 user-defined literal
1114 //                 ::= v  <digit> <source-name> # vendor extended operator
ParseOperatorName(State * state,int * arity)1115 static bool ParseOperatorName(State *state, int *arity) {
1116   ComplexityGuard guard(state);
1117   if (guard.IsTooComplex()) return false;
1118   if (!AtLeastNumCharsRemaining(RemainingInput(state), 2)) {
1119     return false;
1120   }
1121   // First check with "cv" (cast) case.
1122   ParseState copy = state->parse_state;
1123   if (ParseTwoCharToken(state, "cv") && MaybeAppend(state, "operator ") &&
1124       EnterNestedName(state) && ParseConversionOperatorType(state) &&
1125       LeaveNestedName(state, copy.nest_level)) {
1126     if (arity != nullptr) {
1127       *arity = 1;
1128     }
1129     return true;
1130   }
1131   state->parse_state = copy;
1132 
1133   // Then user-defined literals.
1134   if (ParseTwoCharToken(state, "li") && MaybeAppend(state, "operator\"\" ") &&
1135       ParseSourceName(state)) {
1136     return true;
1137   }
1138   state->parse_state = copy;
1139 
1140   // Then vendor extended operators.
1141   if (ParseOneCharToken(state, 'v') && ParseDigit(state, arity) &&
1142       ParseSourceName(state)) {
1143     return true;
1144   }
1145   state->parse_state = copy;
1146 
1147   // Other operator names should start with a lower alphabet followed
1148   // by a lower/upper alphabet.
1149   if (!(IsLower(RemainingInput(state)[0]) &&
1150         IsAlpha(RemainingInput(state)[1]))) {
1151     return false;
1152   }
1153   // We may want to perform a binary search if we really need speed.
1154   const AbbrevPair *p;
1155   for (p = kOperatorList; p->abbrev != nullptr; ++p) {
1156     if (RemainingInput(state)[0] == p->abbrev[0] &&
1157         RemainingInput(state)[1] == p->abbrev[1]) {
1158       if (arity != nullptr) {
1159         *arity = p->arity;
1160       }
1161       MaybeAppend(state, "operator");
1162       if (IsLower(*p->real_name)) {  // new, delete, etc.
1163         MaybeAppend(state, " ");
1164       }
1165       MaybeAppend(state, p->real_name);
1166       state->parse_state.mangled_idx += 2;
1167       UpdateHighWaterMark(state);
1168       return true;
1169     }
1170   }
1171   return false;
1172 }
1173 
1174 // <operator-name> ::= cv <type>  # (cast)
1175 //
1176 // The name of a conversion operator is the one place where cv-qualifiers, *, &,
1177 // and other simple type combinators are expected to appear in our stripped-down
1178 // demangling (elsewhere they appear in function signatures or template
1179 // arguments, which we omit from the output).  We make reasonable efforts to
1180 // render simple cases accurately.
ParseConversionOperatorType(State * state)1181 static bool ParseConversionOperatorType(State *state) {
1182   ComplexityGuard guard(state);
1183   if (guard.IsTooComplex()) return false;
1184   ParseState copy = state->parse_state;
1185 
1186   // Scan pointers, const, and other easy mangling prefixes with postfix
1187   // demanglings.  Remember the range of input for later rescanning.
1188   //
1189   // See `ParseType` and the `switch` below for the meaning of each char.
1190   const char* begin_simple_prefixes = RemainingInput(state);
1191   while (ParseCharClass(state, "OPRCGrVK")) {}
1192   const char* end_simple_prefixes = RemainingInput(state);
1193 
1194   // Emit the base type first.
1195   if (!ParseType(state)) {
1196     state->parse_state = copy;
1197     return false;
1198   }
1199 
1200   // Then rescan the easy type combinators in reverse order to emit their
1201   // demanglings in the expected output order.
1202   while (begin_simple_prefixes != end_simple_prefixes) {
1203     switch (*--end_simple_prefixes) {
1204       case 'P':
1205         MaybeAppend(state, "*");
1206         break;
1207       case 'R':
1208         MaybeAppend(state, "&");
1209         break;
1210       case 'O':
1211         MaybeAppend(state, "&&");
1212         break;
1213       case 'C':
1214         MaybeAppend(state, " _Complex");
1215         break;
1216       case 'G':
1217         MaybeAppend(state, " _Imaginary");
1218         break;
1219       case 'r':
1220         MaybeAppend(state, " restrict");
1221         break;
1222       case 'V':
1223         MaybeAppend(state, " volatile");
1224         break;
1225       case 'K':
1226         MaybeAppend(state, " const");
1227         break;
1228     }
1229   }
1230   return true;
1231 }
1232 
1233 // <special-name> ::= TV <type>
1234 //                ::= TT <type>
1235 //                ::= TI <type>
1236 //                ::= TS <type>
1237 //                ::= TW <name>  # thread-local wrapper
1238 //                ::= TH <name>  # thread-local initialization
1239 //                ::= Tc <call-offset> <call-offset> <(base) encoding>
1240 //                ::= GV <(object) name>
1241 //                ::= GR <(object) name> [<seq-id>] _
1242 //                ::= T <call-offset> <(base) encoding>
1243 //                ::= GTt <encoding>  # transaction-safe entry point
1244 //                ::= TA <template-arg>  # nontype template parameter object
1245 // G++ extensions:
1246 //                ::= TC <type> <(offset) number> _ <(base) type>
1247 //                ::= TF <type>
1248 //                ::= TJ <type>
1249 //                ::= GR <name>  # without final _, perhaps an earlier form?
1250 //                ::= GA <encoding>
1251 //                ::= Th <call-offset> <(base) encoding>
1252 //                ::= Tv <call-offset> <(base) encoding>
1253 //
1254 // Note: Most of these are special data, not functions that occur in stack
1255 // traces.  Exceptions are TW and TH, which denote functions supporting the
1256 // thread_local feature.  For these see:
1257 //
1258 // https://maskray.me/blog/2021-02-14-all-about-thread-local-storage
1259 //
1260 // For TA see https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
ParseSpecialName(State * state)1261 static bool ParseSpecialName(State *state) {
1262   ComplexityGuard guard(state);
1263   if (guard.IsTooComplex()) return false;
1264   ParseState copy = state->parse_state;
1265 
1266   if (ParseTwoCharToken(state, "TW")) {
1267     MaybeAppend(state, "thread-local wrapper routine for ");
1268     if (ParseName(state)) return true;
1269     state->parse_state = copy;
1270     return false;
1271   }
1272 
1273   if (ParseTwoCharToken(state, "TH")) {
1274     MaybeAppend(state, "thread-local initialization routine for ");
1275     if (ParseName(state)) return true;
1276     state->parse_state = copy;
1277     return false;
1278   }
1279 
1280   if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "VTIS") &&
1281       ParseType(state)) {
1282     return true;
1283   }
1284   state->parse_state = copy;
1285 
1286   if (ParseTwoCharToken(state, "Tc") && ParseCallOffset(state) &&
1287       ParseCallOffset(state) && ParseEncoding(state)) {
1288     return true;
1289   }
1290   state->parse_state = copy;
1291 
1292   if (ParseTwoCharToken(state, "GV") && ParseName(state)) {
1293     return true;
1294   }
1295   state->parse_state = copy;
1296 
1297   if (ParseOneCharToken(state, 'T') && ParseCallOffset(state) &&
1298       ParseEncoding(state)) {
1299     return true;
1300   }
1301   state->parse_state = copy;
1302 
1303   // G++ extensions
1304   if (ParseTwoCharToken(state, "TC") && ParseType(state) &&
1305       ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') &&
1306       DisableAppend(state) && ParseType(state)) {
1307     RestoreAppend(state, copy.append);
1308     return true;
1309   }
1310   state->parse_state = copy;
1311 
1312   if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "FJ") &&
1313       ParseType(state)) {
1314     return true;
1315   }
1316   state->parse_state = copy;
1317 
1318   // <special-name> ::= GR <(object) name> [<seq-id>] _  # modern standard
1319   //                ::= GR <(object) name>  # also recognized
1320   if (ParseTwoCharToken(state, "GR")) {
1321     MaybeAppend(state, "reference temporary for ");
1322     if (!ParseName(state)) {
1323       state->parse_state = copy;
1324       return false;
1325     }
1326     const bool has_seq_id = ParseSeqId(state);
1327     const bool has_underscore = ParseOneCharToken(state, '_');
1328     if (has_seq_id && !has_underscore) {
1329       state->parse_state = copy;
1330       return false;
1331     }
1332     return true;
1333   }
1334 
1335   if (ParseTwoCharToken(state, "GA") && ParseEncoding(state)) {
1336     return true;
1337   }
1338   state->parse_state = copy;
1339 
1340   if (ParseThreeCharToken(state, "GTt") &&
1341       MaybeAppend(state, "transaction clone for ") && ParseEncoding(state)) {
1342     return true;
1343   }
1344   state->parse_state = copy;
1345 
1346   if (ParseOneCharToken(state, 'T') && ParseCharClass(state, "hv") &&
1347       ParseCallOffset(state) && ParseEncoding(state)) {
1348     return true;
1349   }
1350   state->parse_state = copy;
1351 
1352   if (ParseTwoCharToken(state, "TA")) {
1353     bool append = state->parse_state.append;
1354     DisableAppend(state);
1355     if (ParseTemplateArg(state)) {
1356       RestoreAppend(state, append);
1357       MaybeAppend(state, "template parameter object");
1358       return true;
1359     }
1360   }
1361   state->parse_state = copy;
1362 
1363   return false;
1364 }
1365 
1366 // <call-offset> ::= h <nv-offset> _
1367 //               ::= v <v-offset> _
ParseCallOffset(State * state)1368 static bool ParseCallOffset(State *state) {
1369   ComplexityGuard guard(state);
1370   if (guard.IsTooComplex()) return false;
1371   ParseState copy = state->parse_state;
