1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/strings/charconv.h"
16
17 #include <algorithm>
18 #include <cassert>
19 #include <cstddef>
20 #include <cstdint>
21 #include <limits>
22 #include <system_error> // NOLINT(build/c++11)
23
24 #include "absl/base/casts.h"
25 #include "absl/base/config.h"
26 #include "absl/base/nullability.h"
27 #include "absl/numeric/bits.h"
28 #include "absl/numeric/int128.h"
29 #include "absl/strings/internal/charconv_bigint.h"
30 #include "absl/strings/internal/charconv_parse.h"
31
32 // The macro ABSL_BIT_PACK_FLOATS is defined on x86-64, where IEEE floating
33 // point numbers have the same endianness in memory as a bitfield struct
34 // containing the corresponding parts.
35 //
36 // When set, we replace calls to ldexp() with manual bit packing, which is
37 // faster and is unaffected by floating point environment.
38 #ifdef ABSL_BIT_PACK_FLOATS
39 #error ABSL_BIT_PACK_FLOATS cannot be directly set
40 #elif defined(__x86_64__) || defined(_M_X64)
41 #define ABSL_BIT_PACK_FLOATS 1
42 #endif
43
44 // A note about subnormals:
45 //
46 // The code below talks about "normals" and "subnormals". A normal IEEE float
47 // has a fixed-width mantissa and power of two exponent. For example, a normal
48 // `double` has a 53-bit mantissa. Because the high bit is always 1, it is not
49 // stored in the representation. The implicit bit buys an extra bit of
50 // resolution in the datatype.
51 //
52 // The downside of this scheme is that there is a large gap between DBL_MIN and
53 // zero. (Large, at least, relative to the different between DBL_MIN and the
54 // next representable number). This gap is softened by the "subnormal" numbers,
55 // which have the same power-of-two exponent as DBL_MIN, but no implicit 53rd
56 // bit. An all-bits-zero exponent in the encoding represents subnormals. (Zero
57 // is represented as a subnormal with an all-bits-zero mantissa.)
58 //
59 // The code below, in calculations, represents the mantissa as a uint64_t. The
60 // end result normally has the 53rd bit set. It represents subnormals by using
61 // narrower mantissas.
62
63 namespace absl {
64 ABSL_NAMESPACE_BEGIN
65 namespace {
66
67 template <typename FloatType>
68 struct FloatTraits;
69
70 template <>
71 struct FloatTraits<double> {
72 using mantissa_t = uint64_t;
73
74 // The number of bits in the given float type.
75 static constexpr int kTargetBits = 64;
76
77 // The number of exponent bits in the given float type.
78 static constexpr int kTargetExponentBits = 11;
79
80 // The number of mantissa bits in the given float type. This includes the
81 // implied high bit.
82 static constexpr int kTargetMantissaBits = 53;
83
84 // The largest supported IEEE exponent, in our integral mantissa
85 // representation.
86 //
87 // If `m` is the largest possible int kTargetMantissaBits bits wide, then
88 // m * 2**kMaxExponent is exactly equal to DBL_MAX.
89 static constexpr int kMaxExponent = 971;
90
91 // The smallest supported IEEE normal exponent, in our integral mantissa
92 // representation.
93 //
94 // If `m` is the smallest possible int kTargetMantissaBits bits wide, then
95 // m * 2**kMinNormalExponent is exactly equal to DBL_MIN.
96 static constexpr int kMinNormalExponent = -1074;
97
98 // The IEEE exponent bias. It equals ((1 << (kTargetExponentBits - 1)) - 1).
99 static constexpr int kExponentBias = 1023;
100
101 // The Eisel-Lemire "Shifting to 54/25 Bits" adjustment. It equals (63 - 1 -
102 // kTargetMantissaBits).
103 static constexpr int kEiselLemireShift = 9;
104
105 // The Eisel-Lemire high64_mask. It equals ((1 << kEiselLemireShift) - 1).
106 static constexpr uint64_t kEiselLemireMask = uint64_t{0x1FF};
107
108 // The smallest negative integer N (smallest negative means furthest from
109 // zero) such that parsing 9999999999999999999eN, with 19 nines, is still
110 // positive. Parsing a smaller (more negative) N will produce zero.
111 //
112 // Adjusting the decimal point and exponent, without adjusting the value,
113 // 9999999999999999999eN equals 9.999999999999999999eM where M = N + 18.
114 //
115 // 9999999999999999999, with 19 nines but no decimal point, is the largest
116 // "repeated nines" integer that fits in a uint64_t.
117 static constexpr int kEiselLemireMinInclusiveExp10 = -324 - 18;
118
119 // The smallest positive integer N such that parsing 1eN produces infinity.
120 // Parsing a smaller N will produce something finite.
121 static constexpr int kEiselLemireMaxExclusiveExp10 = 309;
122
MakeNanabsl::__anon268d8b570111::FloatTraits123 static double MakeNan(absl::Nonnull<const char*> tagp) {
124 #if ABSL_HAVE_BUILTIN(__builtin_nan)
125 // Use __builtin_nan() if available since it has a fix for
126 // https://bugs.llvm.org/show_bug.cgi?id=37778
127 // std::nan may use the glibc implementation.
128 return __builtin_nan(tagp);
129 #else
130 // Support nan no matter which namespace it's in. Some platforms
131 // incorrectly don't put it in namespace std.
132 using namespace std; // NOLINT
133 return nan(tagp);
134 #endif
135 }
136
137 // Builds a nonzero floating point number out of the provided parts.
138 //
139 // This is intended to do the same operation as ldexp(mantissa, exponent),
140 // but using purely integer math, to avoid -ffastmath and floating
141 // point environment issues. Using type punning is also faster. We fall back
142 // to ldexp on a per-platform basis for portability.
143 //
144 // `exponent` must be between kMinNormalExponent and kMaxExponent.
145 //
146 // `mantissa` must either be exactly kTargetMantissaBits wide, in which case
147 // a normal value is made, or it must be less narrow than that, in which case
148 // `exponent` must be exactly kMinNormalExponent, and a subnormal value is
149 // made.
Makeabsl::__anon268d8b570111::FloatTraits150 static double Make(mantissa_t mantissa, int exponent, bool sign) {
151 #ifndef ABSL_BIT_PACK_FLOATS
152 // Support ldexp no matter which namespace it's in. Some platforms
153 // incorrectly don't put it in namespace std.
154 using namespace std; // NOLINT
155 return sign ? -ldexp(mantissa, exponent) : ldexp(mantissa, exponent);
156 #else
157 constexpr uint64_t kMantissaMask =
158 (uint64_t{1} << (kTargetMantissaBits - 1)) - 1;
159 uint64_t dbl = static_cast<uint64_t>(sign) << 63;
160 if (mantissa > kMantissaMask) {
161 // Normal value.
162 // Adjust by 1023 for the exponent representation bias, and an additional
163 // 52 due to the implied decimal point in the IEEE mantissa
164 // representation.
165 dbl += static_cast<uint64_t>(exponent + 1023 + kTargetMantissaBits - 1)
166 << 52;
167 mantissa &= kMantissaMask;
168 } else {
169 // subnormal value
170 assert(exponent == kMinNormalExponent);
171 }
172 dbl += mantissa;
173 return absl::bit_cast<double>(dbl);
174 #endif // ABSL_BIT_PACK_FLOATS
175 }
176 };
177
178 // Specialization of floating point traits for the `float` type. See the
179 // FloatTraits<double> specialization above for meaning of each of the following
180 // members and methods.
181 template <>
182 struct FloatTraits<float> {
183 using mantissa_t = uint32_t;
184
185 static constexpr int kTargetBits = 32;
186 static constexpr int kTargetExponentBits = 8;
187 static constexpr int kTargetMantissaBits = 24;
188 static constexpr int kMaxExponent = 104;
189 static constexpr int kMinNormalExponent = -149;
190 static constexpr int kExponentBias = 127;
191 static constexpr int kEiselLemireShift = 38;
192 static constexpr uint64_t kEiselLemireMask = uint64_t{0x3FFFFFFFFF};
193 static constexpr int kEiselLemireMinInclusiveExp10 = -46 - 18;
194 static constexpr int kEiselLemireMaxExclusiveExp10 = 39;
195
MakeNanabsl::__anon268d8b570111::FloatTraits196 static float MakeNan(absl::Nonnull<const char*> tagp) {
197 #if ABSL_HAVE_BUILTIN(__builtin_nanf)
198 // Use __builtin_nanf() if available since it has a fix for
199 // https://bugs.llvm.org/show_bug.cgi?id=37778
200 // std::nanf may use the glibc implementation.
201 return __builtin_nanf(tagp);
202 #else
203 // Support nanf no matter which namespace it's in. Some platforms
204 // incorrectly don't put it in namespace std.
205 using namespace std; // NOLINT
206 return std::nanf(tagp);
207 #endif
208 }
209
Makeabsl::__anon268d8b570111::FloatTraits210 static float Make(mantissa_t mantissa, int exponent, bool sign) {
211 #ifndef ABSL_BIT_PACK_FLOATS
212 // Support ldexpf no matter which namespace it's in. Some platforms
213 // incorrectly don't put it in namespace std.
214 using namespace std; // NOLINT
215 return sign ? -ldexpf(mantissa, exponent) : ldexpf(mantissa, exponent);
216 #else
217 constexpr uint32_t kMantissaMask =
218 (uint32_t{1} << (kTargetMantissaBits - 1)) - 1;
219 uint32_t flt = static_cast<uint32_t>(sign) << 31;
220 if (mantissa > kMantissaMask) {
221 // Normal value.
222 // Adjust by 127 for the exponent representation bias, and an additional
223 // 23 due to the implied decimal point in the IEEE mantissa
224 // representation.
225 flt += static_cast<uint32_t>(exponent + 127 + kTargetMantissaBits - 1)
226 << 23;
227 mantissa &= kMantissaMask;
228 } else {
229 // subnormal value
230 assert(exponent == kMinNormalExponent);
231 }
232 flt += mantissa;
233 return absl::bit_cast<float>(flt);
234 #endif // ABSL_BIT_PACK_FLOATS
235 }
236 };
237
238 // Decimal-to-binary conversions require coercing powers of 10 into a mantissa
239 // and a power of 2. The two helper functions Power10Mantissa(n) and
240 // Power10Exponent(n) perform this task. Together, these represent a hand-
241 // rolled floating point value which is equal to or just less than 10**n.
242 //
243 // The return values satisfy two range guarantees:
244 //
245 // Power10Mantissa(n) * 2**Power10Exponent(n) <= 10**n
246 // < (Power10Mantissa(n) + 1) * 2**Power10Exponent(n)
247 //
248 // 2**63 <= Power10Mantissa(n) < 2**64.
249 //
250 // See the "Table of powers of 10" comment below for a "1e60" example.
251 //
252 // Lookups into the power-of-10 table must first check the Power10Overflow() and
253 // Power10Underflow() functions, to avoid out-of-bounds table access.
254 //
255 // Indexes into these tables are biased by -kPower10TableMinInclusive. Valid
256 // indexes range from kPower10TableMinInclusive to kPower10TableMaxExclusive.
257 extern const uint64_t kPower10MantissaHighTable[]; // High 64 of 128 bits.
258 extern const uint64_t kPower10MantissaLowTable[]; // Low 64 of 128 bits.
259
260 // The smallest (inclusive) allowed value for use with the Power10Mantissa()
261 // and Power10Exponent() functions below. (If a smaller exponent is needed in
262 // calculations, the end result is guaranteed to underflow.)
263 constexpr int kPower10TableMinInclusive = -342;
264
265 // The largest (exclusive) allowed value for use with the Power10Mantissa() and
266 // Power10Exponent() functions below. (If a larger-or-equal exponent is needed
267 // in calculations, the end result is guaranteed to overflow.)
268 constexpr int kPower10TableMaxExclusive = 309;
269
Power10Mantissa(int n)270 uint64_t Power10Mantissa(int n) {
271 return kPower10MantissaHighTable[n - kPower10TableMinInclusive];
272 }
273
Power10Exponent(int n)274 int Power10Exponent(int n) {
275 // The 217706 etc magic numbers encode the results as a formula instead of a
276 // table. Their equivalence (over the kPower10TableMinInclusive ..
