1#ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_ 2#define ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_ 3 4// Generate stack tracer for aarch64 5 6#if defined(__linux__) 7#include <signal.h> 8#include <sys/mman.h> 9#include <ucontext.h> 10#include <unistd.h> 11#endif 12 13#include <atomic> 14#include <cassert> 15#include <cstdint> 16#include <iostream> 17#include <limits> 18 19#include "absl/base/attributes.h" 20#include "absl/debugging/internal/address_is_readable.h" 21#include "absl/debugging/internal/addresses.h" 22#include "absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems 23#include "absl/debugging/stacktrace.h" 24 25static const size_t kUnknownFrameSize = 0; 26// Stack end to use when we don't know the actual stack end 27// (effectively just the end of address space). 28constexpr uintptr_t kUnknownStackEnd = 29 std::numeric_limits<size_t>::max() - sizeof(void *); 30 31#if defined(__linux__) 32// Returns the address of the VDSO __kernel_rt_sigreturn function, if present. 33static const unsigned char* GetKernelRtSigreturnAddress() { 34 constexpr uintptr_t kImpossibleAddress = 1; 35 ABSL_CONST_INIT static std::atomic<uintptr_t> memoized{kImpossibleAddress}; 36 uintptr_t address = memoized.load(std::memory_order_relaxed); 37 if (address != kImpossibleAddress) { 38 return reinterpret_cast<const unsigned char*>(address); 39 } 40 41 address = reinterpret_cast<uintptr_t>(nullptr); 42 43#ifdef ABSL_HAVE_VDSO_SUPPORT 44 absl::debugging_internal::VDSOSupport vdso; 45 if (vdso.IsPresent()) { 46 absl::debugging_internal::VDSOSupport::SymbolInfo symbol_info; 47 auto lookup = [&](int type) { 48 return vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.6.39", type, 49 &symbol_info); 50 }; 51 if ((!lookup(STT_FUNC) && !lookup(STT_NOTYPE)) || 52 symbol_info.address == nullptr) { 53 // Unexpected: VDSO is present, yet the expected symbol is missing 54 // or null. 55 assert(false && "VDSO is present, but doesn't have expected symbol"); 56 } else { 57 if (reinterpret_cast<uintptr_t>(symbol_info.address) != 58 kImpossibleAddress) { 59 address = reinterpret_cast<uintptr_t>(symbol_info.address); 60 } else { 61 assert(false && "VDSO returned invalid address"); 62 } 63 } 64 } 65#endif 66 67 memoized.store(address, std::memory_order_relaxed); 68 return reinterpret_cast<const unsigned char*>(address); 69} 70#endif // __linux__ 71 72// Compute the size of a stack frame in [low..high). We assume that 73// low < high. Return size of kUnknownFrameSize. 74template<typename T> 75static size_t ComputeStackFrameSize(const T* low, 76 const T* high) { 77 const char* low_char_ptr = reinterpret_cast<const char *>(low); 78 const char* high_char_ptr = reinterpret_cast<const char *>(high); 79 return low < high ? static_cast<size_t>(high_char_ptr - low_char_ptr) 80 : kUnknownFrameSize; 81} 82 83// Saves stack info that is expensive to calculate to avoid recalculating per frame. 84struct StackInfo { 85 uintptr_t stack_low; 86 uintptr_t stack_high; 87 uintptr_t sig_stack_low; 88 uintptr_t sig_stack_high; 89}; 90 91static bool InsideSignalStack(void** ptr, const StackInfo* stack_info) { 92 uintptr_t comparable_ptr = reinterpret_cast<uintptr_t>(ptr); 93 if (stack_info->sig_stack_high == kUnknownStackEnd) 94 return false; 95 return (comparable_ptr >= stack_info->sig_stack_low && 96 comparable_ptr < stack_info->sig_stack_high); 97} 98 99// Given a pointer to a stack frame, locate and return the calling 100// stackframe, or return null if no stackframe can be found. Perform sanity 101// checks (the strictness of which is controlled by the boolean parameter 102// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned. 103template<bool STRICT_UNWINDING, bool WITH_CONTEXT> 104ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. 105ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. 106static void **NextStackFrame(void **old_frame_pointer, const void *uc, 107 const StackInfo *stack_info) { 108 void **new_frame_pointer = reinterpret_cast<void**>(*old_frame_pointer); 109 110#if defined(__linux__) 111 if (WITH_CONTEXT && uc != nullptr) { 112 // Check to see if next frame's return address is __kernel_rt_sigreturn. 113 if (old_frame_pointer[1] == GetKernelRtSigreturnAddress()) { 114 const ucontext_t *ucv = static_cast<const ucontext_t *>(uc); 115 // old_frame_pointer[0] is not suitable for unwinding, look at 116 // ucontext to discover frame pointer before signal. 117 void **const pre_signal_frame_pointer = 118 reinterpret_cast<void **>(ucv->uc_mcontext.regs[29]); 119 120 // The most recent signal always needs special handling to find the frame 121 // pointer, but a nested signal does not. If pre_signal_frame_pointer is 122 // earlier in the stack than the old_frame_pointer, then use it. If it is 123 // later, then we have already unwound through it and it needs no special 124 // handling. 125 if (pre_signal_frame_pointer >= old_frame_pointer) { 126 new_frame_pointer = pre_signal_frame_pointer; 127 } 128 } 129#endif 130 131 // The frame pointer should be 8-byte aligned. 132 if ((reinterpret_cast<uintptr_t>(new_frame_pointer) & 7) != 0) 133 return nullptr; 134 135 // Check that alleged frame pointer is actually readable. This is to 136 // prevent "double fault" in case we hit the first fault due to e.g. 137 // stack corruption. 