1372   if (ParseOneCharToken(state, 'h') && ParseNVOffset(state) &&
1373       ParseOneCharToken(state, '_')) {
1374     return true;
1375   }
1376   state->parse_state = copy;
1377 
1378   if (ParseOneCharToken(state, 'v') && ParseVOffset(state) &&
1379       ParseOneCharToken(state, '_')) {
1380     return true;
1381   }
1382   state->parse_state = copy;
1383 
1384   return false;
1385 }
1386 
1387 // <nv-offset> ::= <(offset) number>
ParseNVOffset(State * state)1388 static bool ParseNVOffset(State *state) {
1389   ComplexityGuard guard(state);
1390   if (guard.IsTooComplex()) return false;
1391   return ParseNumber(state, nullptr);
1392 }
1393 
1394 // <v-offset>  ::= <(offset) number> _ <(virtual offset) number>
ParseVOffset(State * state)1395 static bool ParseVOffset(State *state) {
1396   ComplexityGuard guard(state);
1397   if (guard.IsTooComplex()) return false;
1398   ParseState copy = state->parse_state;
1399   if (ParseNumber(state, nullptr) && ParseOneCharToken(state, '_') &&
1400       ParseNumber(state, nullptr)) {
1401     return true;
1402   }
1403   state->parse_state = copy;
1404   return false;
1405 }
1406 
1407 // <ctor-dtor-name> ::= C1 | C2 | C3 | CI1 <base-class-type> | CI2
1408 // <base-class-type>
1409 //                  ::= D0 | D1 | D2
1410 // # GCC extensions: "unified" constructor/destructor.  See
1411 // #
1412 // https://github.com/gcc-mirror/gcc/blob/7ad17b583c3643bd4557f29b8391ca7ef08391f5/gcc/cp/mangle.c#L1847
1413 //                  ::= C4 | D4
ParseCtorDtorName(State * state)1414 static bool ParseCtorDtorName(State *state) {
1415   ComplexityGuard guard(state);
1416   if (guard.IsTooComplex()) return false;
1417   ParseState copy = state->parse_state;
1418   if (ParseOneCharToken(state, 'C')) {
1419     if (ParseCharClass(state, "1234")) {
1420       const char *const prev_name =
1421           state->out + state->parse_state.prev_name_idx;
1422       MaybeAppendWithLength(state, prev_name,
1423                             state->parse_state.prev_name_length);
1424       return true;
1425     } else if (ParseOneCharToken(state, 'I') && ParseCharClass(state, "12") &&
1426                ParseClassEnumType(state)) {
1427       return true;
1428     }
1429   }
1430   state->parse_state = copy;
1431 
1432   if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "0124")) {
1433     const char *const prev_name = state->out + state->parse_state.prev_name_idx;
1434     MaybeAppend(state, "~");
1435     MaybeAppendWithLength(state, prev_name,
1436                           state->parse_state.prev_name_length);
1437     return true;
1438   }
1439   state->parse_state = copy;
1440   return false;
1441 }
1442 
1443 // <decltype> ::= Dt <expression> E  # decltype of an id-expression or class
1444 //                                   # member access (C++0x)
1445 //            ::= DT <expression> E  # decltype of an expression (C++0x)
ParseDecltype(State * state)1446 static bool ParseDecltype(State *state) {
1447   ComplexityGuard guard(state);
1448   if (guard.IsTooComplex()) return false;
1449 
1450   ParseState copy = state->parse_state;
1451   if (ParseOneCharToken(state, 'D') && ParseCharClass(state, "tT") &&
1452       ParseExpression(state) && ParseOneCharToken(state, 'E')) {
1453     return true;
1454   }
1455   state->parse_state = copy;
1456 
1457   return false;
1458 }
1459 
1460 // <type> ::= <CV-qualifiers> <type>
1461 //        ::= P <type>   # pointer-to
1462 //        ::= R <type>   # reference-to
1463 //        ::= O <type>   # rvalue reference-to (C++0x)
1464 //        ::= C <type>   # complex pair (C 2000)
1465 //        ::= G <type>   # imaginary (C 2000)
1466 //        ::= <builtin-type>
1467 //        ::= <function-type>
1468 //        ::= <class-enum-type>  # note: just an alias for <name>
1469 //        ::= <array-type>
1470 //        ::= <pointer-to-member-type>
1471 //        ::= <template-template-param> <template-args>
1472 //        ::= <template-param>
1473 //        ::= <decltype>
1474 //        ::= <substitution>
1475 //        ::= Dp <type>          # pack expansion of (C++0x)
1476 //        ::= Dv <(elements) number> _ <type>  # GNU vector extension
1477 //        ::= Dv <(bytes) expression> _ <type>
1478 //        ::= Dk <type-constraint>  # constrained auto
1479 //
ParseType(State * state)1480 static bool ParseType(State *state) {
1481   ComplexityGuard guard(state);
1482   if (guard.IsTooComplex()) return false;
1483   ParseState copy = state->parse_state;
1484 
1485   // We should check CV-qualifers, and PRGC things first.
1486   //
1487   // CV-qualifiers overlap with some operator names, but an operator name is not
1488   // valid as a type.  To avoid an ambiguity that can lead to exponential time
1489   // complexity, refuse to backtrack the CV-qualifiers.
1490   //
1491   // _Z4aoeuIrMvvE
1492   //  => _Z 4aoeuI        rM  v     v   E
1493   //         aoeu<operator%=, void, void>
1494   //  => _Z 4aoeuI r Mv v              E
1495   //         aoeu<void void::* restrict>
1496   //
1497   // By consuming the CV-qualifiers first, the former parse is disabled.
1498   if (ParseCVQualifiers(state)) {
1499     const bool result = ParseType(state);
1500     if (!result) state->parse_state = copy;
1501     return result;
1502   }
1503   state->parse_state = copy;
1504 
1505   // Similarly, these tag characters can overlap with other <name>s resulting in
1506   // two different parse prefixes that land on <template-args> in the same
1507   // place, such as "C3r1xI...".  So, disable the "ctor-name = C3" parse by
1508   // refusing to backtrack the tag characters.
1509   if (ParseCharClass(state, "OPRCG")) {
1510     const bool result = ParseType(state);
1511     if (!result) state->parse_state = copy;
1512     return result;
1513   }
1514   state->parse_state = copy;
1515 
1516   if (ParseTwoCharToken(state, "Dp") && ParseType(state)) {
1517     return true;
1518   }
1519   state->parse_state = copy;
1520 
1521   if (ParseBuiltinType(state) || ParseFunctionType(state) ||
1522       ParseClassEnumType(state) || ParseArrayType(state) ||
1523       ParsePointerToMemberType(state) || ParseDecltype(state) ||
1524       // "std" on its own isn't a type.
1525       ParseSubstitution(state, /*accept_std=*/false)) {
1526     return true;
1527   }
1528 
1529   if (ParseTemplateTemplateParam(state) && ParseTemplateArgs(state)) {
1530     return true;
1531   }
1532   state->parse_state = copy;
1533 
1534   // Less greedy than <template-template-param> <template-args>.
1535   if (ParseTemplateParam(state)) {
1536     return true;
1537   }
1538 
1539   // GNU vector extension Dv <number> _ <type>
1540   if (ParseTwoCharToken(state, "Dv") && ParseNumber(state, nullptr) &&
1541       ParseOneCharToken(state, '_') && ParseType(state)) {
1542     return true;
1543   }
1544   state->parse_state = copy;
1545 
1546   // GNU vector extension Dv <expression> _ <type>
1547   if (ParseTwoCharToken(state, "Dv") && ParseExpression(state) &&
1548       ParseOneCharToken(state, '_') && ParseType(state)) {
1549     return true;
1550   }
1551   state->parse_state = copy;
1552 
1553   if (ParseTwoCharToken(state, "Dk") && ParseTypeConstraint(state)) {
1554     return true;
1555   }
1556   state->parse_state = copy;
1557 
1558   // For this notation see CXXNameMangler::mangleType in Clang's source code.
1559   // The relevant logic and its comment "not clear how to mangle this!" date
1560   // from 2011, so it may be with us awhile.
1561   return ParseLongToken(state, "_SUBSTPACK_");
1562 }
1563 
1564 // <qualifiers> ::= <extended-qualifier>* <CV-qualifiers>
1565 // <CV-qualifiers> ::= [r] [V] [K]
1566 //
1567 // We don't allow empty <CV-qualifiers> to avoid infinite loop in
1568 // ParseType().
ParseCVQualifiers(State * state)1569 static bool ParseCVQualifiers(State *state) {
1570   ComplexityGuard guard(state);
1571   if (guard.IsTooComplex()) return false;
1572   int num_cv_qualifiers = 0;
1573   while (ParseExtendedQualifier(state)) ++num_cv_qualifiers;
1574   num_cv_qualifiers += ParseOneCharToken(state, 'r');
1575   num_cv_qualifiers += ParseOneCharToken(state, 'V');
1576   num_cv_qualifiers += ParseOneCharToken(state, 'K');
1577   return num_cv_qualifiers > 0;
1578 }
1579 
1580 // <extended-qualifier> ::= U <source-name> [<template-args>]
ParseExtendedQualifier(State * state)1581 static bool ParseExtendedQualifier(State *state) {
1582   ComplexityGuard guard(state);
1583   if (guard.IsTooComplex()) return false;
1584   ParseState copy = state->parse_state;
1585 
1586   if (!ParseOneCharToken(state, 'U')) return false;
1587 
1588   bool append = state->parse_state.append;
1589   DisableAppend(state);
1590   if (!ParseSourceName(state)) {
1591     state->parse_state = copy;
1592     return false;
1593   }
1594   Optional(ParseTemplateArgs(state));
1595   RestoreAppend(state, append);
1596   return true;
1597 }
1598 
1599 // <builtin-type> ::= v, etc.  # single-character builtin types
1600 //                ::= <vendor-extended-type>
1601 //                ::= Dd, etc.  # two-character builtin types
1602 //                ::= DB (<number> | <expression>) _  # _BitInt(N)
1603 //                ::= DU (<number> | <expression>) _  # unsigned _BitInt(N)
1604 //                ::= DF <number> _  # _FloatN (N bits)
1605 //                ::= DF <number> x  # _FloatNx
1606 //                ::= DF16b  # std::bfloat16_t
1607 //
1608 // Not supported:
1609 //                ::= [DS] DA <fixed-point-size>
1610 //                ::= [DS] DR <fixed-point-size>
1611 // because real implementations of N1169 fixed-point are scant.