277 // kPower10TableMaxExclusive range) is confirmed by
278 // https://github.com/google/wuffs/blob/315b2e52625ebd7b02d8fac13e3cd85ea374fb80/script/print-mpb-powers-of-10.go
279 return (217706 * n >> 16) - 63;
280 }
281
282 // Returns true if n is large enough that 10**n always results in an IEEE
283 // overflow.
Power10Overflow(int n)284 bool Power10Overflow(int n) { return n >= kPower10TableMaxExclusive; }
285
286 // Returns true if n is small enough that 10**n times a ParsedFloat mantissa
287 // always results in an IEEE underflow.
Power10Underflow(int n)288 bool Power10Underflow(int n) { return n < kPower10TableMinInclusive; }
289
290 // Returns true if Power10Mantissa(n) * 2**Power10Exponent(n) is exactly equal
291 // to 10**n numerically. Put another way, this returns true if there is no
292 // truncation error in Power10Mantissa(n).
Power10Exact(int n)293 bool Power10Exact(int n) { return n >= 0 && n <= 27; }
294
295 // Sentinel exponent values for representing numbers too large or too close to
296 // zero to represent in a double.
297 constexpr int kOverflow = 99999;
298 constexpr int kUnderflow = -99999;
299
300 // Struct representing the calculated conversion result of a positive (nonzero)
301 // floating point number.
302 //
303 // The calculated number is mantissa * 2**exponent (mantissa is treated as an
304 // integer.) `mantissa` is chosen to be the correct width for the IEEE float
305 // representation being calculated. (`mantissa` will always have the same bit
306 // width for normal values, and narrower bit widths for subnormals.)
307 //
308 // If the result of conversion was an underflow or overflow, exponent is set
309 // to kUnderflow or kOverflow.
310 struct CalculatedFloat {
311 uint64_t mantissa = 0;
312 int exponent = 0;
313 };
314
315 // Returns the bit width of the given uint128. (Equivalently, returns 128
316 // minus the number of leading zero bits.)
BitWidth(uint128 value)317 int BitWidth(uint128 value) {
318 if (Uint128High64(value) == 0) {
319 // This static_cast is only needed when using a std::bit_width()
320 // implementation that does not have the fix for LWG 3656 applied.
321 return static_cast<int>(bit_width(Uint128Low64(value)));
322 }
323 return 128 - countl_zero(Uint128High64(value));
324 }
325
326 // Calculates how far to the right a mantissa needs to be shifted to create a
327 // properly adjusted mantissa for an IEEE floating point number.
328 //
329 // `mantissa_width` is the bit width of the mantissa to be shifted, and
330 // `binary_exponent` is the exponent of the number before the shift.
331 //
332 // This accounts for subnormal values, and will return a larger-than-normal
333 // shift if binary_exponent would otherwise be too low.
334 template <typename FloatType>
NormalizedShiftSize(int mantissa_width,int binary_exponent)335 int NormalizedShiftSize(int mantissa_width, int binary_exponent) {
336 const int normal_shift =
337 mantissa_width - FloatTraits<FloatType>::kTargetMantissaBits;
338 const int minimum_shift =
339 FloatTraits<FloatType>::kMinNormalExponent - binary_exponent;
340 return std::max(normal_shift, minimum_shift);
341 }
342
343 // Right shifts a uint128 so that it has the requested bit width. (The
344 // resulting value will have 128 - bit_width leading zeroes.) The initial
345 // `value` must be wider than the requested bit width.
346 //
347 // Returns the number of bits shifted.
TruncateToBitWidth(int bit_width,absl::Nonnull<uint128 * > value)348 int TruncateToBitWidth(int bit_width, absl::Nonnull<uint128*> value) {
349 const int current_bit_width = BitWidth(*value);
350 const int shift = current_bit_width - bit_width;
351 *value >>= shift;
352 return shift;
353 }
354
355 // Checks if the given ParsedFloat represents one of the edge cases that are
356 // not dependent on number base: zero, infinity, or NaN. If so, sets *value
357 // the appropriate double, and returns true.
358 template <typename FloatType>
HandleEdgeCase(const strings_internal::ParsedFloat & input,bool negative,absl::Nonnull<FloatType * > value)359 bool HandleEdgeCase(const strings_internal::ParsedFloat& input, bool negative,
360 absl::Nonnull<FloatType*> value) {
361 if (input.type == strings_internal::FloatType::kNan) {
362 // A bug in gcc would cause the compiler to optimize away the buffer we are
363 // building below. Declaring the buffer volatile avoids the issue, and has
364 // no measurable performance impact in microbenchmarks.
365 //
366 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86113
367 constexpr ptrdiff_t kNanBufferSize = 128;
368 #if (defined(__GNUC__) && !defined(__clang__))
369 volatile char n_char_sequence[kNanBufferSize];
370 #else
371 char n_char_sequence[kNanBufferSize];
372 #endif
373 if (input.subrange_begin == nullptr) {
374 n_char_sequence[0] = '\0';
375 } else {
376 ptrdiff_t nan_size = input.subrange_end - input.subrange_begin;
377 nan_size = std::min(nan_size, kNanBufferSize - 1);
378 std::copy_n(input.subrange_begin, nan_size, n_char_sequence);
379 n_char_sequence[nan_size] = '\0';
380 }
381 char* nan_argument = const_cast<char*>(n_char_sequence);
382 *value = negative ? -FloatTraits<FloatType>::MakeNan(nan_argument)
383 : FloatTraits<FloatType>::MakeNan(nan_argument);
384 return true;
385 }
386 if (input.type == strings_internal::FloatType::kInfinity) {
387 *value = negative ? -std::numeric_limits<FloatType>::infinity()
388 : std::numeric_limits<FloatType>::infinity();
389 return true;
390 }
391 if (input.mantissa == 0) {
392 *value = negative ? -0.0f : 0.0f;
393 return true;
394 }
395 return false;
396 }
397
398 // Given a CalculatedFloat result of a from_chars conversion, generate the
399 // correct output values.
400 //
401 // CalculatedFloat can represent an underflow or overflow, in which case the
402 // error code in *result is set. Otherwise, the calculated floating point
403 // number is stored in *value.
404 template <typename FloatType>
EncodeResult(const CalculatedFloat & calculated,bool negative,absl::Nonnull<absl::from_chars_result * > result,absl::Nonnull<FloatType * > value)405 void EncodeResult(const CalculatedFloat& calculated, bool negative,
406 absl::Nonnull<absl::from_chars_result*> result,
407 absl::Nonnull<FloatType*> value) {
408 if (calculated.exponent == kOverflow) {
409 result->ec = std::errc::result_out_of_range;
410 *value = negative ? -std::numeric_limits<FloatType>::max()
411 : std::numeric_limits<FloatType>::max();
412 return;
413 } else if (calculated.mantissa == 0 || calculated.exponent == kUnderflow) {
414 result->ec = std::errc::result_out_of_range;
415 *value = negative ? -0.0f : 0.0f;
416 return;
417 }
418 *value = FloatTraits<FloatType>::Make(
419 static_cast<typename FloatTraits<FloatType>::mantissa_t>(
420 calculated.mantissa),
421 calculated.exponent, negative);
422 }
423
424 // Returns the given uint128 shifted to the right by `shift` bits, and rounds
425 // the remaining bits using round_to_nearest logic. The value is returned as a
426 // uint64_t, since this is the type used by this library for storing calculated
427 // floating point mantissas.
428 //
429 // It is expected that the width of the input value shifted by `shift` will
430 // be the correct bit-width for the target mantissa, which is strictly narrower
431 // than a uint64_t.
432 //
433 // If `input_exact` is false, then a nonzero error epsilon is assumed. For
434 // rounding purposes, the true value being rounded is strictly greater than the
435 // input value. The error may represent a single lost carry bit.
436 //
437 // When input_exact, shifted bits of the form 1000000... represent a tie, which
438 // is broken by rounding to even -- the rounding direction is chosen so the low
439 // bit of the returned value is 0.
440 //
441 // When !input_exact, shifted bits of the form 10000000... represent a value
442 // strictly greater than one half (due to the error epsilon), and so ties are
443 // always broken by rounding up.
444 //
445 // When !input_exact, shifted bits of the form 01111111... are uncertain;
446 // the true value may or may not be greater than 10000000..., due to the
447 // possible lost carry bit. The correct rounding direction is unknown. In this
448 // case, the result is rounded down, and `output_exact` is set to false.
449 //
450 // Zero and negative values of `shift` are accepted, in which case the word is
451 // shifted left, as necessary.
ShiftRightAndRound(uint128 value,int shift,bool input_exact,absl::Nonnull<bool * > output_exact)452 uint64_t ShiftRightAndRound(uint128 value, int shift, bool input_exact,
453 absl::Nonnull<bool*> output_exact) {
454 if (shift <= 0) {
455 *output_exact = input_exact;
456 return static_cast<uint64_t>(value << -shift);
457 }
458 if (shift >= 128) {
459 // Exponent is so small that we are shifting away all significant bits.
460 // Answer will not be representable, even as a subnormal, so return a zero
461 // mantissa (which represents underflow).
462 *output_exact = true;
463 return 0;
464 }
465
466 *output_exact = true;
467 const uint128 shift_mask = (uint128(1) << shift) - 1;
468 const uint128 halfway_point = uint128(1) << (shift - 1);
469
470 const uint128 shifted_bits = value & shift_mask;
471 value >>= shift;
472 if (shifted_bits > halfway_point) {
473 // Shifted bits greater than 10000... require rounding up.
474 return static_cast<uint64_t>(value + 1);
475 }
476 if (shifted_bits == halfway_point) {
477 // In exact mode, shifted bits of 10000... mean we're exactly halfway
478 // between two numbers, and we must round to even. So only round up if
479 // the low bit of `value` is set.
480 //
481 // In inexact mode, the nonzero error means the actual value is greater
482 // than the halfway point and we must always round up.
483 if ((value & 1) == 1 || !input_exact) {
484 ++value;
485 }
486 return static_cast<uint64_t>(value);
487 }
488 if (!input_exact && shifted_bits == halfway_point - 1) {
489 // Rounding direction is unclear, due to error.
490 *output_exact = false;
491 }
492 // Otherwise, round down.
493 return static_cast<uint64_t>(value);
494 }
495
496 // Checks if a floating point guess needs to be rounded up, using high precision
497 // math.
498 //
499 // `guess_mantissa` and `guess_exponent` represent a candidate guess for the
500 // number represented by `parsed_decimal`.
501 //
502 // The exact number represented by `parsed_decimal` must lie between the two
503 // numbers:
504 // A = `guess_mantissa * 2**guess_exponent`
505 // B = `(guess_mantissa + 1) * 2**guess_exponent`
506 //
507 // This function returns false if `A` is the better guess, and true if `B` is
508 // the better guess, with rounding ties broken by rounding to even.
MustRoundUp(uint64_t guess_mantissa,int guess_exponent,const strings_internal::ParsedFloat & parsed_decimal)509 bool MustRoundUp(uint64_t guess_mantissa, int guess_exponent,
510 const strings_internal::ParsedFloat& parsed_decimal) {
511 // 768 is the number of digits needed in the worst case. We could determine a
512 // better limit dynamically based on the value of parsed_decimal.exponent.
513 // This would optimize pathological input cases only. (Sane inputs won't have
514 // hundreds of digits of mantissa.)
515 absl::strings_internal::BigUnsigned<84> exact_mantissa;
516 int exact_exponent = exact_mantissa.ReadFloatMantissa(parsed_decimal, 768);
517
518 // Adjust the `guess` arguments to be halfway between A and B.
519 guess_mantissa = guess_mantissa * 2 + 1;
520 guess_exponent -= 1;
521
522 // In our comparison:
523 // lhs = exact = exact_mantissa * 10**exact_exponent
524 // = exact_mantissa * 5**exact_exponent * 2**exact_exponent
525 // rhs = guess = guess_mantissa * 2**guess_exponent
526 //
527 // Because we are doing integer math, we can't directly deal with negative
528 // exponents. We instead move these to the other side of the inequality.
529 absl::strings_internal::BigUnsigned<84>& lhs = exact_mantissa;
530 int comparison;
531 if (exact_exponent >= 0) {
532 lhs.MultiplyByFiveToTheNth(exact_exponent);
533 absl::strings_internal::BigUnsigned<84> rhs(guess_mantissa);
534 // There are powers of 2 on both sides of the inequality; reduce this to
535 // a single bit-shift.
