• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: uniform_int_distribution.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header defines a class for representing a uniform integer distribution
20 // over the closed (inclusive) interval [a,b]. You use this distribution in
21 // combination with an Abseil random bit generator to produce random values
22 // according to the rules of the distribution.
23 //
24 // `absl::uniform_int_distribution` is a drop-in replacement for the C++11
25 // `std::uniform_int_distribution` [rand.dist.uni.int] but is considerably
26 // faster than the libstdc++ implementation.
27 
28 #ifndef ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_
29 #define ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_
30 
31 #include <cassert>
32 #include <istream>
33 #include <limits>
34 #include <ostream>
35 
36 #include "absl/base/config.h"
37 #include "absl/base/optimization.h"
38 #include "absl/random/internal/fast_uniform_bits.h"
39 #include "absl/random/internal/iostream_state_saver.h"
40 #include "absl/random/internal/traits.h"
41 #include "absl/random/internal/wide_multiply.h"
42 
43 namespace absl {
44 ABSL_NAMESPACE_BEGIN
45 
46 // absl::uniform_int_distribution<T>
47 //
48 // This distribution produces random integer values uniformly distributed in the
49 // closed (inclusive) interval [a, b].
50 //
51 // Example:
52 //
53 //   absl::BitGen gen;
54 //
55 //   // Use the distribution to produce a value between 1 and 6, inclusive.
56 //   int die_roll = absl::uniform_int_distribution<int>(1, 6)(gen);
57 //
58 template <typename IntType = int>
59 class uniform_int_distribution {
60  private:
61   using unsigned_type =
62       typename random_internal::make_unsigned_bits<IntType>::type;
63 
64  public:
65   using result_type = IntType;
66 
67   class param_type {
68    public:
69     using distribution_type = uniform_int_distribution;
70 
71     explicit param_type(
72         result_type lo = 0,
73         result_type hi = (std::numeric_limits<result_type>::max)())
lo_(lo)74         : lo_(lo),
75           range_(static_cast<unsigned_type>(hi) -
76                  static_cast<unsigned_type>(lo)) {
77       // [rand.dist.uni.int] precondition 2
78       assert(lo <= hi);
79     }
80 
a()81     result_type a() const { return lo_; }
b()82     result_type b() const {
83       return static_cast<result_type>(static_cast<unsigned_type>(lo_) + range_);
84     }
85 
86     friend bool operator==(const param_type& a, const param_type& b) {
87       return a.lo_ == b.lo_ && a.range_ == b.range_;
88     }
89 
90     friend bool operator!=(const param_type& a, const param_type& b) {
91       return !(a == b);
92     }
93 
94    private:
95     friend class uniform_int_distribution;
range()96     unsigned_type range() const { return range_; }
97 
98     result_type lo_;
99     unsigned_type range_;
100 
101     static_assert(random_internal::IsIntegral<result_type>::value,
102                   "Class-template absl::uniform_int_distribution<> must be "
103                   "parameterized using an integral type.");
104   };  // param_type
105 
uniform_int_distribution()106   uniform_int_distribution() : uniform_int_distribution(0) {}
107 
108   explicit uniform_int_distribution(
109       result_type lo,
110       result_type hi = (std::numeric_limits<result_type>::max)())
param_(lo,hi)111       : param_(lo, hi) {}
112 
uniform_int_distribution(const param_type & param)113   explicit uniform_int_distribution(const param_type& param) : param_(param) {}
114 
115   // uniform_int_distribution<T>::reset()
116   //
117   // Resets the uniform int distribution. Note that this function has no effect
118   // because the distribution already produces independent values.
reset()119   void reset() {}
120 
121   template <typename URBG>
operator()122   result_type operator()(URBG& gen) {  // NOLINT(runtime/references)
123     return (*this)(gen, param());
124   }
125 
126   template <typename URBG>
operator()127   result_type operator()(
128       URBG& gen, const param_type& param) {  // NOLINT(runtime/references)
129     return static_cast<result_type>(param.a() + Generate(gen, param.range()));
130   }
131 
a()132   result_type a() const { return param_.a(); }
b()133   result_type b() const { return param_.b(); }
134 
param()135   param_type param() const { return param_; }
param(const param_type & params)136   void param(const param_type& params) { param_ = params; }
137 
result_type(min)138   result_type(min)() const { return a(); }
result_type(max)139   result_type(max)() const { return b(); }
140 
141   friend bool operator==(const uniform_int_distribution& a,
142                          const uniform_int_distribution& b) {
143     return a.param_ == b.param_;
144   }
145   friend bool operator!=(const uniform_int_distribution& a,
146                          const uniform_int_distribution& b) {
147     return !(a == b);
148   }
149 
150  private:
151   // Generates a value in the *closed* interval [0, R]
152   template <typename URBG>
153   unsigned_type Generate(URBG& g,  // NOLINT(runtime/references)
154                          unsigned_type R);
155   param_type param_;
156 };
157 
158 // -----------------------------------------------------------------------------
159 // Implementation details follow
160 // -----------------------------------------------------------------------------
161 template <typename CharT, typename Traits, typename IntType>
162 std::basic_ostream<CharT, Traits>& operator<<(