ParseBuiltinType(State * state)1612 static bool ParseBuiltinType(State *state) {
1613   ComplexityGuard guard(state);
1614   if (guard.IsTooComplex()) return false;
1615   ParseState copy = state->parse_state;
1616 
1617   // DB (<number> | <expression>) _  # _BitInt(N)
1618   // DU (<number> | <expression>) _  # unsigned _BitInt(N)
1619   if (ParseTwoCharToken(state, "DB") ||
1620       (ParseTwoCharToken(state, "DU") && MaybeAppend(state, "unsigned "))) {
1621     bool append = state->parse_state.append;
1622     DisableAppend(state);
1623     int number = -1;
1624     if (!ParseNumber(state, &number) && !ParseExpression(state)) {
1625       state->parse_state = copy;
1626       return false;
1627     }
1628     RestoreAppend(state, append);
1629 
1630     if (!ParseOneCharToken(state, '_')) {
1631       state->parse_state = copy;
1632       return false;
1633     }
1634 
1635     MaybeAppend(state, "_BitInt(");
1636     if (number >= 0) {
1637       MaybeAppendDecimal(state, number);
1638     } else {
1639       MaybeAppend(state, "?");  // the best we can do for dependent sizes
1640     }
1641     MaybeAppend(state, ")");
1642     return true;
1643   }
1644 
1645   // DF <number> _  # _FloatN
1646   // DF <number> x  # _FloatNx
1647   // DF16b  # std::bfloat16_t
1648   if (ParseTwoCharToken(state, "DF")) {
1649     if (ParseThreeCharToken(state, "16b")) {
1650       MaybeAppend(state, "std::bfloat16_t");
1651       return true;
1652     }
1653     int number = 0;
1654     if (!ParseNumber(state, &number)) {
1655       state->parse_state = copy;
1656       return false;
1657     }
1658     MaybeAppend(state, "_Float");
1659     MaybeAppendDecimal(state, number);
1660     if (ParseOneCharToken(state, 'x')) {
1661       MaybeAppend(state, "x");
1662       return true;
1663     }
1664     if (ParseOneCharToken(state, '_')) return true;
1665     state->parse_state = copy;
1666     return false;
1667   }
1668 
1669   for (const AbbrevPair *p = kBuiltinTypeList; p->abbrev != nullptr; ++p) {
1670     // Guaranteed only 1- or 2-character strings in kBuiltinTypeList.
1671     if (p->abbrev[1] == '\0') {
1672       if (ParseOneCharToken(state, p->abbrev[0])) {
1673         MaybeAppend(state, p->real_name);
1674         return true;  // ::= v, etc.  # single-character builtin types
1675       }
1676     } else if (p->abbrev[2] == '\0' && ParseTwoCharToken(state, p->abbrev)) {
1677       MaybeAppend(state, p->real_name);
1678       return true;  // ::= Dd, etc.  # two-character builtin types
1679     }
1680   }
1681 
1682   return ParseVendorExtendedType(state);
1683 }
1684 
1685 // <vendor-extended-type> ::= u <source-name> [<template-args>]
ParseVendorExtendedType(State * state)1686 static bool ParseVendorExtendedType(State *state) {
1687   ComplexityGuard guard(state);
1688   if (guard.IsTooComplex()) return false;
1689 
1690   ParseState copy = state->parse_state;
1691   if (ParseOneCharToken(state, 'u') && ParseSourceName(state) &&
1692       Optional(ParseTemplateArgs(state))) {
1693     return true;
1694   }
1695   state->parse_state = copy;
1696   return false;
1697 }
1698 
1699 //  <exception-spec> ::= Do                # non-throwing
1700 //                                           exception-specification (e.g.,
1701 //                                           noexcept, throw())
1702 //                   ::= DO <expression> E # computed (instantiation-dependent)
1703 //                                           noexcept
1704 //                   ::= Dw <type>+ E      # dynamic exception specification
1705 //                                           with instantiation-dependent types
ParseExceptionSpec(State * state)1706 static bool ParseExceptionSpec(State *state) {
1707   ComplexityGuard guard(state);
1708   if (guard.IsTooComplex()) return false;
1709 
1710   if (ParseTwoCharToken(state, "Do")) return true;
1711 
1712   ParseState copy = state->parse_state;
1713   if (ParseTwoCharToken(state, "DO") && ParseExpression(state) &&
1714       ParseOneCharToken(state, 'E')) {
1715     return true;
1716   }
1717   state->parse_state = copy;
1718   if (ParseTwoCharToken(state, "Dw") && OneOrMore(ParseType, state) &&
1719       ParseOneCharToken(state, 'E')) {
1720     return true;
1721   }
1722   state->parse_state = copy;
1723 
1724   return false;
1725 }
1726 
1727 // <function-type> ::=
1728 //     [exception-spec] [Dx] F [Y] <bare-function-type> [<ref-qualifier>] E
1729 //
1730 // <ref-qualifier> ::= R | O
ParseFunctionType(State * state)1731 static bool ParseFunctionType(State *state) {
1732   ComplexityGuard guard(state);
1733   if (guard.IsTooComplex()) return false;
1734   ParseState copy = state->parse_state;
1735   Optional(ParseExceptionSpec(state));
1736   Optional(ParseTwoCharToken(state, "Dx"));
1737   if (!ParseOneCharToken(state, 'F')) {
1738     state->parse_state = copy;
1739     return false;
1740   }
1741   Optional(ParseOneCharToken(state, 'Y'));
1742   if (!ParseBareFunctionType(state)) {
1743     state->parse_state = copy;
1744     return false;
1745   }
1746   Optional(ParseCharClass(state, "RO"));
1747   if (!ParseOneCharToken(state, 'E')) {
1748     state->parse_state = copy;
1749     return false;
1750   }
1751   return true;
1752 }
1753 
1754 // <bare-function-type> ::= <overload-attribute>* <(signature) type>+
1755 //
1756 // The <overload-attribute>* prefix is nonstandard; see the comment on
1757 // ParseOverloadAttribute.
ParseBareFunctionType(State * state)1758 static bool ParseBareFunctionType(State *state) {
1759   ComplexityGuard guard(state);
1760   if (guard.IsTooComplex()) return false;
1761   ParseState copy = state->parse_state;
1762   DisableAppend(state);
1763   if (ZeroOrMore(ParseOverloadAttribute, state) &&
1764       OneOrMore(ParseType, state)) {
1765     RestoreAppend(state, copy.append);
1766     MaybeAppend(state, "()");
1767     return true;
1768   }
1769   state->parse_state = copy;
1770   return false;
1771 }
1772 
1773 // <overload-attribute> ::= Ua <name>
1774 //
1775 // The nonstandard <overload-attribute> production is sufficient to accept the
1776 // current implementation of __attribute__((enable_if(condition, "message")))
1777 // and future attributes of a similar shape.  See
1778 // https://clang.llvm.org/docs/AttributeReference.html#enable-if and the
1779 // definition of CXXNameMangler::mangleFunctionEncodingBareType in Clang's
1780 // source code.
ParseOverloadAttribute(State * state)1781 static bool ParseOverloadAttribute(State *state) {
1782   ComplexityGuard guard(state);
1783   if (guard.IsTooComplex()) return false;
1784   ParseState copy = state->parse_state;
1785   if (ParseTwoCharToken(state, "Ua") && ParseName(state)) {
1786     return true;
1787   }
1788   state->parse_state = copy;
1789   return false;
1790 }
1791 
1792 // <class-enum-type> ::= <name>
1793 //                   ::= Ts <name>  # struct Name or class Name
1794 //                   ::= Tu <name>  # union Name
1795 //                   ::= Te <name>  # enum Name
1796 //
1797 // See http://shortn/_W3YrltiEd0.
ParseClassEnumType(State * state)1798 static bool ParseClassEnumType(State *state) {
1799   ComplexityGuard guard(state);
1800   if (guard.IsTooComplex()) return false;
1801   ParseState copy = state->parse_state;
1802   if (Optional(ParseTwoCharToken(state, "Ts") ||
1803                ParseTwoCharToken(state, "Tu") ||
1804                ParseTwoCharToken(state, "Te")) &&
1805       ParseName(state)) {
1806     return true;
1807   }
1808   state->parse_state = copy;
1809   return false;
1810 }
1811 
1812 // <array-type> ::= A <(positive dimension) number> _ <(element) type>
1813 //              ::= A [<(dimension) expression>] _ <(element) type>
ParseArrayType(State * state)1814 static bool ParseArrayType(State *state) {
1815   ComplexityGuard guard(state);
1816   if (guard.IsTooComplex()) return false;
1817   ParseState copy = state->parse_state;
1818   if (ParseOneCharToken(state, 'A') && ParseNumber(state, nullptr) &&
1819       ParseOneCharToken(state, '_') && ParseType(state)) {
1820     return true;
1821   }
1822   state->parse_state = copy;
1823 
1824   if (ParseOneCharToken(state, 'A') && Optional(ParseExpression(state)) &&
1825       ParseOneCharToken(state, '_') && ParseType(state)) {
1826     return true;
1827   }
1828   state->parse_state = copy;
1829   return false;
1830 }
1831 
1832 // <pointer-to-member-type> ::= M <(class) type> <(member) type>
ParsePointerToMemberType(State * state)1833 static bool ParsePointerToMemberType(State *state) {
1834   ComplexityGuard guard(state);
1835   if (guard.IsTooComplex()) return false;
1836   ParseState copy = state->parse_state;
1837   if (ParseOneCharToken(state, 'M') && ParseType(state) && ParseType(state)) {
1838     return true;
1839   }
1840   state->parse_state = copy;
1841   return false;
1842 }
1843 
1844 // <template-param> ::= T_
1845 //                  ::= T <parameter-2 non-negative number> _
1846 //                  ::= TL <level-1> __
1847 //                  ::= TL <level-1> _ <parameter-2 non-negative number> _
ParseTemplateParam(State * state)1848 static bool ParseTemplateParam(State *state) {
1849   ComplexityGuard guard(state);
1850   if (guard.IsTooComplex()) return false;