536 if (exact_exponent > guess_exponent) {
537 lhs.ShiftLeft(exact_exponent - guess_exponent);
538 } else {
539 rhs.ShiftLeft(guess_exponent - exact_exponent);
540 }
541 comparison = Compare(lhs, rhs);
542 } else {
543 // Move the power of 5 to the other side of the equation, giving us:
544 // lhs = exact_mantissa * 2**exact_exponent
545 // rhs = guess_mantissa * 5**(-exact_exponent) * 2**guess_exponent
546 absl::strings_internal::BigUnsigned<84> rhs =
547 absl::strings_internal::BigUnsigned<84>::FiveToTheNth(-exact_exponent);
548 rhs.MultiplyBy(guess_mantissa);
549 if (exact_exponent > guess_exponent) {
550 lhs.ShiftLeft(exact_exponent - guess_exponent);
551 } else {
552 rhs.ShiftLeft(guess_exponent - exact_exponent);
553 }
554 comparison = Compare(lhs, rhs);
555 }
556 if (comparison < 0) {
557 return false;
558 } else if (comparison > 0) {
559 return true;
560 } else {
561 // When lhs == rhs, the decimal input is exactly between A and B.
562 // Round towards even -- round up only if the low bit of the initial
563 // `guess_mantissa` was a 1. We shifted guess_mantissa left 1 bit at
564 // the beginning of this function, so test the 2nd bit here.
565 return (guess_mantissa & 2) == 2;
566 }
567 }
568
569 // Constructs a CalculatedFloat from a given mantissa and exponent, but
570 // with the following normalizations applied:
571 //
572 // If rounding has caused mantissa to increase just past the allowed bit
573 // width, shift and adjust exponent.
574 //
575 // If exponent is too high, sets kOverflow.
576 //
577 // If mantissa is zero (representing a non-zero value not representable, even
578 // as a subnormal), sets kUnderflow.
579 template <typename FloatType>
CalculatedFloatFromRawValues(uint64_t mantissa,int exponent)580 CalculatedFloat CalculatedFloatFromRawValues(uint64_t mantissa, int exponent) {
581 CalculatedFloat result;
582 if (mantissa == uint64_t{1} << FloatTraits<FloatType>::kTargetMantissaBits) {
583 mantissa >>= 1;
584 exponent += 1;
585 }
586 if (exponent > FloatTraits<FloatType>::kMaxExponent) {
587 result.exponent = kOverflow;
588 } else if (mantissa == 0) {
589 result.exponent = kUnderflow;
590 } else {
591 result.exponent = exponent;
592 result.mantissa = mantissa;
593 }
594 return result;
595 }
596
597 template <typename FloatType>
CalculateFromParsedHexadecimal(const strings_internal::ParsedFloat & parsed_hex)598 CalculatedFloat CalculateFromParsedHexadecimal(
599 const strings_internal::ParsedFloat& parsed_hex) {
600 uint64_t mantissa = parsed_hex.mantissa;
601 int exponent = parsed_hex.exponent;
602 // This static_cast is only needed when using a std::bit_width()
603 // implementation that does not have the fix for LWG 3656 applied.
604 int mantissa_width = static_cast<int>(bit_width(mantissa));
605 const int shift = NormalizedShiftSize<FloatType>(mantissa_width, exponent);
606 bool result_exact;
607 exponent += shift;
608 mantissa = ShiftRightAndRound(mantissa, shift,
609 /* input exact= */ true, &result_exact);
610 // ParseFloat handles rounding in the hexadecimal case, so we don't have to
611 // check `result_exact` here.
612 return CalculatedFloatFromRawValues<FloatType>(mantissa, exponent);
613 }
614
615 template <typename FloatType>
CalculateFromParsedDecimal(const strings_internal::ParsedFloat & parsed_decimal)616 CalculatedFloat CalculateFromParsedDecimal(
617 const strings_internal::ParsedFloat& parsed_decimal) {
618 CalculatedFloat result;
619
620 // Large or small enough decimal exponents will always result in overflow
621 // or underflow.
622 if (Power10Underflow(parsed_decimal.exponent)) {
623 result.exponent = kUnderflow;
624 return result;
625 } else if (Power10Overflow(parsed_decimal.exponent)) {
626 result.exponent = kOverflow;
627 return result;
628 }
629
630 // Otherwise convert our power of 10 into a power of 2 times an integer
631 // mantissa, and multiply this by our parsed decimal mantissa.
632 uint128 wide_binary_mantissa = parsed_decimal.mantissa;
633 wide_binary_mantissa *= Power10Mantissa(parsed_decimal.exponent);
634 int binary_exponent = Power10Exponent(parsed_decimal.exponent);
635
636 // Discard bits that are inaccurate due to truncation error. The magic
637 // `mantissa_width` constants below are justified in
638 // https://abseil.io/about/design/charconv. They represent the number of bits
639 // in `wide_binary_mantissa` that are guaranteed to be unaffected by error
640 // propagation.
641 bool mantissa_exact;
642 int mantissa_width;
643 if (parsed_decimal.subrange_begin) {
644 // Truncated mantissa
645 mantissa_width = 58;
646 mantissa_exact = false;
647 binary_exponent +=
648 TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
649 } else if (!Power10Exact(parsed_decimal.exponent)) {
650 // Exact mantissa, truncated power of ten
651 mantissa_width = 63;
652 mantissa_exact = false;
653 binary_exponent +=
654 TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
655 } else {
656 // Product is exact
657 mantissa_width = BitWidth(wide_binary_mantissa);
658 mantissa_exact = true;
659 }
660
661 // Shift into an FloatType-sized mantissa, and round to nearest.
662 const int shift =
663 NormalizedShiftSize<FloatType>(mantissa_width, binary_exponent);
664 bool result_exact;
665 binary_exponent += shift;
666 uint64_t binary_mantissa = ShiftRightAndRound(wide_binary_mantissa, shift,
667 mantissa_exact, &result_exact);
668 if (!result_exact) {
669 // We could not determine the rounding direction using int128 math. Use
670 // full resolution math instead.
671 if (MustRoundUp(binary_mantissa, binary_exponent, parsed_decimal)) {
672 binary_mantissa += 1;
673 }
674 }
675
676 return CalculatedFloatFromRawValues<FloatType>(binary_mantissa,
677 binary_exponent);
678 }
679
680 // As discussed in https://nigeltao.github.io/blog/2020/eisel-lemire.html the
681 // primary goal of the Eisel-Lemire algorithm is speed, for 99+% of the cases,
682 // not 100% coverage. As long as Eisel-Lemire doesn’t claim false positives,
683 // the combined approach (falling back to an alternative implementation when
684 // this function returns false) is both fast and correct.
685 template <typename FloatType>
EiselLemire(const strings_internal::ParsedFloat & input,bool negative,absl::Nonnull<FloatType * > value,absl::Nonnull<std::errc * > ec)686 bool EiselLemire(const strings_internal::ParsedFloat& input, bool negative,
687 absl::Nonnull<FloatType*> value,
688 absl::Nonnull<std::errc*> ec) {
689 uint64_t man = input.mantissa;
690 int exp10 = input.exponent;
691 if (exp10 < FloatTraits<FloatType>::kEiselLemireMinInclusiveExp10) {
692 *value = negative ? -0.0f : 0.0f;
693 *ec = std::errc::result_out_of_range;
694 return true;
695 } else if (exp10 >= FloatTraits<FloatType>::kEiselLemireMaxExclusiveExp10) {
696 // Return max (a finite value) consistent with from_chars and DR 3081. For
697 // SimpleAtod and SimpleAtof, post-processing will return infinity.
698 *value = negative ? -std::numeric_limits<FloatType>::max()
699 : std::numeric_limits<FloatType>::max();
700 *ec = std::errc::result_out_of_range;
701 return true;
702 }
703
704 // Assert kPower10TableMinInclusive <= exp10 < kPower10TableMaxExclusive.
705 // Equivalently, !Power10Underflow(exp10) and !Power10Overflow(exp10).
706 static_assert(
707 FloatTraits<FloatType>::kEiselLemireMinInclusiveExp10 >=
708 kPower10TableMinInclusive,
709 "(exp10-kPower10TableMinInclusive) in kPower10MantissaHighTable bounds");
710 static_assert(
711 FloatTraits<FloatType>::kEiselLemireMaxExclusiveExp10 <=
712 kPower10TableMaxExclusive,
713 "(exp10-kPower10TableMinInclusive) in kPower10MantissaHighTable bounds");
714
715 // The terse (+) comments in this function body refer to sections of the
716 // https://nigeltao.github.io/blog/2020/eisel-lemire.html blog post.
717 //
718 // That blog post discusses double precision (11 exponent bits with a -1023
719 // bias, 52 mantissa bits), but the same approach applies to single precision
720 // (8 exponent bits with a -127 bias, 23 mantissa bits). Either way, the
721 // computation here happens with 64-bit values (e.g. man) or 128-bit values
722 // (e.g. x) before finally converting to 64- or 32-bit floating point.
723 //
724 // See also "Number Parsing at a Gigabyte per Second, Software: Practice and
725 // Experience 51 (8), 2021" (https://arxiv.org/abs/2101.11408) for detail.
726
727 // (+) Normalization.
728 int clz = countl_zero(man);
729 man <<= static_cast<unsigned int>(clz);
730 // The 217706 etc magic numbers are from the Power10Exponent function.
731 uint64_t ret_exp2 =
732 static_cast<uint64_t>((217706 * exp10 >> 16) + 64 +
733 FloatTraits<FloatType>::kExponentBias - clz);
734
735 // (+) Multiplication.
736 uint128 x = static_cast<uint128>(man) *
737 static_cast<uint128>(
738 kPower10MantissaHighTable[exp10 - kPower10TableMinInclusive]);
739
740 // (+) Wider Approximation.
741 static constexpr uint64_t high64_mask =
742 FloatTraits<FloatType>::kEiselLemireMask;
743 if (((Uint128High64(x) & high64_mask) == high64_mask) &&
744 (man > (std::numeric_limits<uint64_t>::max() - Uint128Low64(x)))) {
745 uint128 y =
746 static_cast<uint128>(man) *
747 static_cast<uint128>(
748 kPower10MantissaLowTable[exp10 - kPower10TableMinInclusive]);
749 x += Uint128High64(y);
750 // For example, parsing "4503599627370497.5" will take the if-true
751 // branch here (for double precision), since:
752 // - x = 0x8000000000000BFF_FFFFFFFFFFFFFFFF
753 // - y = 0x8000000000000BFF_7FFFFFFFFFFFF400
754 // - man = 0xA000000000000F00
755 // Likewise, when parsing "0.0625" for single precision:
756 // - x = 0x7FFFFFFFFFFFFFFF_FFFFFFFFFFFFFFFF
757 // - y = 0x813FFFFFFFFFFFFF_8A00000000000000
758 // - man = 0x9C40000000000000
759 if (((Uint128High64(x) & high64_mask) == high64_mask) &&
760 ((Uint128Low64(x) + 1) == 0) &&
761 (man > (std::numeric_limits<uint64_t>::max() - Uint128Low64(y)))) {
762 return false;
763 }
764 }
765
766 // (+) Shifting to 54 Bits (or for single precision, to 25 bits).
767 uint64_t msb = Uint128High64(x) >> 63;
768 uint64_t ret_man =
769 Uint128High64(x) >> (msb + FloatTraits<FloatType>::kEiselLemireShift);
770 ret_exp2 -= 1 ^ msb;
771
772 // (+) Half-way Ambiguity.
773 //
774 // For example, parsing "1e+23" will take the if-true branch here (for double
775 // precision), since:
776 // - x = 0x54B40B1F852BDA00_0000000000000000
777 // - ret_man = 0x002A5A058FC295ED
778 // Likewise, when parsing "20040229.0" for single precision:
779 // - x = 0x4C72894000000000_0000000000000000
780 // - ret_man = 0x000000000131CA25
781 if ((Uint128Low64(x) == 0) && ((Uint128High64(x) & high64_mask) == 0) &&
782 ((ret_man & 3) == 1)) {
783 return false;
784 }
785
786 // (+) From 54 to 53 Bits (or for single precision, from 25 to 24 bits).
787 ret_man += ret_man & 1; // Line From54a.