138 if (!absl::debugging_internal::AddressIsReadable( 139 new_frame_pointer)) 140 return nullptr; 141 } 142 143 // Only check the size if both frames are in the same stack. 144 if (InsideSignalStack(new_frame_pointer, stack_info) == 145 InsideSignalStack(old_frame_pointer, stack_info)) { 146 // Check frame size. In strict mode, we assume frames to be under 147 // 100,000 bytes. In non-strict mode, we relax the limit to 1MB. 148 const size_t max_size = STRICT_UNWINDING ? 100000 : 1000000; 149 const size_t frame_size = 150 ComputeStackFrameSize(old_frame_pointer, new_frame_pointer); 151 if (frame_size == kUnknownFrameSize) 152 return nullptr; 153 // A very large frame may mean corrupt memory or an erroneous frame 154 // pointer. But also maybe just a plain-old large frame. Assume that if the 155 // frame is within a known stack, then it is valid. 156 if (frame_size > max_size) { 157 size_t stack_low = stack_info->stack_low; 158 size_t stack_high = stack_info->stack_high; 159 if (InsideSignalStack(new_frame_pointer, stack_info)) { 160 stack_low = stack_info->sig_stack_low; 161 stack_high = stack_info->sig_stack_high; 162 } 163 if (stack_high < kUnknownStackEnd && 164 static_cast<size_t>(getpagesize()) < stack_low) { 165 const uintptr_t new_fp_u = 166 reinterpret_cast<uintptr_t>(new_frame_pointer); 167 // Stack bounds are known. 168 if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) { 169 // new_frame_pointer is not within a known stack. 170 return nullptr; 171 } 172 } else { 173 // Stack bounds are unknown, prefer truncated stack to possible crash. 174 return nullptr; 175 } 176 } 177 } 178 179 return new_frame_pointer; 180} 181 182template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT> 183// We count on the bottom frame being this one. See the comment 184// at prev_return_address 185ABSL_ATTRIBUTE_NOINLINE 186ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. 187ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. 188static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count, 189 const void *ucp, int *min_dropped_frames) { 190#ifdef __GNUC__ 191 void **frame_pointer = reinterpret_cast<void**>(__builtin_frame_address(0)); 192#else 193# error reading stack point not yet supported on this platform. 194#endif 195 skip_count++; // Skip the frame for this function. 196 int n = 0; 197 198 // Assume that the first page is not stack. 199 StackInfo stack_info; 200 stack_info.stack_low = static_cast<uintptr_t>(getpagesize()); 201 stack_info.stack_high = kUnknownStackEnd; 202 stack_info.sig_stack_low = stack_info.stack_low; 203 stack_info.sig_stack_high = kUnknownStackEnd; 204 205 // The frame pointer points to low address of a frame. The first 64-bit 206 // word of a frame points to the next frame up the call chain, which normally 207 // is just after the high address of the current frame. The second word of 208 // a frame contains return address of to the caller. To find a pc value 209 // associated with the current frame, we need to go down a level in the call 210 // chain. So we remember return the address of the last frame seen. This 211 // does not work for the first stack frame, which belongs to UnwindImp() but 212 // we skip the frame for UnwindImp() anyway. 213 void* prev_return_address = nullptr; 214 // The nth frame size is the difference between the nth frame pointer and the 215 // the frame pointer below it in the call chain. There is no frame below the 216 // leaf frame, but this function is the leaf anyway, and we skip it. 217 void** prev_frame_pointer = nullptr; 218 219 while (frame_pointer && n < max_depth) { 220 if (skip_count > 0) { 221 skip_count--; 222 } else { 223 result[n] = reinterpret_cast<void *>( 224 absl::debugging_internal::StripPointerMetadata(prev_return_address)); 225 if (IS_STACK_FRAMES) { 226 sizes[n] = static_cast<int>( 227 ComputeStackFrameSize(prev_frame_pointer, frame_pointer)); 228 } 229 n++; 230 } 231 prev_return_address = frame_pointer[1]; 232 prev_frame_pointer = frame_pointer; 233 // The absl::GetStackFrames routine is called when we are in some 234 // informational context (the failure signal handler for example). 235 // Use the non-strict unwinding rules to produce a stack trace 236 // that is as complete as possible (even if it contains a few bogus 237 // entries in some rare cases). 238 frame_pointer = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>( 239 frame_pointer, ucp, &stack_info); 240 } 241 242 if (min_dropped_frames != nullptr) { 243 // Implementation detail: we clamp the max of frames we are willing to 244 // count, so as not to spend too much time in the loop below. 245 const int kMaxUnwind = 200; 246 int num_dropped_frames = 0; 247 for (int j = 0; frame_pointer != nullptr && j < kMaxUnwind; j++) { 248 if (skip_count > 0) { 249 skip_count--; 250 } else { 251 num_dropped_frames++; 252 } 253 frame_pointer = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>( 254 frame_pointer, ucp, &stack_info); 255 } 256 *min_dropped_frames = num_dropped_frames; 257 } 258 return n; 259} 260 261namespace absl { 262ABSL_NAMESPACE_BEGIN 263namespace debugging_internal { 264bool StackTraceWorksForTest() { 265 return true; 266} 267} // namespace debugging_internal 268ABSL_NAMESPACE_END 269} // namespace absl 270 271#endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_ 272