1851   if (ParseTwoCharToken(state, "T_")) {
1852     MaybeAppend(state, "?");  // We don't support template substitutions.
1853     return true;              // ::= T_
1854   }
1855 
1856   ParseState copy = state->parse_state;
1857   if (ParseOneCharToken(state, 'T') && ParseNumber(state, nullptr) &&
1858       ParseOneCharToken(state, '_')) {
1859     MaybeAppend(state, "?");  // We don't support template substitutions.
1860     return true;              // ::= T <parameter-2 non-negative number> _
1861   }
1862   state->parse_state = copy;
1863 
1864   if (ParseTwoCharToken(state, "TL") && ParseNumber(state, nullptr)) {
1865     if (ParseTwoCharToken(state, "__")) {
1866       MaybeAppend(state, "?");  // We don't support template substitutions.
1867       return true;              // ::= TL <level-1> __
1868     }
1869 
1870     if (ParseOneCharToken(state, '_') && ParseNumber(state, nullptr) &&
1871         ParseOneCharToken(state, '_')) {
1872       MaybeAppend(state, "?");  // We don't support template substitutions.
1873       return true;  // ::= TL <level-1> _ <parameter-2 non-negative number> _
1874     }
1875   }
1876   state->parse_state = copy;
1877   return false;
1878 }
1879 
1880 // <template-param-decl>
1881 //   ::= Ty                                  # template type parameter
1882 //   ::= Tk <concept name> [<template-args>] # constrained type parameter
1883 //   ::= Tn <type>                           # template non-type parameter
1884 //   ::= Tt <template-param-decl>* E         # template template parameter
1885 //   ::= Tp <template-param-decl>            # template parameter pack
1886 //
1887 // NOTE: <concept name> is just a <name>: http://shortn/_MqJVyr0fc1
1888 // TODO(b/324066279): Implement optional suffix for `Tt`:
1889 // [Q <requires-clause expr>]
ParseTemplateParamDecl(State * state)1890 static bool ParseTemplateParamDecl(State *state) {
1891   ComplexityGuard guard(state);
1892   if (guard.IsTooComplex()) return false;
1893   ParseState copy = state->parse_state;
1894 
1895   if (ParseTwoCharToken(state, "Ty")) {
1896     return true;
1897   }
1898   state->parse_state = copy;
1899 
1900   if (ParseTwoCharToken(state, "Tk") && ParseName(state) &&
1901       Optional(ParseTemplateArgs(state))) {
1902     return true;
1903   }
1904   state->parse_state = copy;
1905 
1906   if (ParseTwoCharToken(state, "Tn") && ParseType(state)) {
1907     return true;
1908   }
1909   state->parse_state = copy;
1910 
1911   if (ParseTwoCharToken(state, "Tt") &&
1912       ZeroOrMore(ParseTemplateParamDecl, state) &&
1913       ParseOneCharToken(state, 'E')) {
1914     return true;
1915   }
1916   state->parse_state = copy;
1917 
1918   if (ParseTwoCharToken(state, "Tp") && ParseTemplateParamDecl(state)) {
1919     return true;
1920   }
1921   state->parse_state = copy;
1922 
1923   return false;
1924 }
1925 
1926 // <template-template-param> ::= <template-param>
1927 //                           ::= <substitution>
ParseTemplateTemplateParam(State * state)1928 static bool ParseTemplateTemplateParam(State *state) {
1929   ComplexityGuard guard(state);
1930   if (guard.IsTooComplex()) return false;
1931   return (ParseTemplateParam(state) ||
1932           // "std" on its own isn't a template.
1933           ParseSubstitution(state, /*accept_std=*/false));
1934 }
1935 
1936 // <template-args> ::= I <template-arg>+ [Q <requires-clause expr>] E
ParseTemplateArgs(State * state)1937 static bool ParseTemplateArgs(State *state) {
1938   ComplexityGuard guard(state);
1939   if (guard.IsTooComplex()) return false;
1940   ParseState copy = state->parse_state;
1941   DisableAppend(state);
1942   if (ParseOneCharToken(state, 'I') && OneOrMore(ParseTemplateArg, state) &&
1943       Optional(ParseQRequiresClauseExpr(state)) &&
1944       ParseOneCharToken(state, 'E')) {
1945     RestoreAppend(state, copy.append);
1946     MaybeAppend(state, "<>");
1947     return true;
1948   }
1949   state->parse_state = copy;
1950   return false;
1951 }
1952 
1953 // <template-arg>  ::= <template-param-decl> <template-arg>
1954 //                 ::= <type>
1955 //                 ::= <expr-primary>
1956 //                 ::= J <template-arg>* E        # argument pack
1957 //                 ::= X <expression> E
ParseTemplateArg(State * state)1958 static bool ParseTemplateArg(State *state) {
1959   ComplexityGuard guard(state);
1960   if (guard.IsTooComplex()) return false;
1961   ParseState copy = state->parse_state;
1962   if (ParseOneCharToken(state, 'J') && ZeroOrMore(ParseTemplateArg, state) &&
1963       ParseOneCharToken(state, 'E')) {
1964     return true;
1965   }
1966   state->parse_state = copy;
1967 
1968   // There can be significant overlap between the following leading to
1969   // exponential backtracking:
1970   //
1971   //   <expr-primary> ::= L <type> <expr-cast-value> E
1972   //                 e.g. L 2xxIvE 1                 E
1973   //   <type>         ==> <local-source-name> <template-args>
1974   //                 e.g. L 2xx               IvE
1975   //
1976   // This means parsing an entire <type> twice, and <type> can contain
1977   // <template-arg>, so this can generate exponential backtracking.  There is
1978   // only overlap when the remaining input starts with "L <source-name>", so
1979   // parse all cases that can start this way jointly to share the common prefix.
1980   //
1981   // We have:
1982   //
1983   //   <template-arg> ::= <type>
1984   //                  ::= <expr-primary>
1985   //
1986   // First, drop all the productions of <type> that must start with something
1987   // other than 'L'.  All that's left is <class-enum-type>; inline it.
1988   //
1989   //   <type> ::= <nested-name> # starts with 'N'
1990   //          ::= <unscoped-name>
1991   //          ::= <unscoped-template-name> <template-args>
1992   //          ::= <local-name> # starts with 'Z'
1993   //
1994   // Drop and inline again:
1995   //
1996   //   <type> ::= <unscoped-name>
1997   //          ::= <unscoped-name> <template-args>
1998   //          ::= <substitution> <template-args> # starts with 'S'
1999   //
2000   // Merge the first two, inline <unscoped-name>, drop last:
2001   //
2002   //   <type> ::= <unqualified-name> [<template-args>]
2003   //          ::= St <unqualified-name> [<template-args>] # starts with 'S'
2004   //
2005   // Drop and inline:
2006   //
2007   //   <type> ::= <operator-name> [<template-args>] # starts with lowercase
2008   //          ::= <ctor-dtor-name> [<template-args>] # starts with 'C' or 'D'
2009   //          ::= <source-name> [<template-args>] # starts with digit
2010   //          ::= <local-source-name> [<template-args>]
2011   //          ::= <unnamed-type-name> [<template-args>] # starts with 'U'
2012   //
2013   // One more time:
2014   //
2015   //   <type> ::= L <source-name> [<template-args>]
2016   //
2017   // Likewise with <expr-primary>:
2018   //
2019   //   <expr-primary> ::= L <type> <expr-cast-value> E
2020   //                  ::= LZ <encoding> E # cannot overlap; drop
2021   //                  ::= L <mangled_name> E # cannot overlap; drop
2022   //
2023   // By similar reasoning as shown above, the only <type>s starting with
2024   // <source-name> are "<source-name> [<template-args>]".  Inline this.
2025   //
2026   //   <expr-primary> ::= L <source-name> [<template-args>] <expr-cast-value> E
2027   //
2028   // Now inline both of these into <template-arg>:
2029   //
2030   //   <template-arg> ::= L <source-name> [<template-args>]
2031   //                  ::= L <source-name> [<template-args>] <expr-cast-value> E
2032   //
2033   // Merge them and we're done:
2034   //   <template-arg>
2035   //     ::= L <source-name> [<template-args>] [<expr-cast-value> E]
2036   if (ParseLocalSourceName(state) && Optional(ParseTemplateArgs(state))) {
2037     copy = state->parse_state;
2038     if (ParseExprCastValueAndTrailingE(state)) {
2039       return true;
2040     }
2041     state->parse_state = copy;
2042     return true;
2043   }
2044 
2045   // Now that the overlapping cases can't reach this code, we can safely call
2046   // both of these.
2047   if (ParseType(state) || ParseExprPrimary(state)) {
2048     return true;
2049   }
2050   state->parse_state = copy;
2051 
2052   if (ParseOneCharToken(state, 'X') && ParseExpression(state) &&
2053       ParseOneCharToken(state, 'E')) {
2054     return true;
2055   }
2056   state->parse_state = copy;
2057 
2058   if (ParseTemplateParamDecl(state) && ParseTemplateArg(state)) {
2059     return true;
2060   }
2061   state->parse_state = copy;
2062 
2063   return false;
2064 }
2065 
2066 // <unresolved-type> ::= <template-param> [<template-args>]
2067 //                   ::= <decltype>
2068 //                   ::= <substitution>
ParseUnresolvedType(State * state)2069 static inline bool ParseUnresolvedType(State *state) {
2070   // No ComplexityGuard because we don't copy the state in this stack frame.