788 ret_man >>= 1; // Line From54b.
789 // Incrementing ret_man (at line From54a) may have overflowed 54 bits (53
790 // bits after the right shift by 1 at line From54b), so adjust for that.
791 //
792 // For example, parsing "9223372036854775807" will take the if-true branch
793 // here (for double precision), since:
794 // - ret_man = 0x0020000000000000 = (1 << 53)
795 // Likewise, when parsing "2147483647.0" for single precision:
796 // - ret_man = 0x0000000001000000 = (1 << 24)
797 if ((ret_man >> FloatTraits<FloatType>::kTargetMantissaBits) > 0) {
798 ret_exp2 += 1;
799 // Conceptually, we need a "ret_man >>= 1" in this if-block to balance
800 // incrementing ret_exp2 in the line immediately above. However, we only
801 // get here when line From54a overflowed (after adding a 1), so ret_man
802 // here is (1 << 53). Its low 53 bits are therefore all zeroes. The only
803 // remaining use of ret_man is to mask it with ((1 << 52) - 1), so only its
804 // low 52 bits matter. A "ret_man >>= 1" would have no effect in practice.
805 //
806 // We omit the "ret_man >>= 1", even if it is cheap (and this if-branch is
807 // rarely taken) and technically 'more correct', so that mutation tests
808 // that would otherwise modify or omit that "ret_man >>= 1" don't complain
809 // that such code mutations have no observable effect.
810 }
811
812 // ret_exp2 is a uint64_t. Zero or underflow means that we're in subnormal
813 // space. max_exp2 (0x7FF for double precision, 0xFF for single precision) or
814 // above means that we're in Inf/NaN space.
815 //
816 // The if block is equivalent to (but has fewer branches than):
817 // if ((ret_exp2 <= 0) || (ret_exp2 >= max_exp2)) { etc }
818 //
819 // For example, parsing "4.9406564584124654e-324" will take the if-true
820 // branch here, since ret_exp2 = -51.
821 static constexpr uint64_t max_exp2 =
822 (1 << FloatTraits<FloatType>::kTargetExponentBits) - 1;
823 if ((ret_exp2 - 1) >= (max_exp2 - 1)) {
824 return false;
825 }
826
827 #ifndef ABSL_BIT_PACK_FLOATS
828 if (FloatTraits<FloatType>::kTargetBits == 64) {
829 *value = FloatTraits<FloatType>::Make(
830 (ret_man & 0x000FFFFFFFFFFFFFu) | 0x0010000000000000u,
831 static_cast<int>(ret_exp2) - 1023 - 52, negative);
832 return true;
833 } else if (FloatTraits<FloatType>::kTargetBits == 32) {
834 *value = FloatTraits<FloatType>::Make(
835 (static_cast<uint32_t>(ret_man) & 0x007FFFFFu) | 0x00800000u,
836 static_cast<int>(ret_exp2) - 127 - 23, negative);
837 return true;
838 }
839 #else
840 if (FloatTraits<FloatType>::kTargetBits == 64) {
841 uint64_t ret_bits = (ret_exp2 << 52) | (ret_man & 0x000FFFFFFFFFFFFFu);
842 if (negative) {
843 ret_bits |= 0x8000000000000000u;
844 }
845 *value = static_cast<FloatType>(absl::bit_cast<double>(ret_bits));
846 return true;
847 } else if (FloatTraits<FloatType>::kTargetBits == 32) {
848 uint32_t ret_bits = (static_cast<uint32_t>(ret_exp2) << 23) |
849 (static_cast<uint32_t>(ret_man) & 0x007FFFFFu);
850 if (negative) {
851 ret_bits |= 0x80000000u;
852 }
853 *value = static_cast<FloatType>(absl::bit_cast<float>(ret_bits));
854 return true;
855 }
856 #endif // ABSL_BIT_PACK_FLOATS
857 return false;
858 }
859
860 template <typename FloatType>
FromCharsImpl(absl::Nonnull<const char * > first,absl::Nonnull<const char * > last,FloatType & value,chars_format fmt_flags)861 from_chars_result FromCharsImpl(absl::Nonnull<const char*> first,
862 absl::Nonnull<const char*> last,
863 FloatType& value, chars_format fmt_flags) {
864 from_chars_result result;
865 result.ptr = first; // overwritten on successful parse
866 result.ec = std::errc();
867
868 bool negative = false;
869 if (first != last && *first == '-') {
870 ++first;
871 negative = true;
872 }
873 // If the `hex` flag is *not* set, then we will accept a 0x prefix and try
874 // to parse a hexadecimal float.
875 if ((fmt_flags & chars_format::hex) == chars_format{} && last - first >= 2 &&
876 *first == '0' && (first[1] == 'x' || first[1] == 'X')) {
877 const char* hex_first = first + 2;
878 strings_internal::ParsedFloat hex_parse =
879 strings_internal::ParseFloat<16>(hex_first, last, fmt_flags);
880 if (hex_parse.end == nullptr ||
881 hex_parse.type != strings_internal::FloatType::kNumber) {
882 // Either we failed to parse a hex float after the "0x", or we read
883 // "0xinf" or "0xnan" which we don't want to match.
884 //
885 // However, a string that begins with "0x" also begins with "0", which
886 // is normally a valid match for the number zero. So we want these
887 // strings to match zero unless fmt_flags is `scientific`. (This flag
888 // means an exponent is required, which the string "0" does not have.)
889 if (fmt_flags == chars_format::scientific) {
890 result.ec = std::errc::invalid_argument;
891 } else {
892 result.ptr = first + 1;
893 value = negative ? -0.0f : 0.0f;
894 }
895 return result;
896 }
897 // We matched a value.
898 result.ptr = hex_parse.end;
899 if (HandleEdgeCase(hex_parse, negative, &value)) {
900 return result;
901 }
902 CalculatedFloat calculated =
903 CalculateFromParsedHexadecimal<FloatType>(hex_parse);
904 EncodeResult(calculated, negative, &result, &value);
905 return result;
906 }
907 // Otherwise, we choose the number base based on the flags.
908 if ((fmt_flags & chars_format::hex) == chars_format::hex) {
909 strings_internal::ParsedFloat hex_parse =
910 strings_internal::ParseFloat<16>(first, last, fmt_flags);
911 if (hex_parse.end == nullptr) {
912 result.ec = std::errc::invalid_argument;
913 return result;
914 }
915 result.ptr = hex_parse.end;
916 if (HandleEdgeCase(hex_parse, negative, &value)) {
917 return result;
918 }
919 CalculatedFloat calculated =
920 CalculateFromParsedHexadecimal<FloatType>(hex_parse);
921 EncodeResult(calculated, negative, &result, &value);
922 return result;
923 } else {
924 strings_internal::ParsedFloat decimal_parse =
925 strings_internal::ParseFloat<10>(first, last, fmt_flags);
926 if (decimal_parse.end == nullptr) {
927 result.ec = std::errc::invalid_argument;
928 return result;
929 }
930 result.ptr = decimal_parse.end;
931 if (HandleEdgeCase(decimal_parse, negative, &value)) {
932 return result;
933 }
934 // A nullptr subrange_begin means that the decimal_parse.mantissa is exact
935 // (not truncated), a precondition of the Eisel-Lemire algorithm.
936 if ((decimal_parse.subrange_begin == nullptr) &&
937 EiselLemire<FloatType>(decimal_parse, negative, &value, &result.ec)) {
938 return result;
939 }
940 CalculatedFloat calculated =
941 CalculateFromParsedDecimal<FloatType>(decimal_parse);
942 EncodeResult(calculated, negative, &result, &value);
943 return result;
944 }
945 }
946 } // namespace
947
from_chars(absl::Nonnull<const char * > first,absl::Nonnull<const char * > last,double & value,chars_format fmt)948 from_chars_result from_chars(absl::Nonnull<const char*> first,
949 absl::Nonnull<const char*> last, double& value,
950 chars_format fmt) {
951 return FromCharsImpl(first, last, value, fmt);
952 }
953
from_chars(absl::Nonnull<const char * > first,absl::Nonnull<const char * > last,float & value,chars_format fmt)954 from_chars_result from_chars(absl::Nonnull<const char*> first,
955 absl::Nonnull<const char*> last, float& value,
956 chars_format fmt) {
957 return FromCharsImpl(first, last, value, fmt);
958 }
959
960 namespace {
961
962 // Table of powers of 10, from kPower10TableMinInclusive to
963 // kPower10TableMaxExclusive.
964 //
965 // kPower10MantissaHighTable[i - kPower10TableMinInclusive] stores the 64-bit
966 // mantissa. The high bit is always on.
967 //
968 // kPower10MantissaLowTable extends that 64-bit mantissa to 128 bits.
969 //
970 // Power10Exponent(i) calculates the power-of-two exponent.
971 //
972 // For a number i, this gives the unique mantissaHigh and exponent such that
973 // (mantissaHigh * 2**exponent) <= 10**i < ((mantissaHigh + 1) * 2**exponent).
974 //
975 // For example, Python can confirm that the exact hexadecimal value of 1e60 is:
976 // >>> a = 1000000000000000000000000000000000000000000000000000000000000
977 // >>> hex(a)
978 // '0x9f4f2726179a224501d762422c946590d91000000000000000'
979 // Adding underscores at every 8th hex digit shows 50 hex digits:
980 // '0x9f4f2726_179a2245_01d76242_2c946590_d9100000_00000000_00'.
981 // In this case, the high bit of the first hex digit, 9, is coincidentally set,
982 // so we do not have to do further shifting to deduce the 128-bit mantissa:
983 // - kPower10MantissaHighTable[60 - kP10TMI] = 0x9f4f2726179a2245U
984 // - kPower10MantissaLowTable[ 60 - kP10TMI] = 0x01d762422c946590U
985 // where kP10TMI is kPower10TableMinInclusive. The low 18 of those 50 hex
986 // digits are truncated.
987 //
988 // 50 hex digits (with the high bit set) is 200 bits and mantissaHigh holds 64
989 // bits, so Power10Exponent(60) = 200 - 64 = 136. Again, Python can confirm:
990 // >>> b = 0x9f4f2726179a2245
991 // >>> ((b+0)<<136) <= a
992 // True
993 // >>> ((b+1)<<136) <= a
994 // False
995 //
996 // The tables were generated by
997 // https://github.com/google/wuffs/blob/315b2e52625ebd7b02d8fac13e3cd85ea374fb80/script/print-mpb-powers-of-10.go
998 // after re-formatting its output into two arrays of N uint64_t values (instead
999 // of an N element array of uint64_t pairs).