163     std::basic_ostream<CharT, Traits>& os,
164     const uniform_int_distribution<IntType>& x) {
165   using stream_type =
166       typename random_internal::stream_format_type<IntType>::type;
167   auto saver = random_internal::make_ostream_state_saver(os);
168   os << static_cast<stream_type>(x.a()) << os.fill()
169      << static_cast<stream_type>(x.b());
170   return os;
171 }
172 
173 template <typename CharT, typename Traits, typename IntType>
174 std::basic_istream<CharT, Traits>& operator>>(
175     std::basic_istream<CharT, Traits>& is,
176     uniform_int_distribution<IntType>& x) {
177   using param_type = typename uniform_int_distribution<IntType>::param_type;
178   using result_type = typename uniform_int_distribution<IntType>::result_type;
179   using stream_type =
180       typename random_internal::stream_format_type<IntType>::type;
181 
182   stream_type a;
183   stream_type b;
184 
185   auto saver = random_internal::make_istream_state_saver(is);
186   is >> a >> b;
187   if (!is.fail()) {
188     x.param(
189         param_type(static_cast<result_type>(a), static_cast<result_type>(b)));
190   }
191   return is;
192 }
193 
194 template <typename IntType>
195 template <typename URBG>
196 typename random_internal::make_unsigned_bits<IntType>::type
Generate(URBG & g,typename random_internal::make_unsigned_bits<IntType>::type R)197 uniform_int_distribution<IntType>::Generate(
198     URBG& g,  // NOLINT(runtime/references)
199     typename random_internal::make_unsigned_bits<IntType>::type R) {
200   random_internal::FastUniformBits<unsigned_type> fast_bits;
201   unsigned_type bits = fast_bits(g);
202   const unsigned_type Lim = R + 1;
203   if ((R & Lim) == 0) {
204     // If the interval's length is a power of two range, just take the low bits.
205     return bits & R;
206   }
207 
208   // Generates a uniform variate on [0, Lim) using fixed-point multiplication.
209   // The above fast-path guarantees that Lim is representable in unsigned_type.
210   //
211   // Algorithm adapted from
212   // http://lemire.me/blog/2016/06/30/fast-random-shuffling/, with added
213   // explanation.
214   //
215   // The algorithm creates a uniform variate `bits` in the interval [0, 2^N),
216   // and treats it as the fractional part of a fixed-point real value in [0, 1),
217   // multiplied by 2^N.  For example, 0.25 would be represented as 2^(N - 2),
218   // because 2^N * 0.25 == 2^(N - 2).
219   //
220   // Next, `bits` and `Lim` are multiplied with a wide-multiply to bring the
221   // value into the range [0, Lim).  The integral part (the high word of the
222   // multiplication result) is then very nearly the desired result.  However,
223   // this is not quite accurate; viewing the multiplication result as one
224   // double-width integer, the resulting values for the sample are mapped as
225   // follows:
226   //
227   // If the result lies in this interval:       Return this value:
228   //        [0, 2^N)                                    0
229   //        [2^N, 2 * 2^N)                              1
230   //        ...                                         ...
231   //        [K * 2^N, (K + 1) * 2^N)                    K
232   //        ...                                         ...
233   //        [(Lim - 1) * 2^N, Lim * 2^N)                Lim - 1
234   //
235   // While all of these intervals have the same size, the result of `bits * Lim`
236   // must be a multiple of `Lim`, and not all of these intervals contain the
237   // same number of multiples of `Lim`.  In particular, some contain
238   // `F = floor(2^N / Lim)` and some contain `F + 1 = ceil(2^N / Lim)`.  This
239   // difference produces a small nonuniformity, which is corrected by applying
240   // rejection sampling to one of the values in the "larger intervals" (i.e.,
241   // the intervals containing `F + 1` multiples of `Lim`.
242   //
243   // An interval contains `F + 1` multiples of `Lim` if and only if its smallest
244   // value modulo 2^N is less than `2^N % Lim`.  The unique value satisfying
245   // this property is used as the one for rejection.  That is, a value of
246   // `bits * Lim` is rejected if `(bit * Lim) % 2^N < (2^N % Lim)`.
247 
248   using helper = random_internal::wide_multiply<unsigned_type>;
249   auto product = helper::multiply(bits, Lim);
250 
251   // Two optimizations here:
252   // * Rejection occurs with some probability less than 1/2, and for reasonable
253   //   ranges considerably less (in particular, less than 1/(F+1)), so
254   //   ABSL_PREDICT_FALSE is apt.
255   // * `Lim` is an overestimate of `threshold`, and doesn't require a divide.
256   if (ABSL_PREDICT_FALSE(helper::lo(product) < Lim)) {
257     // This quantity is exactly equal to `2^N % Lim`, but does not require high
258     // precision calculations: `2^N % Lim` is congruent to `(2^N - Lim) % Lim`.
259     // Ideally this could be expressed simply as `-X` rather than `2^N - X`, but
260     // for types smaller than int, this calculation is incorrect due to integer
261     // promotion rules.
262     const unsigned_type threshold =
263         ((std::numeric_limits<unsigned_type>::max)() - Lim + 1) % Lim;
264     while (helper::lo(product) < threshold) {
265       bits = fast_bits(g);
266       product = helper::multiply(bits, Lim);
267     }
268   }
269 
270   return helper::hi(product);
271 }
272 
273 ABSL_NAMESPACE_END
274 }  // namespace absl
275 
276 #endif  // ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_
277