2071   return (ParseTemplateParam(state) && Optional(ParseTemplateArgs(state))) ||
2072          ParseDecltype(state) || ParseSubstitution(state, /*accept_std=*/false);
2073 }
2074 
2075 // <simple-id> ::= <source-name> [<template-args>]
ParseSimpleId(State * state)2076 static inline bool ParseSimpleId(State *state) {
2077   // No ComplexityGuard because we don't copy the state in this stack frame.
2078 
2079   // Note: <simple-id> cannot be followed by a parameter pack; see comment in
2080   // ParseUnresolvedType.
2081   return ParseSourceName(state) && Optional(ParseTemplateArgs(state));
2082 }
2083 
2084 // <base-unresolved-name> ::= <source-name> [<template-args>]
2085 //                        ::= on <operator-name> [<template-args>]
2086 //                        ::= dn <destructor-name>
ParseBaseUnresolvedName(State * state)2087 static bool ParseBaseUnresolvedName(State *state) {
2088   ComplexityGuard guard(state);
2089   if (guard.IsTooComplex()) return false;
2090 
2091   if (ParseSimpleId(state)) {
2092     return true;
2093   }
2094 
2095   ParseState copy = state->parse_state;
2096   if (ParseTwoCharToken(state, "on") && ParseOperatorName(state, nullptr) &&
2097       Optional(ParseTemplateArgs(state))) {
2098     return true;
2099   }
2100   state->parse_state = copy;
2101 
2102   if (ParseTwoCharToken(state, "dn") &&
2103       (ParseUnresolvedType(state) || ParseSimpleId(state))) {
2104     return true;
2105   }
2106   state->parse_state = copy;
2107 
2108   return false;
2109 }
2110 
2111 // <unresolved-name> ::= [gs] <base-unresolved-name>
2112 //                   ::= sr <unresolved-type> <base-unresolved-name>
2113 //                   ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
2114 //                         <base-unresolved-name>
2115 //                   ::= [gs] sr <unresolved-qualifier-level>+ E
2116 //                         <base-unresolved-name>
2117 //                   ::= sr St <simple-id> <simple-id>  # nonstandard
2118 //
2119 // The last case is not part of the official grammar but has been observed in
2120 // real-world examples that the GNU demangler (but not the LLVM demangler) is
2121 // able to decode; see demangle_test.cc for one such symbol name.  The shape
2122 // sr St <simple-id> <simple-id> was inferred by closed-box testing of the GNU
2123 // demangler.
ParseUnresolvedName(State * state)2124 static bool ParseUnresolvedName(State *state) {
2125   ComplexityGuard guard(state);
2126   if (guard.IsTooComplex()) return false;
2127 
2128   ParseState copy = state->parse_state;
2129   if (Optional(ParseTwoCharToken(state, "gs")) &&
2130       ParseBaseUnresolvedName(state)) {
2131     return true;
2132   }
2133   state->parse_state = copy;
2134 
2135   if (ParseTwoCharToken(state, "sr") && ParseUnresolvedType(state) &&
2136       ParseBaseUnresolvedName(state)) {
2137     return true;
2138   }
2139   state->parse_state = copy;
2140 
2141   if (ParseTwoCharToken(state, "sr") && ParseOneCharToken(state, 'N') &&
2142       ParseUnresolvedType(state) &&
2143       OneOrMore(ParseUnresolvedQualifierLevel, state) &&
2144       ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) {
2145     return true;
2146   }
2147   state->parse_state = copy;
2148 
2149   if (Optional(ParseTwoCharToken(state, "gs")) &&
2150       ParseTwoCharToken(state, "sr") &&
2151       OneOrMore(ParseUnresolvedQualifierLevel, state) &&
2152       ParseOneCharToken(state, 'E') && ParseBaseUnresolvedName(state)) {
2153     return true;
2154   }
2155   state->parse_state = copy;
2156 
2157   if (ParseTwoCharToken(state, "sr") && ParseTwoCharToken(state, "St") &&
2158       ParseSimpleId(state) && ParseSimpleId(state)) {
2159     return true;
2160   }
2161   state->parse_state = copy;
2162 
2163   return false;
2164 }
2165 
2166 // <unresolved-qualifier-level> ::= <simple-id>
2167 //                              ::= <substitution> <template-args>
2168 //
2169 // The production <substitution> <template-args> is nonstandard but is observed
2170 // in practice.  An upstream discussion on the best shape of <unresolved-name>
2171 // has not converged:
2172 //
2173 // https://github.com/itanium-cxx-abi/cxx-abi/issues/38
ParseUnresolvedQualifierLevel(State * state)2174 static bool ParseUnresolvedQualifierLevel(State *state) {
2175   ComplexityGuard guard(state);
2176   if (guard.IsTooComplex()) return false;
2177 
2178   if (ParseSimpleId(state)) return true;
2179 
2180   ParseState copy = state->parse_state;
2181   if (ParseSubstitution(state, /*accept_std=*/false) &&
2182       ParseTemplateArgs(state)) {
2183     return true;
2184   }
2185   state->parse_state = copy;
2186   return false;
2187 }
2188 
2189 // <union-selector> ::= _ [<number>]
2190 //
2191 // https://github.com/itanium-cxx-abi/cxx-abi/issues/47
ParseUnionSelector(State * state)2192 static bool ParseUnionSelector(State *state) {
2193   return ParseOneCharToken(state, '_') && Optional(ParseNumber(state, nullptr));
2194 }
2195 
2196 // <function-param> ::= fp <(top-level) CV-qualifiers> _
2197 //                  ::= fp <(top-level) CV-qualifiers> <number> _
2198 //                  ::= fL <number> p <(top-level) CV-qualifiers> _
2199 //                  ::= fL <number> p <(top-level) CV-qualifiers> <number> _
2200 //                  ::= fpT  # this
ParseFunctionParam(State * state)2201 static bool ParseFunctionParam(State *state) {
2202   ComplexityGuard guard(state);
2203   if (guard.IsTooComplex()) return false;
2204 
2205   ParseState copy = state->parse_state;
2206 
2207   // Function-param expression (level 0).
2208   if (ParseTwoCharToken(state, "fp") && Optional(ParseCVQualifiers(state)) &&
2209       Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) {
2210     return true;
2211   }
2212   state->parse_state = copy;
2213 
2214   // Function-param expression (level 1+).
2215   if (ParseTwoCharToken(state, "fL") && Optional(ParseNumber(state, nullptr)) &&
2216       ParseOneCharToken(state, 'p') && Optional(ParseCVQualifiers(state)) &&
2217       Optional(ParseNumber(state, nullptr)) && ParseOneCharToken(state, '_')) {
2218     return true;
2219   }
2220   state->parse_state = copy;
2221 
2222   return ParseThreeCharToken(state, "fpT");
2223 }
2224 
2225 // <braced-expression> ::= <expression>
2226 //                     ::= di <field source-name> <braced-expression>
2227 //                     ::= dx <index expression> <braced-expression>
2228 //                     ::= dX <expression> <expression> <braced-expression>
ParseBracedExpression(State * state)2229 static bool ParseBracedExpression(State *state) {
2230   ComplexityGuard guard(state);
2231   if (guard.IsTooComplex()) return false;
2232 
2233   ParseState copy = state->parse_state;
2234 
2235   if (ParseTwoCharToken(state, "di") && ParseSourceName(state) &&
2236       ParseBracedExpression(state)) {
2237     return true;
2238   }
2239   state->parse_state = copy;
2240 
2241   if (ParseTwoCharToken(state, "dx") && ParseExpression(state) &&
2242       ParseBracedExpression(state)) {
2243     return true;
2244   }
2245   state->parse_state = copy;
2246 
2247   if (ParseTwoCharToken(state, "dX") &&
2248       ParseExpression(state) && ParseExpression(state) &&
2249       ParseBracedExpression(state)) {
2250     return true;
2251   }
2252   state->parse_state = copy;
2253 
2254   return ParseExpression(state);
2255 }
2256 
2257 // <expression> ::= <1-ary operator-name> <expression>
2258 //              ::= <2-ary operator-name> <expression> <expression>
2259 //              ::= <3-ary operator-name> <expression> <expression> <expression>
2260 //              ::= pp_ <expression>  # ++e; pp <expression> is e++
2261 //              ::= mm_ <expression>  # --e; mm <expression> is e--
2262 //              ::= cl <expression>+ E
2263 //              ::= cp <simple-id> <expression>* E # Clang-specific.
2264 //              ::= so <type> <expression> [<number>] <union-selector>* [p] E
2265 //              ::= cv <type> <expression>      # type (expression)
2266 //              ::= cv <type> _ <expression>* E # type (expr-list)
2267 //              ::= tl <type> <braced-expression>* E
2268 //              ::= il <braced-expression>* E
2269 //              ::= [gs] nw <expression>* _ <type> E
2270 //              ::= [gs] nw <expression>* _ <type> <initializer>
2271 //              ::= [gs] na <expression>* _ <type> E
2272 //              ::= [gs] na <expression>* _ <type> <initializer>
2273 //              ::= [gs] dl <expression>
2274 //              ::= [gs] da <expression>
2275 //              ::= dc <type> <expression>
2276 //              ::= sc <type> <expression>
2277 //              ::= cc <type> <expression>
2278 //              ::= rc <type> <expression>
2279 //              ::= ti <type>
2280 //              ::= te <expression>
2281 //              ::= st <type>
2282 //              ::= at <type>
2283 //              ::= az <expression>
2284 //              ::= nx <expression>
2285 //              ::= <template-param>
2286 //              ::= <function-param>
2287 //              ::= sZ <template-param>
2288 //              ::= sZ <function-param>
2289 //              ::= sP <template-arg>* E
2290 //              ::= <expr-primary>
2291 //              ::= dt <expression> <unresolved-name> # expr.name
2292 //              ::= pt <expression> <unresolved-name> # expr->name
2293 //              ::= sp <expression>         # argument pack expansion
2294 //              ::= fl <binary operator-name> <expression>
2295 //              ::= fr <binary operator-name> <expression>
2296 //              ::= fL <binary operator-name> <expression> <expression>
2297 //              ::= fR <binary operator-name> <expression> <expression>
2298 //              ::= tw <expression>
2299 //              ::= tr
2300 //              ::= sr <type> <unqualified-name> <template-args>
2301 //              ::= sr <type> <unqualified-name>
2302 //              ::= u <source-name> <template-arg>* E  # vendor extension
2303 //              ::= rq <requirement>+ E
2304 //              ::= rQ <bare-function-type> _ <requirement>+ E
ParseExpression(State * state)2305 static bool ParseExpression(State *state) {
2306   ComplexityGuard guard(state);
2307   if (guard.IsTooComplex()) return false;
2308   if (ParseTemplateParam(state) || ParseExprPrimary(state)) {
2309     return true;
2310   }
2311 
2312   ParseState copy = state->parse_state;
2313 
2314   // Object/function call expression.