1000
1001 const uint64_t kPower10MantissaHighTable[] = {
1002 0xeef453d6923bd65aU, 0x9558b4661b6565f8U, 0xbaaee17fa23ebf76U,
1003 0xe95a99df8ace6f53U, 0x91d8a02bb6c10594U, 0xb64ec836a47146f9U,
1004 0xe3e27a444d8d98b7U, 0x8e6d8c6ab0787f72U, 0xb208ef855c969f4fU,
1005 0xde8b2b66b3bc4723U, 0x8b16fb203055ac76U, 0xaddcb9e83c6b1793U,
1006 0xd953e8624b85dd78U, 0x87d4713d6f33aa6bU, 0xa9c98d8ccb009506U,
1007 0xd43bf0effdc0ba48U, 0x84a57695fe98746dU, 0xa5ced43b7e3e9188U,
1008 0xcf42894a5dce35eaU, 0x818995ce7aa0e1b2U, 0xa1ebfb4219491a1fU,
1009 0xca66fa129f9b60a6U, 0xfd00b897478238d0U, 0x9e20735e8cb16382U,
1010 0xc5a890362fddbc62U, 0xf712b443bbd52b7bU, 0x9a6bb0aa55653b2dU,
1011 0xc1069cd4eabe89f8U, 0xf148440a256e2c76U, 0x96cd2a865764dbcaU,
1012 0xbc807527ed3e12bcU, 0xeba09271e88d976bU, 0x93445b8731587ea3U,
1013 0xb8157268fdae9e4cU, 0xe61acf033d1a45dfU, 0x8fd0c16206306babU,
1014 0xb3c4f1ba87bc8696U, 0xe0b62e2929aba83cU, 0x8c71dcd9ba0b4925U,
1015 0xaf8e5410288e1b6fU, 0xdb71e91432b1a24aU, 0x892731ac9faf056eU,
1016 0xab70fe17c79ac6caU, 0xd64d3d9db981787dU, 0x85f0468293f0eb4eU,
1017 0xa76c582338ed2621U, 0xd1476e2c07286faaU, 0x82cca4db847945caU,
1018 0xa37fce126597973cU, 0xcc5fc196fefd7d0cU, 0xff77b1fcbebcdc4fU,
1019 0x9faacf3df73609b1U, 0xc795830d75038c1dU, 0xf97ae3d0d2446f25U,
1020 0x9becce62836ac577U, 0xc2e801fb244576d5U, 0xf3a20279ed56d48aU,
1021 0x9845418c345644d6U, 0xbe5691ef416bd60cU, 0xedec366b11c6cb8fU,
1022 0x94b3a202eb1c3f39U, 0xb9e08a83a5e34f07U, 0xe858ad248f5c22c9U,
1023 0x91376c36d99995beU, 0xb58547448ffffb2dU, 0xe2e69915b3fff9f9U,
1024 0x8dd01fad907ffc3bU, 0xb1442798f49ffb4aU, 0xdd95317f31c7fa1dU,
1025 0x8a7d3eef7f1cfc52U, 0xad1c8eab5ee43b66U, 0xd863b256369d4a40U,
1026 0x873e4f75e2224e68U, 0xa90de3535aaae202U, 0xd3515c2831559a83U,
1027 0x8412d9991ed58091U, 0xa5178fff668ae0b6U, 0xce5d73ff402d98e3U,
1028 0x80fa687f881c7f8eU, 0xa139029f6a239f72U, 0xc987434744ac874eU,
1029 0xfbe9141915d7a922U, 0x9d71ac8fada6c9b5U, 0xc4ce17b399107c22U,
1030 0xf6019da07f549b2bU, 0x99c102844f94e0fbU, 0xc0314325637a1939U,
1031 0xf03d93eebc589f88U, 0x96267c7535b763b5U, 0xbbb01b9283253ca2U,
1032 0xea9c227723ee8bcbU, 0x92a1958a7675175fU, 0xb749faed14125d36U,
1033 0xe51c79a85916f484U, 0x8f31cc0937ae58d2U, 0xb2fe3f0b8599ef07U,
1034 0xdfbdcece67006ac9U, 0x8bd6a141006042bdU, 0xaecc49914078536dU,
1035 0xda7f5bf590966848U, 0x888f99797a5e012dU, 0xaab37fd7d8f58178U,
1036 0xd5605fcdcf32e1d6U, 0x855c3be0a17fcd26U, 0xa6b34ad8c9dfc06fU,
1037 0xd0601d8efc57b08bU, 0x823c12795db6ce57U, 0xa2cb1717b52481edU,
1038 0xcb7ddcdda26da268U, 0xfe5d54150b090b02U, 0x9efa548d26e5a6e1U,
1039 0xc6b8e9b0709f109aU, 0xf867241c8cc6d4c0U, 0x9b407691d7fc44f8U,
1040 0xc21094364dfb5636U, 0xf294b943e17a2bc4U, 0x979cf3ca6cec5b5aU,
1041 0xbd8430bd08277231U, 0xece53cec4a314ebdU, 0x940f4613ae5ed136U,
1042 0xb913179899f68584U, 0xe757dd7ec07426e5U, 0x9096ea6f3848984fU,
1043 0xb4bca50b065abe63U, 0xe1ebce4dc7f16dfbU, 0x8d3360f09cf6e4bdU,
1044 0xb080392cc4349decU, 0xdca04777f541c567U, 0x89e42caaf9491b60U,
1045 0xac5d37d5b79b6239U, 0xd77485cb25823ac7U, 0x86a8d39ef77164bcU,
1046 0xa8530886b54dbdebU, 0xd267caa862a12d66U, 0x8380dea93da4bc60U,
1047 0xa46116538d0deb78U, 0xcd795be870516656U, 0x806bd9714632dff6U,
1048 0xa086cfcd97bf97f3U, 0xc8a883c0fdaf7df0U, 0xfad2a4b13d1b5d6cU,
1049 0x9cc3a6eec6311a63U, 0xc3f490aa77bd60fcU, 0xf4f1b4d515acb93bU,
1050 0x991711052d8bf3c5U, 0xbf5cd54678eef0b6U, 0xef340a98172aace4U,
1051 0x9580869f0e7aac0eU, 0xbae0a846d2195712U, 0xe998d258869facd7U,
1052 0x91ff83775423cc06U, 0xb67f6455292cbf08U, 0xe41f3d6a7377eecaU,
1053 0x8e938662882af53eU, 0xb23867fb2a35b28dU, 0xdec681f9f4c31f31U,
1054 0x8b3c113c38f9f37eU, 0xae0b158b4738705eU, 0xd98ddaee19068c76U,
1055 0x87f8a8d4cfa417c9U, 0xa9f6d30a038d1dbcU, 0xd47487cc8470652bU,
1056 0x84c8d4dfd2c63f3bU, 0xa5fb0a17c777cf09U, 0xcf79cc9db955c2ccU,
1057 0x81ac1fe293d599bfU, 0xa21727db38cb002fU, 0xca9cf1d206fdc03bU,
1058 0xfd442e4688bd304aU, 0x9e4a9cec15763e2eU, 0xc5dd44271ad3cdbaU,
1059 0xf7549530e188c128U, 0x9a94dd3e8cf578b9U, 0xc13a148e3032d6e7U,
1060 0xf18899b1bc3f8ca1U, 0x96f5600f15a7b7e5U, 0xbcb2b812db11a5deU,
1061 0xebdf661791d60f56U, 0x936b9fcebb25c995U, 0xb84687c269ef3bfbU,
1062 0xe65829b3046b0afaU, 0x8ff71a0fe2c2e6dcU, 0xb3f4e093db73a093U,
1063 0xe0f218b8d25088b8U, 0x8c974f7383725573U, 0xafbd2350644eeacfU,
1064 0xdbac6c247d62a583U, 0x894bc396ce5da772U, 0xab9eb47c81f5114fU,
1065 0xd686619ba27255a2U, 0x8613fd0145877585U, 0xa798fc4196e952e7U,
1066 0xd17f3b51fca3a7a0U, 0x82ef85133de648c4U, 0xa3ab66580d5fdaf5U,
1067 0xcc963fee10b7d1b3U, 0xffbbcfe994e5c61fU, 0x9fd561f1fd0f9bd3U,
1068 0xc7caba6e7c5382c8U, 0xf9bd690a1b68637bU, 0x9c1661a651213e2dU,
1069 0xc31bfa0fe5698db8U, 0xf3e2f893dec3f126U, 0x986ddb5c6b3a76b7U,
1070 0xbe89523386091465U, 0xee2ba6c0678b597fU, 0x94db483840b717efU,
1071 0xba121a4650e4ddebU, 0xe896a0d7e51e1566U, 0x915e2486ef32cd60U,
1072 0xb5b5ada8aaff80b8U, 0xe3231912d5bf60e6U, 0x8df5efabc5979c8fU,
1073 0xb1736b96b6fd83b3U, 0xddd0467c64bce4a0U, 0x8aa22c0dbef60ee4U,
1074 0xad4ab7112eb3929dU, 0xd89d64d57a607744U, 0x87625f056c7c4a8bU,
1075 0xa93af6c6c79b5d2dU, 0xd389b47879823479U, 0x843610cb4bf160cbU,
1076 0xa54394fe1eedb8feU, 0xce947a3da6a9273eU, 0x811ccc668829b887U,
1077 0xa163ff802a3426a8U, 0xc9bcff6034c13052U, 0xfc2c3f3841f17c67U,
1078 0x9d9ba7832936edc0U, 0xc5029163f384a931U, 0xf64335bcf065d37dU,
1079 0x99ea0196163fa42eU, 0xc06481fb9bcf8d39U, 0xf07da27a82c37088U,
1080 0x964e858c91ba2655U, 0xbbe226efb628afeaU, 0xeadab0aba3b2dbe5U,
1081 0x92c8ae6b464fc96fU, 0xb77ada0617e3bbcbU, 0xe55990879ddcaabdU,
1082 0x8f57fa54c2a9eab6U, 0xb32df8e9f3546564U, 0xdff9772470297ebdU,
1083 0x8bfbea76c619ef36U, 0xaefae51477a06b03U, 0xdab99e59958885c4U,
1084 0x88b402f7fd75539bU, 0xaae103b5fcd2a881U, 0xd59944a37c0752a2U,
1085 0x857fcae62d8493a5U, 0xa6dfbd9fb8e5b88eU, 0xd097ad07a71f26b2U,
1086 0x825ecc24c873782fU, 0xa2f67f2dfa90563bU, 0xcbb41ef979346bcaU,
1087 0xfea126b7d78186bcU, 0x9f24b832e6b0f436U, 0xc6ede63fa05d3143U,
1088 0xf8a95fcf88747d94U, 0x9b69dbe1b548ce7cU, 0xc24452da229b021bU,
1089 0xf2d56790ab41c2a2U, 0x97c560ba6b0919a5U, 0xbdb6b8e905cb600fU,
1090 0xed246723473e3813U, 0x9436c0760c86e30bU, 0xb94470938fa89bceU,
1091 0xe7958cb87392c2c2U, 0x90bd77f3483bb9b9U, 0xb4ecd5f01a4aa828U,
1092 0xe2280b6c20dd5232U, 0x8d590723948a535fU, 0xb0af48ec79ace837U,
1093 0xdcdb1b2798182244U, 0x8a08f0f8bf0f156bU, 0xac8b2d36eed2dac5U,
1094 0xd7adf884aa879177U, 0x86ccbb52ea94baeaU, 0xa87fea27a539e9a5U,
1095 0xd29fe4b18e88640eU, 0x83a3eeeef9153e89U, 0xa48ceaaab75a8e2bU,
1096 0xcdb02555653131b6U, 0x808e17555f3ebf11U, 0xa0b19d2ab70e6ed6U,
1097 0xc8de047564d20a8bU, 0xfb158592be068d2eU, 0x9ced737bb6c4183dU,
1098 0xc428d05aa4751e4cU, 0xf53304714d9265dfU, 0x993fe2c6d07b7fabU,
1099 0xbf8fdb78849a5f96U, 0xef73d256a5c0f77cU, 0x95a8637627989aadU,
1100 0xbb127c53b17ec159U, 0xe9d71b689dde71afU, 0x9226712162ab070dU,
1101 0xb6b00d69bb55c8d1U, 0xe45c10c42a2b3b05U, 0x8eb98a7a9a5b04e3U,
1102 0xb267ed1940f1c61cU, 0xdf01e85f912e37a3U, 0x8b61313bbabce2c6U,
1103 0xae397d8aa96c1b77U, 0xd9c7dced53c72255U, 0x881cea14545c7575U,
1104 0xaa242499697392d2U, 0xd4ad2dbfc3d07787U, 0x84ec3c97da624ab4U,
1105 0xa6274bbdd0fadd61U, 0xcfb11ead453994baU, 0x81ceb32c4b43fcf4U,
1106 0xa2425ff75e14fc31U, 0xcad2f7f5359a3b3eU, 0xfd87b5f28300ca0dU,