2315   if (ParseTwoCharToken(state, "cl") && OneOrMore(ParseExpression, state) &&
2316       ParseOneCharToken(state, 'E')) {
2317     return true;
2318   }
2319   state->parse_state = copy;
2320 
2321   // Preincrement and predecrement.  Postincrement and postdecrement are handled
2322   // by the operator-name logic later on.
2323   if ((ParseThreeCharToken(state, "pp_") ||
2324        ParseThreeCharToken(state, "mm_")) &&
2325       ParseExpression(state)) {
2326     return true;
2327   }
2328   state->parse_state = copy;
2329 
2330   // Clang-specific "cp <simple-id> <expression>* E"
2331   //   https://clang.llvm.org/doxygen/ItaniumMangle_8cpp_source.html#l04338
2332   if (ParseTwoCharToken(state, "cp") && ParseSimpleId(state) &&
2333       ZeroOrMore(ParseExpression, state) && ParseOneCharToken(state, 'E')) {
2334     return true;
2335   }
2336   state->parse_state = copy;
2337 
2338   // <expression> ::= so <type> <expression> [<number>] <union-selector>* [p] E
2339   //
2340   // https://github.com/itanium-cxx-abi/cxx-abi/issues/47
2341   if (ParseTwoCharToken(state, "so") && ParseType(state) &&
2342       ParseExpression(state) && Optional(ParseNumber(state, nullptr)) &&
2343       ZeroOrMore(ParseUnionSelector, state) &&
2344       Optional(ParseOneCharToken(state, 'p')) &&
2345       ParseOneCharToken(state, 'E')) {
2346     return true;
2347   }
2348   state->parse_state = copy;
2349 
2350   // <expression> ::= <function-param>
2351   if (ParseFunctionParam(state)) return true;
2352   state->parse_state = copy;
2353 
2354   // <expression> ::= tl <type> <braced-expression>* E
2355   if (ParseTwoCharToken(state, "tl") && ParseType(state) &&
2356       ZeroOrMore(ParseBracedExpression, state) &&
2357       ParseOneCharToken(state, 'E')) {
2358     return true;
2359   }
2360   state->parse_state = copy;
2361 
2362   // <expression> ::= il <braced-expression>* E
2363   if (ParseTwoCharToken(state, "il") &&
2364       ZeroOrMore(ParseBracedExpression, state) &&
2365       ParseOneCharToken(state, 'E')) {
2366     return true;
2367   }
2368   state->parse_state = copy;
2369 
2370   // <expression> ::= [gs] nw <expression>* _ <type> E
2371   //              ::= [gs] nw <expression>* _ <type> <initializer>
2372   //              ::= [gs] na <expression>* _ <type> E
2373   //              ::= [gs] na <expression>* _ <type> <initializer>
2374   if (Optional(ParseTwoCharToken(state, "gs")) &&
2375       (ParseTwoCharToken(state, "nw") || ParseTwoCharToken(state, "na")) &&
2376       ZeroOrMore(ParseExpression, state) && ParseOneCharToken(state, '_') &&
2377       ParseType(state) &&
2378       (ParseOneCharToken(state, 'E') || ParseInitializer(state))) {
2379     return true;
2380   }
2381   state->parse_state = copy;
2382 
2383   // <expression> ::= [gs] dl <expression>
2384   //              ::= [gs] da <expression>
2385   if (Optional(ParseTwoCharToken(state, "gs")) &&
2386       (ParseTwoCharToken(state, "dl") || ParseTwoCharToken(state, "da")) &&
2387       ParseExpression(state)) {
2388     return true;
2389   }
2390   state->parse_state = copy;
2391 
2392   // dynamic_cast, static_cast, const_cast, reinterpret_cast.
2393   //
2394   // <expression> ::= (dc | sc | cc | rc) <type> <expression>
2395   if (ParseCharClass(state, "dscr") && ParseOneCharToken(state, 'c') &&
2396       ParseType(state) && ParseExpression(state)) {
2397     return true;
2398   }
2399   state->parse_state = copy;
2400 
2401   // Parse the conversion expressions jointly to avoid re-parsing the <type> in
2402   // their common prefix.  Parsed as:
2403   // <expression> ::= cv <type> <conversion-args>
2404   // <conversion-args> ::= _ <expression>* E
2405   //                   ::= <expression>
2406   //
2407   // Also don't try ParseOperatorName after seeing "cv", since ParseOperatorName
2408   // also needs to accept "cv <type>" in other contexts.
2409   if (ParseTwoCharToken(state, "cv")) {
2410     if (ParseType(state)) {
2411       ParseState copy2 = state->parse_state;
2412       if (ParseOneCharToken(state, '_') && ZeroOrMore(ParseExpression, state) &&
2413           ParseOneCharToken(state, 'E')) {
2414         return true;
2415       }
2416       state->parse_state = copy2;
2417       if (ParseExpression(state)) {
2418         return true;
2419       }
2420     }
2421   } else {
2422     // Parse unary, binary, and ternary operator expressions jointly, taking
2423     // care not to re-parse subexpressions repeatedly. Parse like:
2424     //   <expression> ::= <operator-name> <expression>
2425     //                    [<one-to-two-expressions>]
2426     //   <one-to-two-expressions> ::= <expression> [<expression>]
2427     int arity = -1;
2428     if (ParseOperatorName(state, &arity) &&
2429         arity > 0 &&  // 0 arity => disabled.
2430         (arity < 3 || ParseExpression(state)) &&
2431         (arity < 2 || ParseExpression(state)) &&
2432         (arity < 1 || ParseExpression(state))) {
2433       return true;
2434     }
2435   }
2436   state->parse_state = copy;
2437 
2438   // typeid(type)
2439   if (ParseTwoCharToken(state, "ti") && ParseType(state)) {
2440     return true;
2441   }
2442   state->parse_state = copy;
2443 
2444   // typeid(expression)
2445   if (ParseTwoCharToken(state, "te") && ParseExpression(state)) {
2446     return true;
2447   }
2448   state->parse_state = copy;
2449 
2450   // sizeof type
2451   if (ParseTwoCharToken(state, "st") && ParseType(state)) {
2452     return true;
2453   }
2454   state->parse_state = copy;
2455 
2456   // alignof(type)
2457   if (ParseTwoCharToken(state, "at") && ParseType(state)) {
2458     return true;
2459   }
2460   state->parse_state = copy;
2461 
2462   // alignof(expression), a GNU extension
2463   if (ParseTwoCharToken(state, "az") && ParseExpression(state)) {
2464     return true;
2465   }
2466   state->parse_state = copy;
2467 
2468   // noexcept(expression) appearing as an expression in a dependent signature
2469   if (ParseTwoCharToken(state, "nx") && ParseExpression(state)) {
2470     return true;
2471   }
2472   state->parse_state = copy;
2473 
2474   // sizeof...(pack)
2475   //
2476   // <expression> ::= sZ <template-param>
2477   //              ::= sZ <function-param>
2478   if (ParseTwoCharToken(state, "sZ") &&
2479       (ParseFunctionParam(state) || ParseTemplateParam(state))) {
2480     return true;
2481   }
2482   state->parse_state = copy;
2483 
2484   // sizeof...(pack) captured from an alias template
2485   //
2486   // <expression> ::= sP <template-arg>* E
2487   if (ParseTwoCharToken(state, "sP") && ZeroOrMore(ParseTemplateArg, state) &&
2488       ParseOneCharToken(state, 'E')) {
2489     return true;
2490   }
2491   state->parse_state = copy;
2492 
2493   // Unary folds (... op pack) and (pack op ...).
2494   //
2495   // <expression> ::= fl <binary operator-name> <expression>
2496   //              ::= fr <binary operator-name> <expression>
2497   if ((ParseTwoCharToken(state, "fl") || ParseTwoCharToken(state, "fr")) &&
2498       ParseOperatorName(state, nullptr) && ParseExpression(state)) {
2499     return true;
2500   }
2501   state->parse_state = copy;
2502 
2503   // Binary folds (init op ... op pack) and (pack op ... op init).
2504   //
2505   // <expression> ::= fL <binary operator-name> <expression> <expression>
2506   //              ::= fR <binary operator-name> <expression> <expression>
2507   if ((ParseTwoCharToken(state, "fL") || ParseTwoCharToken(state, "fR")) &&
2508       ParseOperatorName(state, nullptr) && ParseExpression(state) &&
2509       ParseExpression(state)) {
2510     return true;
2511   }
2512   state->parse_state = copy;
2513 
2514   // tw <expression>: throw e
2515   if (ParseTwoCharToken(state, "tw") && ParseExpression(state)) {
2516     return true;
2517   }
2518   state->parse_state = copy;
2519 
2520   // tr: throw (rethrows an exception from the handler that caught it)
2521   if (ParseTwoCharToken(state, "tr")) return true;
2522 
2523   // Object and pointer member access expressions.
2524   //
2525   // <expression> ::= (dt | pt) <expression> <unresolved-name>
2526   if ((ParseTwoCharToken(state, "dt") || ParseTwoCharToken(state, "pt")) &&
2527       ParseExpression(state) && ParseUnresolvedName(state)) {
2528     return true;
2529   }
2530   state->parse_state = copy;
2531 
2532   // Pointer-to-member access expressions.  This parses the same as a binary
2533   // operator, but it's implemented separately because "ds" shouldn't be
2534   // accepted in other contexts that parse an operator name.
2535   if (ParseTwoCharToken(state, "ds") && ParseExpression(state) &&
2536       ParseExpression(state)) {
2537     return true;
2538   }
2539   state->parse_state = copy;
2540 
2541   // Parameter pack expansion
2542   if (ParseTwoCharToken(state, "sp") && ParseExpression(state)) {
2543     return true;
2544   }
2545   state->parse_state = copy;
2546 
2547   // Vendor extended expressions
2548   if (ParseOneCharToken(state, 'u') && ParseSourceName(state) &&
2549       ZeroOrMore(ParseTemplateArg, state) && ParseOneCharToken(state, 'E')) {
2550     return true;
2551   }
2552   state->parse_state = copy;
2553 
2554   // <expression> ::= rq <requirement>+ E
2555   //
2556   // https://github.com/itanium-cxx-abi/cxx-abi/issues/24
2557   if (ParseTwoCharToken(state, "rq") && OneOrMore(ParseRequirement, state) &&
2558       ParseOneCharToken(state, 'E')) {
2559     return true;
2560   }
2561   state->parse_state = copy;
2562 
2563   // <expression> ::= rQ <bare-function-type> _ <requirement>+ E
2564   //
2565   // https://github.com/itanium-cxx-abi/cxx-abi/issues/24
2566   if (ParseTwoCharToken(state, "rQ") && ParseBareFunctionType(state) &&
2567       ParseOneCharToken(state, '_') && OneOrMore(ParseRequirement, state) &&
2568       ParseOneCharToken(state, 'E')) {
2569     return true;
2570   }
2571   state->parse_state = copy;
2572 
2573   return ParseUnresolvedName(state);
2574 }
2575 
2576 // <initializer> ::= pi <expression>* E
2577 //               ::= il <braced-expression>* E
2578 //
2579 // The il ... E form is not in the ABI spec but is seen in practice for
2580 // braced-init-lists in new-expressions, which are standard syntax from C++11
2581 // on.
ParseInitializer(State * state)2582 static bool ParseInitializer(State *state) {
2583   ComplexityGuard guard(state);
2584   if (guard.IsTooComplex()) return false;
2585   ParseState copy = state->parse_state;
2586 
2587   if (ParseTwoCharToken(state, "pi") && ZeroOrMore(ParseExpression, state) &&
2588       ParseOneCharToken(state, 'E')) {
2589     return true;
2590   }
2591   state->parse_state = copy;
2592 
2593   if (ParseTwoCharToken(state, "il") &&
2594       ZeroOrMore(ParseBracedExpression, state) &&
2595       ParseOneCharToken(state, 'E')) {
2596     return true;
2597   }
2598   state->parse_state = copy;
2599   return false;
2600 }
2601 
2602 // <expr-primary> ::= L <type> <(value) number> E
2603 //                ::= L <type> <(value) float> E
2604 //                ::= L <mangled-name> E
2605 //                // A bug in g++'s C++ ABI version 2 (-fabi-version=2).
2606 //                ::= LZ <encoding> E
2607 //
2608 // Warning, subtle: the "bug" LZ production above is ambiguous with the first
2609 // production where <type> starts with <local-name>, which can lead to
2610 // exponential backtracking in two scenarios:
2611 //
2612 // - When whatever follows the E in the <local-name> in the first production is
2613 //   not a name, we backtrack the whole <encoding> and re-parse the whole thing.
2614 //
2615 // - When whatever follows the <local-name> in the first production is not a
2616 //   number and this <expr-primary> may be followed by a name, we backtrack the
2617 //   <name> and re-parse it.
2618 //
2619 // Moreover this ambiguity isn't always resolved -- for example, the following
2620 // has two different parses:
2621 //
2622 //   _ZaaILZ4aoeuE1x1EvE
2623 //   => operator&&<aoeu, x, E, void>
2624 //   => operator&&<(aoeu::x)(1), void>
2625 //
2626 // To resolve this, we just do what GCC's demangler does, and refuse to parse
2627 // casts to <local-name> types.
ParseExprPrimary(State * state)2628 static bool ParseExprPrimary(State *state) {
2629   ComplexityGuard guard(state);
2630   if (guard.IsTooComplex()) return false;
2631   ParseState copy = state->parse_state;
2632 
2633   // The "LZ" special case: if we see LZ, we commit to accept "LZ <encoding> E"
2634   // or fail, no backtracking.
2635   if (ParseTwoCharToken(state, "LZ")) {
2636     if (ParseEncoding(state) && ParseOneCharToken(state, 'E')) {
2637       return true;
2638     }
2639 
2640     state->parse_state = copy;
2641     return false;
2642   }
2643 
2644   if (ParseOneCharToken(state, 'L')) {
2645     // There are two special cases in which a literal may or must contain a type
2646     // without a value.  The first is that both LDnE and LDn0E are valid
2647     // encodings of nullptr, used in different situations.  Recognize LDnE here,
2648     // leaving LDn0E to be recognized by the general logic afterward.
2649     if (ParseThreeCharToken(state, "DnE")) return true;
2650 
2651     // The second special case is a string literal, currently mangled in C++98
2652     // style as LA<length + 1>_KcE.  This is inadequate to support C++11 and
2653     // later versions, and the discussion of this problem has not converged.
2654     //
2655     // https://github.com/itanium-cxx-abi/cxx-abi/issues/64
2656     //
2657     // For now the bare-type mangling is what's used in practice, so we
2658     // recognize this form and only this form if an array type appears here.
2659     // Someday we'll probably have to accept a new form of value mangling in
2660     // LA...E constructs.  (Note also that C++20 allows a wide range of
2661     // class-type objects as template arguments, so someday their values will be
2662     // mangled and we'll have to recognize them here too.)
2663     if (RemainingInput(state)[0] == 'A' /* an array type follows */) {
2664       if (ParseType(state) && ParseOneCharToken(state, 'E')) return true;
2665       state->parse_state = copy;
2666       return false;
2667     }
2668 
2669     // The merged cast production.
2670     if (ParseType(state) && ParseExprCastValueAndTrailingE(state)) {
2671       return true;
2672     }
2673   }
2674   state->parse_state = copy;
2675 
2676   if (ParseOneCharToken(state, 'L') && ParseMangledName(state) &&
2677       ParseOneCharToken(state, 'E')) {
2678     return true;
2679   }
2680   state->parse_state = copy;
2681 
2682   return false;
2683 }
2684 
2685 // <number> or <float>, followed by 'E', as described above ParseExprPrimary.
ParseExprCastValueAndTrailingE(State * state)2686 static bool ParseExprCastValueAndTrailingE(State *state) {
2687   ComplexityGuard guard(state);
2688   if (guard.IsTooComplex()) return false;
2689   // We have to be able to backtrack after accepting a number because we could
2690   // have e.g. "7fffE", which will accept "7" as a number but then fail to find
2691   // the 'E'.
2692   ParseState copy = state->parse_state;
2693   if (ParseNumber(state, nullptr) && ParseOneCharToken(state, 'E')) {
2694     return true;
2695   }
2696   state->parse_state = copy;
2697 
2698   if (ParseFloatNumber(state)) {
2699     // <float> for ordinary floating-point types
2700     if (ParseOneCharToken(state, 'E')) return true;
2701 
2702     // <float> _ <float> for complex floating-point types
2703     if (ParseOneCharToken(state, '_') && ParseFloatNumber(state) &&
2704         ParseOneCharToken(state, 'E')) {
2705       return true;
2706     }
2707   }
2708   state->parse_state = copy;
2709 
2710   return false;
2711 }
2712 
2713 // Parses `Q <requires-clause expr>`.
2714 // If parsing fails, applies backtracking to `state`.
2715 //
2716 // This function covers two symbols instead of one for convenience,
2717 // because in LLVM's Itanium ABI mangling grammar, <requires-clause expr>
2718 // always appears after Q.
2719 //
2720 // Does not emit the parsed `requires` clause to simplify the implementation.
2721 // In other words, these two functions' mangled names will demangle identically:
2722 //
2723 // template <typename T>
2724 // int foo(T) requires IsIntegral<T>;
2725 //
2726 // vs.
2727 //
2728 // template <typename T>
2729 // int foo(T);
ParseQRequiresClauseExpr(State * state)2730 static bool ParseQRequiresClauseExpr(State *state) {
2731   ComplexityGuard guard(state);
2732   if (guard.IsTooComplex()) return false;
2733   ParseState copy = state->parse_state;
2734   DisableAppend(state);
2735 
2736   // <requires-clause expr> is just an <expression>: http://shortn/_9E1Ul0rIM8
2737   if (ParseOneCharToken(state, 'Q') && ParseExpression(state)) {
2738     RestoreAppend(state, copy.append);
2739     return true;
2740   }
2741 
2742   // also restores append
2743   state->parse_state = copy;
2744   return false;
2745 }
2746 
2747 // <requirement> ::= X <expression> [N] [R <type-constraint>]
2748 // <requirement> ::= T <type>
2749 // <requirement> ::= Q <constraint-expression>
2750 //
2751 // <constraint-expression> ::= <expression>
2752 //
2753 // https://github.com/itanium-cxx-abi/cxx-abi/issues/24
ParseRequirement(State * state)2754 static bool ParseRequirement(State *state) {
2755   ComplexityGuard guard(state);
2756   if (guard.IsTooComplex()) return false;
2757 
2758   ParseState copy = state->parse_state;
2759 
2760   if (ParseOneCharToken(state, 'X') && ParseExpression(state) &&
2761       Optional(ParseOneCharToken(state, 'N')) &&
2762       // This logic backtracks cleanly if we eat an R but a valid type doesn't
2763       // follow it.