1107 0x9e74d1b791e07e48U, 0xc612062576589ddaU, 0xf79687aed3eec551U,
1108 0x9abe14cd44753b52U, 0xc16d9a0095928a27U, 0xf1c90080baf72cb1U,
1109 0x971da05074da7beeU, 0xbce5086492111aeaU, 0xec1e4a7db69561a5U,
1110 0x9392ee8e921d5d07U, 0xb877aa3236a4b449U, 0xe69594bec44de15bU,
1111 0x901d7cf73ab0acd9U, 0xb424dc35095cd80fU, 0xe12e13424bb40e13U,
1112 0x8cbccc096f5088cbU, 0xafebff0bcb24aafeU, 0xdbe6fecebdedd5beU,
1113 0x89705f4136b4a597U, 0xabcc77118461cefcU, 0xd6bf94d5e57a42bcU,
1114 0x8637bd05af6c69b5U, 0xa7c5ac471b478423U, 0xd1b71758e219652bU,
1115 0x83126e978d4fdf3bU, 0xa3d70a3d70a3d70aU, 0xccccccccccccccccU,
1116 0x8000000000000000U, 0xa000000000000000U, 0xc800000000000000U,
1117 0xfa00000000000000U, 0x9c40000000000000U, 0xc350000000000000U,
1118 0xf424000000000000U, 0x9896800000000000U, 0xbebc200000000000U,
1119 0xee6b280000000000U, 0x9502f90000000000U, 0xba43b74000000000U,
1120 0xe8d4a51000000000U, 0x9184e72a00000000U, 0xb5e620f480000000U,
1121 0xe35fa931a0000000U, 0x8e1bc9bf04000000U, 0xb1a2bc2ec5000000U,
1122 0xde0b6b3a76400000U, 0x8ac7230489e80000U, 0xad78ebc5ac620000U,
1123 0xd8d726b7177a8000U, 0x878678326eac9000U, 0xa968163f0a57b400U,
1124 0xd3c21bcecceda100U, 0x84595161401484a0U, 0xa56fa5b99019a5c8U,
1125 0xcecb8f27f4200f3aU, 0x813f3978f8940984U, 0xa18f07d736b90be5U,
1126 0xc9f2c9cd04674edeU, 0xfc6f7c4045812296U, 0x9dc5ada82b70b59dU,
1127 0xc5371912364ce305U, 0xf684df56c3e01bc6U, 0x9a130b963a6c115cU,
1128 0xc097ce7bc90715b3U, 0xf0bdc21abb48db20U, 0x96769950b50d88f4U,
1129 0xbc143fa4e250eb31U, 0xeb194f8e1ae525fdU, 0x92efd1b8d0cf37beU,
1130 0xb7abc627050305adU, 0xe596b7b0c643c719U, 0x8f7e32ce7bea5c6fU,
1131 0xb35dbf821ae4f38bU, 0xe0352f62a19e306eU, 0x8c213d9da502de45U,
1132 0xaf298d050e4395d6U, 0xdaf3f04651d47b4cU, 0x88d8762bf324cd0fU,
1133 0xab0e93b6efee0053U, 0xd5d238a4abe98068U, 0x85a36366eb71f041U,
1134 0xa70c3c40a64e6c51U, 0xd0cf4b50cfe20765U, 0x82818f1281ed449fU,
1135 0xa321f2d7226895c7U, 0xcbea6f8ceb02bb39U, 0xfee50b7025c36a08U,
1136 0x9f4f2726179a2245U, 0xc722f0ef9d80aad6U, 0xf8ebad2b84e0d58bU,
1137 0x9b934c3b330c8577U, 0xc2781f49ffcfa6d5U, 0xf316271c7fc3908aU,
1138 0x97edd871cfda3a56U, 0xbde94e8e43d0c8ecU, 0xed63a231d4c4fb27U,
1139 0x945e455f24fb1cf8U, 0xb975d6b6ee39e436U, 0xe7d34c64a9c85d44U,
1140 0x90e40fbeea1d3a4aU, 0xb51d13aea4a488ddU, 0xe264589a4dcdab14U,
1141 0x8d7eb76070a08aecU, 0xb0de65388cc8ada8U, 0xdd15fe86affad912U,
1142 0x8a2dbf142dfcc7abU, 0xacb92ed9397bf996U, 0xd7e77a8f87daf7fbU,
1143 0x86f0ac99b4e8dafdU, 0xa8acd7c0222311bcU, 0xd2d80db02aabd62bU,
1144 0x83c7088e1aab65dbU, 0xa4b8cab1a1563f52U, 0xcde6fd5e09abcf26U,
1145 0x80b05e5ac60b6178U, 0xa0dc75f1778e39d6U, 0xc913936dd571c84cU,
1146 0xfb5878494ace3a5fU, 0x9d174b2dcec0e47bU, 0xc45d1df942711d9aU,
1147 0xf5746577930d6500U, 0x9968bf6abbe85f20U, 0xbfc2ef456ae276e8U,
1148 0xefb3ab16c59b14a2U, 0x95d04aee3b80ece5U, 0xbb445da9ca61281fU,
1149 0xea1575143cf97226U, 0x924d692ca61be758U, 0xb6e0c377cfa2e12eU,
1150 0xe498f455c38b997aU, 0x8edf98b59a373fecU, 0xb2977ee300c50fe7U,
1151 0xdf3d5e9bc0f653e1U, 0x8b865b215899f46cU, 0xae67f1e9aec07187U,
1152 0xda01ee641a708de9U, 0x884134fe908658b2U, 0xaa51823e34a7eedeU,
1153 0xd4e5e2cdc1d1ea96U, 0x850fadc09923329eU, 0xa6539930bf6bff45U,
1154 0xcfe87f7cef46ff16U, 0x81f14fae158c5f6eU, 0xa26da3999aef7749U,
1155 0xcb090c8001ab551cU, 0xfdcb4fa002162a63U, 0x9e9f11c4014dda7eU,
1156 0xc646d63501a1511dU, 0xf7d88bc24209a565U, 0x9ae757596946075fU,
1157 0xc1a12d2fc3978937U, 0xf209787bb47d6b84U, 0x9745eb4d50ce6332U,
1158 0xbd176620a501fbffU, 0xec5d3fa8ce427affU, 0x93ba47c980e98cdfU,
1159 0xb8a8d9bbe123f017U, 0xe6d3102ad96cec1dU, 0x9043ea1ac7e41392U,
1160 0xb454e4a179dd1877U, 0xe16a1dc9d8545e94U, 0x8ce2529e2734bb1dU,
1161 0xb01ae745b101e9e4U, 0xdc21a1171d42645dU, 0x899504ae72497ebaU,
1162 0xabfa45da0edbde69U, 0xd6f8d7509292d603U, 0x865b86925b9bc5c2U,
1163 0xa7f26836f282b732U, 0xd1ef0244af2364ffU, 0x8335616aed761f1fU,
1164 0xa402b9c5a8d3a6e7U, 0xcd036837130890a1U, 0x802221226be55a64U,
1165 0xa02aa96b06deb0fdU, 0xc83553c5c8965d3dU, 0xfa42a8b73abbf48cU,
1166 0x9c69a97284b578d7U, 0xc38413cf25e2d70dU, 0xf46518c2ef5b8cd1U,
1167 0x98bf2f79d5993802U, 0xbeeefb584aff8603U, 0xeeaaba2e5dbf6784U,
1168 0x952ab45cfa97a0b2U, 0xba756174393d88dfU, 0xe912b9d1478ceb17U,
1169 0x91abb422ccb812eeU, 0xb616a12b7fe617aaU, 0xe39c49765fdf9d94U,
1170 0x8e41ade9fbebc27dU, 0xb1d219647ae6b31cU, 0xde469fbd99a05fe3U,
1171 0x8aec23d680043beeU, 0xada72ccc20054ae9U, 0xd910f7ff28069da4U,
1172 0x87aa9aff79042286U, 0xa99541bf57452b28U, 0xd3fa922f2d1675f2U,
1173 0x847c9b5d7c2e09b7U, 0xa59bc234db398c25U, 0xcf02b2c21207ef2eU,
1174 0x8161afb94b44f57dU, 0xa1ba1ba79e1632dcU, 0xca28a291859bbf93U,
1175 0xfcb2cb35e702af78U, 0x9defbf01b061adabU, 0xc56baec21c7a1916U,
1176 0xf6c69a72a3989f5bU, 0x9a3c2087a63f6399U, 0xc0cb28a98fcf3c7fU,
1177 0xf0fdf2d3f3c30b9fU, 0x969eb7c47859e743U, 0xbc4665b596706114U,
1178 0xeb57ff22fc0c7959U, 0x9316ff75dd87cbd8U, 0xb7dcbf5354e9beceU,
1179 0xe5d3ef282a242e81U, 0x8fa475791a569d10U, 0xb38d92d760ec4455U,
1180 0xe070f78d3927556aU, 0x8c469ab843b89562U, 0xaf58416654a6babbU,
1181 0xdb2e51bfe9d0696aU, 0x88fcf317f22241e2U, 0xab3c2fddeeaad25aU,
1182 0xd60b3bd56a5586f1U, 0x85c7056562757456U, 0xa738c6bebb12d16cU,
1183 0xd106f86e69d785c7U, 0x82a45b450226b39cU, 0xa34d721642b06084U,
1184 0xcc20ce9bd35c78a5U, 0xff290242c83396ceU, 0x9f79a169bd203e41U,
1185 0xc75809c42c684dd1U, 0xf92e0c3537826145U, 0x9bbcc7a142b17ccbU,
1186 0xc2abf989935ddbfeU, 0xf356f7ebf83552feU, 0x98165af37b2153deU,
1187 0xbe1bf1b059e9a8d6U, 0xeda2ee1c7064130cU, 0x9485d4d1c63e8be7U,
1188 0xb9a74a0637ce2ee1U, 0xe8111c87c5c1ba99U, 0x910ab1d4db9914a0U,
1189 0xb54d5e4a127f59c8U, 0xe2a0b5dc971f303aU, 0x8da471a9de737e24U,
1190 0xb10d8e1456105dadU, 0xdd50f1996b947518U, 0x8a5296ffe33cc92fU,
1191 0xace73cbfdc0bfb7bU, 0xd8210befd30efa5aU, 0x8714a775e3e95c78U,
1192 0xa8d9d1535ce3b396U, 0xd31045a8341ca07cU, 0x83ea2b892091e44dU,
1193 0xa4e4b66b68b65d60U, 0xce1de40642e3f4b9U, 0x80d2ae83e9ce78f3U,
1194 0xa1075a24e4421730U, 0xc94930ae1d529cfcU, 0xfb9b7cd9a4a7443cU,
1195 0x9d412e0806e88aa5U, 0xc491798a08a2ad4eU, 0xf5b5d7ec8acb58a2U,
1196 0x9991a6f3d6bf1765U, 0xbff610b0cc6edd3fU, 0xeff394dcff8a948eU,
1197 0x95f83d0a1fb69cd9U, 0xbb764c4ca7a4440fU, 0xea53df5fd18d5513U,
1198 0x92746b9be2f8552cU, 0xb7118682dbb66a77U, 0xe4d5e82392a40515U,
1199 0x8f05b1163ba6832dU, 0xb2c71d5bca9023f8U, 0xdf78e4b2bd342cf6U,
1200 0x8bab8eefb6409c1aU, 0xae9672aba3d0c320U, 0xda3c0f568cc4f3e8U,
1201 0x8865899617fb1871U, 0xaa7eebfb9df9de8dU, 0xd51ea6fa85785631U,
1202 0x8533285c936b35deU, 0xa67ff273b8460356U, 0xd01fef10a657842cU,
1203 0x8213f56a67f6b29bU, 0xa298f2c501f45f42U, 0xcb3f2f7642717713U,
1204 0xfe0efb53d30dd4d7U, 0x9ec95d1463e8a506U, 0xc67bb4597ce2ce48U,
1205 0xf81aa16fdc1b81daU, 0x9b10a4e5e9913128U, 0xc1d4ce1f63f57d72U,
1206 0xf24a01a73cf2dccfU, 0x976e41088617ca01U, 0xbd49d14aa79dbc82U,
1207 0xec9c459d51852ba2U, 0x93e1ab8252f33b45U, 0xb8da1662e7b00a17U,
1208 0xe7109bfba19c0c9dU, 0x906a617d450187e2U, 0xb484f9dc9641e9daU,
1209 0xe1a63853bbd26451U, 0x8d07e33455637eb2U, 0xb049dc016abc5e5fU,
1210 0xdc5c5301c56b75f7U, 0x89b9b3e11b6329baU, 0xac2820d9623bf429U,
1211 0xd732290fbacaf133U, 0x867f59a9d4bed6c0U, 0xa81f301449ee8c70U,
1212 0xd226fc195c6a2f8cU, 0x83585d8fd9c25db7U, 0xa42e74f3d032f525U,
1213 0xcd3a1230c43fb26fU, 0x80444b5e7aa7cf85U, 0xa0555e361951c366U,