2764       (!ParseOneCharToken(state, 'R') || ParseTypeConstraint(state))) {
2765     return true;
2766   }
2767   state->parse_state = copy;
2768 
2769   if (ParseOneCharToken(state, 'T') && ParseType(state)) return true;
2770   state->parse_state = copy;
2771 
2772   if (ParseOneCharToken(state, 'Q') && ParseExpression(state)) return true;
2773   state->parse_state = copy;
2774 
2775   return false;
2776 }
2777 
2778 // <type-constraint> ::= <name>
ParseTypeConstraint(State * state)2779 static bool ParseTypeConstraint(State *state) {
2780   return ParseName(state);
2781 }
2782 
2783 // <local-name> ::= Z <(function) encoding> E <(entity) name> [<discriminator>]
2784 //              ::= Z <(function) encoding> E s [<discriminator>]
2785 //              ::= Z <(function) encoding> E d [<(parameter) number>] _ <name>
2786 //
2787 // Parsing a common prefix of these two productions together avoids an
2788 // exponential blowup of backtracking.  Parse like:
2789 //   <local-name> := Z <encoding> E <local-name-suffix>
2790 //   <local-name-suffix> ::= s [<discriminator>]
2791 //                       ::= d [<(parameter) number>] _ <name>
2792 //                       ::= <name> [<discriminator>]
2793 
ParseLocalNameSuffix(State * state)2794 static bool ParseLocalNameSuffix(State *state) {
2795   ComplexityGuard guard(state);
2796   if (guard.IsTooComplex()) return false;
2797   ParseState copy = state->parse_state;
2798 
2799   // <local-name-suffix> ::= d [<(parameter) number>] _ <name>
2800   if (ParseOneCharToken(state, 'd') &&
2801       (IsDigit(RemainingInput(state)[0]) || RemainingInput(state)[0] == '_')) {
2802     int number = -1;
2803     Optional(ParseNumber(state, &number));
2804     if (number < -1 || number > 2147483645) {
2805       // Work around overflow cases.  We do not expect these outside of a fuzzer
2806       // or other source of adversarial input.  If we do detect overflow here,
2807       // we'll print {default arg#1}.
2808       number = -1;
2809     }
2810     number += 2;
2811 
2812     // The ::{default arg#1}:: infix must be rendered before the lambda itself,
2813     // so print this before parsing the rest of the <local-name-suffix>.
2814     MaybeAppend(state, "::{default arg#");
2815     MaybeAppendDecimal(state, number);
2816     MaybeAppend(state, "}::");
2817     if (ParseOneCharToken(state, '_') && ParseName(state)) return true;
2818 
2819     // On late parse failure, roll back not only the input but also the output,
2820     // whose trailing NUL was overwritten.
2821     state->parse_state = copy;
2822     if (state->parse_state.append &&
2823         state->parse_state.out_cur_idx < state->out_end_idx) {
2824       state->out[state->parse_state.out_cur_idx] = '\0';
2825     }
2826     return false;
2827   }
2828   state->parse_state = copy;
2829 
2830   // <local-name-suffix> ::= <name> [<discriminator>]
2831   if (MaybeAppend(state, "::") && ParseName(state) &&
2832       Optional(ParseDiscriminator(state))) {
2833     return true;
2834   }
2835   state->parse_state = copy;
2836   if (state->parse_state.append &&
2837       state->parse_state.out_cur_idx < state->out_end_idx) {
2838     state->out[state->parse_state.out_cur_idx] = '\0';
2839   }
2840 
2841   // <local-name-suffix> ::= s [<discriminator>]
2842   return ParseOneCharToken(state, 's') && Optional(ParseDiscriminator(state));
2843 }
2844 
ParseLocalName(State * state)2845 static bool ParseLocalName(State *state) {
2846   ComplexityGuard guard(state);
2847   if (guard.IsTooComplex()) return false;
2848   ParseState copy = state->parse_state;
2849   if (ParseOneCharToken(state, 'Z') && ParseEncoding(state) &&
2850       ParseOneCharToken(state, 'E') && ParseLocalNameSuffix(state)) {
2851     return true;
2852   }
2853   state->parse_state = copy;
2854   return false;
2855 }
2856 
2857 // <discriminator> := _ <digit>
2858 //                 := __ <number (>= 10)> _
ParseDiscriminator(State * state)2859 static bool ParseDiscriminator(State *state) {
2860   ComplexityGuard guard(state);
2861   if (guard.IsTooComplex()) return false;
2862   ParseState copy = state->parse_state;
2863 
2864   // Both forms start with _ so parse that first.
2865   if (!ParseOneCharToken(state, '_')) return false;
2866 
2867   // <digit>
2868   if (ParseDigit(state, nullptr)) return true;
2869 
2870   // _ <number> _
2871   if (ParseOneCharToken(state, '_') && ParseNumber(state, nullptr) &&
2872       ParseOneCharToken(state, '_')) {
2873     return true;
2874   }
2875   state->parse_state = copy;
2876   return false;
2877 }
2878 
2879 // <substitution> ::= S_
2880 //                ::= S <seq-id> _
2881 //                ::= St, etc.
2882 //
2883 // "St" is special in that it's not valid as a standalone name, and it *is*
2884 // allowed to precede a name without being wrapped in "N...E".  This means that
2885 // if we accept it on its own, we can accept "St1a" and try to parse
2886 // template-args, then fail and backtrack, accept "St" on its own, then "1a" as
2887 // an unqualified name and re-parse the same template-args.  To block this
2888 // exponential backtracking, we disable it with 'accept_std=false' in
2889 // problematic contexts.
ParseSubstitution(State * state,bool accept_std)2890 static bool ParseSubstitution(State *state, bool accept_std) {
2891   ComplexityGuard guard(state);
2892   if (guard.IsTooComplex()) return false;
2893   if (ParseTwoCharToken(state, "S_")) {
2894     MaybeAppend(state, "?");  // We don't support substitutions.
2895     return true;
2896   }
2897 
2898   ParseState copy = state->parse_state;
2899   if (ParseOneCharToken(state, 'S') && ParseSeqId(state) &&
2900       ParseOneCharToken(state, '_')) {
2901     MaybeAppend(state, "?");  // We don't support substitutions.
2902     return true;
2903   }
2904   state->parse_state = copy;
2905 
2906   // Expand abbreviations like "St" => "std".
2907   if (ParseOneCharToken(state, 'S')) {
2908     const AbbrevPair *p;
2909     for (p = kSubstitutionList; p->abbrev != nullptr; ++p) {
2910       if (RemainingInput(state)[0] == p->abbrev[1] &&
2911           (accept_std || p->abbrev[1] != 't')) {
2912         MaybeAppend(state, "std");
2913         if (p->real_name[0] != '\0') {
2914           MaybeAppend(state, "::");
2915           MaybeAppend(state, p->real_name);
2916         }
2917         ++state->parse_state.mangled_idx;
2918         UpdateHighWaterMark(state);
2919         return true;
2920       }
2921     }
2922   }
2923   state->parse_state = copy;
2924   return false;
2925 }
2926 
2927 // Parse <mangled-name>, optionally followed by either a function-clone suffix
2928 // or version suffix.  Returns true only if all of "mangled_cur" was consumed.
ParseTopLevelMangledName(State * state)2929 static bool ParseTopLevelMangledName(State *state) {
2930   ComplexityGuard guard(state);
2931   if (guard.IsTooComplex()) return false;
2932   if (ParseMangledName(state)) {
2933     if (RemainingInput(state)[0] != '\0') {
2934       // Drop trailing function clone suffix, if any.
2935       if (IsFunctionCloneSuffix(RemainingInput(state))) {
2936         return true;
2937       }
2938       // Append trailing version suffix if any.
2939       // ex. _Z3foo@@GLIBCXX_3.4
2940       if (RemainingInput(state)[0] == '@') {
2941         MaybeAppend(state, RemainingInput(state));
2942         return true;
2943       }
2944       ReportHighWaterMark(state);
2945       return false;  // Unconsumed suffix.
2946     }
2947     return true;
2948   }
2949 
2950   ReportHighWaterMark(state);
2951   return false;
2952 }
2953 
Overflowed(const State * state)2954 static bool Overflowed(const State *state) {
2955   return state->parse_state.out_cur_idx >= state->out_end_idx;
2956 }
2957 
2958 // The demangler entry point.
Demangle(const char * mangled,char * out,size_t out_size)2959 bool Demangle(const char* mangled, char* out, size_t out_size) {
2960   if (mangled[0] == '_' && mangled[1] == 'R') {
2961     return DemangleRustSymbolEncoding(mangled, out, out_size);
2962   }
2963 
2964   State state;
2965   InitState(&state, mangled, out, out_size);
2966   return ParseTopLevelMangledName(&state) && !Overflowed(&state) &&
2967          state.parse_state.out_cur_idx > 0;
2968 }
2969 
DemangleString(const char * mangled)2970 std::string DemangleString(const char* mangled) {
2971   std::string out;
2972   int status = 0;
2973   char* demangled = nullptr;
2974 #if ABSL_INTERNAL_HAS_CXA_DEMANGLE
2975   demangled = abi::__cxa_demangle(mangled, nullptr, nullptr, &status);
2976 #endif
2977   if (status == 0 && demangled != nullptr) {
2978     out.append(demangled);
2979     free(demangled);
2980   } else {
2981     out.append(mangled);
2982   }
2983   return out;
2984 }
2985 
2986 }  // namespace debugging_internal
2987 ABSL_NAMESPACE_END
2988 }  // namespace absl
2989