1214 0xc86ab5c39fa63440U, 0xfa856334878fc150U, 0x9c935e00d4b9d8d2U,
1215 0xc3b8358109e84f07U, 0xf4a642e14c6262c8U, 0x98e7e9cccfbd7dbdU,
1216 0xbf21e44003acdd2cU, 0xeeea5d5004981478U, 0x95527a5202df0ccbU,
1217 0xbaa718e68396cffdU, 0xe950df20247c83fdU, 0x91d28b7416cdd27eU,
1218 0xb6472e511c81471dU, 0xe3d8f9e563a198e5U, 0x8e679c2f5e44ff8fU,
1219 };
1220
1221 const uint64_t kPower10MantissaLowTable[] = {
1222 0x113faa2906a13b3fU, 0x4ac7ca59a424c507U, 0x5d79bcf00d2df649U,
1223 0xf4d82c2c107973dcU, 0x79071b9b8a4be869U, 0x9748e2826cdee284U,
1224 0xfd1b1b2308169b25U, 0xfe30f0f5e50e20f7U, 0xbdbd2d335e51a935U,
1225 0xad2c788035e61382U, 0x4c3bcb5021afcc31U, 0xdf4abe242a1bbf3dU,
1226 0xd71d6dad34a2af0dU, 0x8672648c40e5ad68U, 0x680efdaf511f18c2U,
1227 0x0212bd1b2566def2U, 0x014bb630f7604b57U, 0x419ea3bd35385e2dU,
1228 0x52064cac828675b9U, 0x7343efebd1940993U, 0x1014ebe6c5f90bf8U,
1229 0xd41a26e077774ef6U, 0x8920b098955522b4U, 0x55b46e5f5d5535b0U,
1230 0xeb2189f734aa831dU, 0xa5e9ec7501d523e4U, 0x47b233c92125366eU,
1231 0x999ec0bb696e840aU, 0xc00670ea43ca250dU, 0x380406926a5e5728U,
1232 0xc605083704f5ecf2U, 0xf7864a44c633682eU, 0x7ab3ee6afbe0211dU,
1233 0x5960ea05bad82964U, 0x6fb92487298e33bdU, 0xa5d3b6d479f8e056U,
1234 0x8f48a4899877186cU, 0x331acdabfe94de87U, 0x9ff0c08b7f1d0b14U,
1235 0x07ecf0ae5ee44dd9U, 0xc9e82cd9f69d6150U, 0xbe311c083a225cd2U,
1236 0x6dbd630a48aaf406U, 0x092cbbccdad5b108U, 0x25bbf56008c58ea5U,
1237 0xaf2af2b80af6f24eU, 0x1af5af660db4aee1U, 0x50d98d9fc890ed4dU,
1238 0xe50ff107bab528a0U, 0x1e53ed49a96272c8U, 0x25e8e89c13bb0f7aU,
1239 0x77b191618c54e9acU, 0xd59df5b9ef6a2417U, 0x4b0573286b44ad1dU,
1240 0x4ee367f9430aec32U, 0x229c41f793cda73fU, 0x6b43527578c1110fU,
1241 0x830a13896b78aaa9U, 0x23cc986bc656d553U, 0x2cbfbe86b7ec8aa8U,
1242 0x7bf7d71432f3d6a9U, 0xdaf5ccd93fb0cc53U, 0xd1b3400f8f9cff68U,
1243 0x23100809b9c21fa1U, 0xabd40a0c2832a78aU, 0x16c90c8f323f516cU,
1244 0xae3da7d97f6792e3U, 0x99cd11cfdf41779cU, 0x40405643d711d583U,
1245 0x482835ea666b2572U, 0xda3243650005eecfU, 0x90bed43e40076a82U,
1246 0x5a7744a6e804a291U, 0x711515d0a205cb36U, 0x0d5a5b44ca873e03U,
1247 0xe858790afe9486c2U, 0x626e974dbe39a872U, 0xfb0a3d212dc8128fU,
1248 0x7ce66634bc9d0b99U, 0x1c1fffc1ebc44e80U, 0xa327ffb266b56220U,
1249 0x4bf1ff9f0062baa8U, 0x6f773fc3603db4a9U, 0xcb550fb4384d21d3U,
1250 0x7e2a53a146606a48U, 0x2eda7444cbfc426dU, 0xfa911155fefb5308U,
1251 0x793555ab7eba27caU, 0x4bc1558b2f3458deU, 0x9eb1aaedfb016f16U,
1252 0x465e15a979c1cadcU, 0x0bfacd89ec191ec9U, 0xcef980ec671f667bU,
1253 0x82b7e12780e7401aU, 0xd1b2ecb8b0908810U, 0x861fa7e6dcb4aa15U,
1254 0x67a791e093e1d49aU, 0xe0c8bb2c5c6d24e0U, 0x58fae9f773886e18U,
1255 0xaf39a475506a899eU, 0x6d8406c952429603U, 0xc8e5087ba6d33b83U,
1256 0xfb1e4a9a90880a64U, 0x5cf2eea09a55067fU, 0xf42faa48c0ea481eU,
1257 0xf13b94daf124da26U, 0x76c53d08d6b70858U, 0x54768c4b0c64ca6eU,
1258 0xa9942f5dcf7dfd09U, 0xd3f93b35435d7c4cU, 0xc47bc5014a1a6dafU,
1259 0x359ab6419ca1091bU, 0xc30163d203c94b62U, 0x79e0de63425dcf1dU,
1260 0x985915fc12f542e4U, 0x3e6f5b7b17b2939dU, 0xa705992ceecf9c42U,
1261 0x50c6ff782a838353U, 0xa4f8bf5635246428U, 0x871b7795e136be99U,
1262 0x28e2557b59846e3fU, 0x331aeada2fe589cfU, 0x3ff0d2c85def7621U,
1263 0x0fed077a756b53a9U, 0xd3e8495912c62894U, 0x64712dd7abbbd95cU,
1264 0xbd8d794d96aacfb3U, 0xecf0d7a0fc5583a0U, 0xf41686c49db57244U,
1265 0x311c2875c522ced5U, 0x7d633293366b828bU, 0xae5dff9c02033197U,
1266 0xd9f57f830283fdfcU, 0xd072df63c324fd7bU, 0x4247cb9e59f71e6dU,
1267 0x52d9be85f074e608U, 0x67902e276c921f8bU, 0x00ba1cd8a3db53b6U,
1268 0x80e8a40eccd228a4U, 0x6122cd128006b2cdU, 0x796b805720085f81U,
1269 0xcbe3303674053bb0U, 0xbedbfc4411068a9cU, 0xee92fb5515482d44U,
1270 0x751bdd152d4d1c4aU, 0xd262d45a78a0635dU, 0x86fb897116c87c34U,
1271 0xd45d35e6ae3d4da0U, 0x8974836059cca109U, 0x2bd1a438703fc94bU,
1272 0x7b6306a34627ddcfU, 0x1a3bc84c17b1d542U, 0x20caba5f1d9e4a93U,
1273 0x547eb47b7282ee9cU, 0xe99e619a4f23aa43U, 0x6405fa00e2ec94d4U,
1274 0xde83bc408dd3dd04U, 0x9624ab50b148d445U, 0x3badd624dd9b0957U,
1275 0xe54ca5d70a80e5d6U, 0x5e9fcf4ccd211f4cU, 0x7647c3200069671fU,
1276 0x29ecd9f40041e073U, 0xf468107100525890U, 0x7182148d4066eeb4U,
1277 0xc6f14cd848405530U, 0xb8ada00e5a506a7cU, 0xa6d90811f0e4851cU,
1278 0x908f4a166d1da663U, 0x9a598e4e043287feU, 0x40eff1e1853f29fdU,
1279 0xd12bee59e68ef47cU, 0x82bb74f8301958ceU, 0xe36a52363c1faf01U,
1280 0xdc44e6c3cb279ac1U, 0x29ab103a5ef8c0b9U, 0x7415d448f6b6f0e7U,
1281 0x111b495b3464ad21U, 0xcab10dd900beec34U, 0x3d5d514f40eea742U,
1282 0x0cb4a5a3112a5112U, 0x47f0e785eaba72abU, 0x59ed216765690f56U,
1283 0x306869c13ec3532cU, 0x1e414218c73a13fbU, 0xe5d1929ef90898faU,
1284 0xdf45f746b74abf39U, 0x6b8bba8c328eb783U, 0x066ea92f3f326564U,
1285 0xc80a537b0efefebdU, 0xbd06742ce95f5f36U, 0x2c48113823b73704U,
1286 0xf75a15862ca504c5U, 0x9a984d73dbe722fbU, 0xc13e60d0d2e0ebbaU,
1287 0x318df905079926a8U, 0xfdf17746497f7052U, 0xfeb6ea8bedefa633U,
1288 0xfe64a52ee96b8fc0U, 0x3dfdce7aa3c673b0U, 0x06bea10ca65c084eU,
1289 0x486e494fcff30a62U, 0x5a89dba3c3efccfaU, 0xf89629465a75e01cU,
1290 0xf6bbb397f1135823U, 0x746aa07ded582e2cU, 0xa8c2a44eb4571cdcU,
1291 0x92f34d62616ce413U, 0x77b020baf9c81d17U, 0x0ace1474dc1d122eU,
1292 0x0d819992132456baU, 0x10e1fff697ed6c69U, 0xca8d3ffa1ef463c1U,
1293 0xbd308ff8a6b17cb2U, 0xac7cb3f6d05ddbdeU, 0x6bcdf07a423aa96bU,
1294 0x86c16c98d2c953c6U, 0xe871c7bf077ba8b7U, 0x11471cd764ad4972U,
1295 0xd598e40d3dd89bcfU, 0x4aff1d108d4ec2c3U, 0xcedf722a585139baU,
1296 0xc2974eb4ee658828U, 0x733d226229feea32U, 0x0806357d5a3f525fU,
1297 0xca07c2dcb0cf26f7U, 0xfc89b393dd02f0b5U, 0xbbac2078d443ace2U,
1298 0xd54b944b84aa4c0dU, 0x0a9e795e65d4df11U, 0x4d4617b5ff4a16d5U,
1299 0x504bced1bf8e4e45U, 0xe45ec2862f71e1d6U, 0x5d767327bb4e5a4cU,
1300 0x3a6a07f8d510f86fU, 0x890489f70a55368bU, 0x2b45ac74ccea842eU,
1301 0x3b0b8bc90012929dU, 0x09ce6ebb40173744U, 0xcc420a6a101d0515U,
1302 0x9fa946824a12232dU, 0x47939822dc96abf9U, 0x59787e2b93bc56f7U,
1303 0x57eb4edb3c55b65aU, 0xede622920b6b23f1U, 0xe95fab368e45ecedU,
1304 0x11dbcb0218ebb414U, 0xd652bdc29f26a119U, 0x4be76d3346f0495fU,
1305 0x6f70a4400c562ddbU, 0xcb4ccd500f6bb952U, 0x7e2000a41346a7a7U,
1306 0x8ed400668c0c28c8U, 0x728900802f0f32faU, 0x4f2b40a03ad2ffb9U,
1307 0xe2f610c84987bfa8U, 0x0dd9ca7d2df4d7c9U, 0x91503d1c79720dbbU,
1308 0x75a44c6397ce912aU, 0xc986afbe3ee11abaU, 0xfbe85badce996168U,
1309 0xfae27299423fb9c3U, 0xdccd879fc967d41aU, 0x5400e987bbc1c920U,
1310 0x290123e9aab23b68U, 0xf9a0b6720aaf6521U, 0xf808e40e8d5b3e69U,
1311 0xb60b1d1230b20e04U, 0xb1c6f22b5e6f48c2U, 0x1e38aeb6360b1af3U,
1312 0x25c6da63c38de1b0U, 0x579c487e5a38ad0eU, 0x2d835a9df0c6d851U,
1313 0xf8e431456cf88e65U, 0x1b8e9ecb641b58ffU, 0xe272467e3d222f3fU,
1314 0x5b0ed81dcc6abb0fU, 0x98e947129fc2b4e9U, 0x3f2398d747b36224U,
1315 0x8eec7f0d19a03aadU, 0x1953cf68300424acU, 0x5fa8c3423c052dd7U,
1316 0x3792f412cb06794dU, 0xe2bbd88bbee40bd0U, 0x5b6aceaeae9d0ec4U,
1317 0xf245825a5a445275U, 0xeed6e2f0f0d56712U, 0x55464dd69685606bU,
1318 0xaa97e14c3c26b886U, 0xd53dd99f4b3066a8U, 0xe546a8038efe4029U,
1319 0xde98520472bdd033U, 0x963e66858f6d4440U, 0xdde7001379a44aa8U,
1320 0x5560c018580d5d52U, 0xaab8f01e6e10b4a6U, 0xcab3961304ca70e8U,
1321 0x3d607b97c5fd0d22U, 0x8cb89a7db77c506aU, 0x77f3608e92adb242U,
1322 0x55f038b237591ed3U, 0x6b6c46dec52f6688U, 0x2323ac4b3b3da015U,
1323 0xabec975e0a0d081aU, 0x96e7bd358c904a21U, 0x7e50d64177da2e54U,
1324 0xdde50bd1d5d0b9e9U, 0x955e4ec64b44e864U, 0xbd5af13bef0b113eU,
1325 0xecb1ad8aeacdd58eU, 0x67de18eda5814af2U, 0x80eacf948770ced7U,
1326 0xa1258379a94d028dU, 0x096ee45813a04330U, 0x8bca9d6e188853fcU,
1327 0x775ea264cf55347dU, 0x95364afe032a819dU, 0x3a83ddbd83f52204U,
1328 0xc4926a9672793542U, 0x75b7053c0f178293U, 0x5324c68b12dd6338U,
1329 0xd3f6fc16ebca5e03U, 0x88f4bb1ca6bcf584U, 0x2b31e9e3d06c32e5U,
1330 0x3aff322e62439fcfU, 0x09befeb9fad487c2U, 0x4c2ebe687989a9b3U,
1331 0x0f9d37014bf60a10U, 0x538484c19ef38c94U, 0x2865a5f206b06fb9U,
1332 0xf93f87b7442e45d3U, 0xf78f69a51539d748U, 0xb573440e5a884d1bU,
1333 0x31680a88f8953030U, 0xfdc20d2b36ba7c3dU, 0x3d32907604691b4cU,
1334 0xa63f9a49c2c1b10fU, 0x0fcf80dc33721d53U, 0xd3c36113404ea4a8U,
1335 0x645a1cac083126e9U, 0x3d70a3d70a3d70a3U, 0xccccccccccccccccU,
1336 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1337 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1338 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1339 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1340 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1341 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1342 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1343 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1344 0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1345 0x0000000000000000U, 0x4000000000000000U, 0x5000000000000000U,
1346 0xa400000000000000U, 0x4d00000000000000U, 0xf020000000000000U,
1347 0x6c28000000000000U, 0xc732000000000000U, 0x3c7f400000000000U,
1348 0x4b9f100000000000U, 0x1e86d40000000000U, 0x1314448000000000U,
1349 0x17d955a000000000U, 0x5dcfab0800000000U, 0x5aa1cae500000000U,
1350 0xf14a3d9e40000000U, 0x6d9ccd05d0000000U, 0xe4820023a2000000U,
1351 0xdda2802c8a800000U, 0xd50b2037ad200000U, 0x4526f422cc340000U,
1352 0x9670b12b7f410000U, 0x3c0cdd765f114000U, 0xa5880a69fb6ac800U,
1353 0x8eea0d047a457a00U, 0x72a4904598d6d880U, 0x47a6da2b7f864750U,
1354 0x999090b65f67d924U, 0xfff4b4e3f741cf6dU, 0xbff8f10e7a8921a4U,
1355 0xaff72d52192b6a0dU, 0x9bf4f8a69f764490U, 0x02f236d04753d5b4U,
1356 0x01d762422c946590U, 0x424d3ad2b7b97ef5U, 0xd2e0898765a7deb2U,
1357 0x63cc55f49f88eb2fU, 0x3cbf6b71c76b25fbU, 0x8bef464e3945ef7aU,
1358 0x97758bf0e3cbb5acU, 0x3d52eeed1cbea317U, 0x4ca7aaa863ee4bddU,
1359 0x8fe8caa93e74ef6aU, 0xb3e2fd538e122b44U, 0x60dbbca87196b616U,
1360 0xbc8955e946fe31cdU, 0x6babab6398bdbe41U, 0xc696963c7eed2dd1U,
1361 0xfc1e1de5cf543ca2U, 0x3b25a55f43294bcbU, 0x49ef0eb713f39ebeU,
1362 0x6e3569326c784337U, 0x49c2c37f07965404U, 0xdc33745ec97be906U,
1363 0x69a028bb3ded71a3U, 0xc40832ea0d68ce0cU, 0xf50a3fa490c30190U,
1364 0x792667c6da79e0faU, 0x577001b891185938U, 0xed4c0226b55e6f86U,
1365 0x544f8158315b05b4U, 0x696361ae3db1c721U, 0x03bc3a19cd1e38e9U,
1366 0x04ab48a04065c723U, 0x62eb0d64283f9c76U, 0x3ba5d0bd324f8394U,
1367 0xca8f44ec7ee36479U, 0x7e998b13cf4e1ecbU, 0x9e3fedd8c321a67eU,
1368 0xc5cfe94ef3ea101eU, 0xbba1f1d158724a12U, 0x2a8a6e45ae8edc97U,
1369 0xf52d09d71a3293bdU, 0x593c2626705f9c56U, 0x6f8b2fb00c77836cU,
1370 0x0b6dfb9c0f956447U, 0x4724bd4189bd5eacU, 0x58edec91ec2cb657U,
1371 0x2f2967b66737e3edU, 0xbd79e0d20082ee74U, 0xecd8590680a3aa11U,
1372 0xe80e6f4820cc9495U, 0x3109058d147fdcddU, 0xbd4b46f0599fd415U,
1373 0x6c9e18ac7007c91aU, 0x03e2cf6bc604ddb0U, 0x84db8346b786151cU,
1374 0xe612641865679a63U, 0x4fcb7e8f3f60c07eU, 0xe3be5e330f38f09dU,
1375 0x5cadf5bfd3072cc5U, 0x73d9732fc7c8f7f6U, 0x2867e7fddcdd9afaU,
1376 0xb281e1fd541501b8U, 0x1f225a7ca91a4226U, 0x3375788de9b06958U,
1377 0x0052d6b1641c83aeU, 0xc0678c5dbd23a49aU, 0xf840b7ba963646e0U,
1378 0xb650e5a93bc3d898U, 0xa3e51f138ab4cebeU, 0xc66f336c36b10137U,
1379 0xb80b0047445d4184U, 0xa60dc059157491e5U, 0x87c89837ad68db2fU,
1380 0x29babe4598c311fbU, 0xf4296dd6fef3d67aU, 0x1899e4a65f58660cU,
1381 0x5ec05dcff72e7f8fU, 0x76707543f4fa1f73U, 0x6a06494a791c53a8U,
1382 0x0487db9d17636892U, 0x45a9d2845d3c42b6U, 0x0b8a2392ba45a9b2U,
1383 0x8e6cac7768d7141eU, 0x3207d795430cd926U, 0x7f44e6bd49e807b8U,
1384 0x5f16206c9c6209a6U, 0x36dba887c37a8c0fU, 0xc2494954da2c9789U,
1385 0xf2db9baa10b7bd6cU, 0x6f92829494e5acc7U, 0xcb772339ba1f17f9U,
1386 0xff2a760414536efbU, 0xfef5138519684abaU, 0x7eb258665fc25d69U,
1387 0xef2f773ffbd97a61U, 0xaafb550ffacfd8faU, 0x95ba2a53f983cf38U,
1388 0xdd945a747bf26183U, 0x94f971119aeef9e4U, 0x7a37cd5601aab85dU,
1389 0xac62e055c10ab33aU, 0x577b986b314d6009U, 0xed5a7e85fda0b80bU,
1390 0x14588f13be847307U, 0x596eb2d8ae258fc8U, 0x6fca5f8ed9aef3bbU,
1391 0x25de7bb9480d5854U, 0xaf561aa79a10ae6aU, 0x1b2ba1518094da04U,
1392 0x90fb44d2f05d0842U, 0x353a1607ac744a53U, 0x42889b8997915ce8U,
1393 0x69956135febada11U, 0x43fab9837e699095U, 0x94f967e45e03f4bbU,
1394 0x1d1be0eebac278f5U, 0x6462d92a69731732U, 0x7d7b8f7503cfdcfeU,
1395 0x5cda735244c3d43eU, 0x3a0888136afa64a7U, 0x088aaa1845b8fdd0U,
1396 0x8aad549e57273d45U, 0x36ac54e2f678864bU, 0x84576a1bb416a7ddU,
1397 0x656d44a2a11c51d5U, 0x9f644ae5a4b1b325U, 0x873d5d9f0dde1feeU,
1398 0xa90cb506d155a7eaU, 0x09a7f12442d588f2U, 0x0c11ed6d538aeb2fU,
1399 0x8f1668c8a86da5faU, 0xf96e017d694487bcU, 0x37c981dcc395a9acU,
1400 0x85bbe253f47b1417U, 0x93956d7478ccec8eU, 0x387ac8d1970027b2U,
1401 0x06997b05fcc0319eU, 0x441fece3bdf81f03U, 0xd527e81cad7626c3U,
1402 0x8a71e223d8d3b074U, 0xf6872d5667844e49U, 0xb428f8ac016561dbU,
1403 0xe13336d701beba52U, 0xecc0024661173473U, 0x27f002d7f95d0190U,
1404 0x31ec038df7b441f4U, 0x7e67047175a15271U, 0x0f0062c6e984d386U,
1405 0x52c07b78a3e60868U, 0xa7709a56ccdf8a82U, 0x88a66076400bb691U,
1406 0x6acff893d00ea435U, 0x0583f6b8c4124d43U, 0xc3727a337a8b704aU,
1407 0x744f18c0592e4c5cU, 0x1162def06f79df73U, 0x8addcb5645ac2ba8U,
1408 0x6d953e2bd7173692U, 0xc8fa8db6ccdd0437U, 0x1d9c9892400a22a2U,
1409 0x2503beb6d00cab4bU, 0x2e44ae64840fd61dU, 0x5ceaecfed289e5d2U,
1410 0x7425a83e872c5f47U, 0xd12f124e28f77719U, 0x82bd6b70d99aaa6fU,
1411 0x636cc64d1001550bU, 0x3c47f7e05401aa4eU, 0x65acfaec34810a71U,
1412 0x7f1839a741a14d0dU, 0x1ede48111209a050U, 0x934aed0aab460432U,
1413 0xf81da84d5617853fU, 0x36251260ab9d668eU, 0xc1d72b7c6b426019U,
1414 0xb24cf65b8612f81fU, 0xdee033f26797b627U, 0x169840ef017da3b1U,
1415 0x8e1f289560ee864eU, 0xf1a6f2bab92a27e2U, 0xae10af696774b1dbU,
1416 0xacca6da1e0a8ef29U, 0x17fd090a58d32af3U, 0xddfc4b4cef07f5b0U,
1417 0x4abdaf101564f98eU, 0x9d6d1ad41abe37f1U, 0x84c86189216dc5edU,
1418 0x32fd3cf5b4e49bb4U, 0x3fbc8c33221dc2a1U, 0x0fabaf3feaa5334aU,
1419 0x29cb4d87f2a7400eU, 0x743e20e9ef511012U, 0x914da9246b255416U,
1420 0x1ad089b6c2f7548eU, 0xa184ac2473b529b1U, 0xc9e5d72d90a2741eU,
1421 0x7e2fa67c7a658892U, 0xddbb901b98feeab7U, 0x552a74227f3ea565U,
1422 0xd53a88958f87275fU, 0x8a892abaf368f137U, 0x2d2b7569b0432d85U,
1423 0x9c3b29620e29fc73U, 0x8349f3ba91b47b8fU, 0x241c70a936219a73U,
1424 0xed238cd383aa0110U, 0xf4363804324a40aaU, 0xb143c6053edcd0d5U,
1425 0xdd94b7868e94050aU, 0xca7cf2b4191c8326U, 0xfd1c2f611f63a3f0U,
1426 0xbc633b39673c8cecU, 0xd5be0503e085d813U, 0x4b2d8644d8a74e18U,
1427 0xddf8e7d60ed1219eU, 0xcabb90e5c942b503U, 0x3d6a751f3b936243U,
1428 0x0cc512670a783ad4U, 0x27fb2b80668b24c5U, 0xb1f9f660802dedf6U,
1429 0x5e7873f8a0396973U, 0xdb0b487b6423e1e8U, 0x91ce1a9a3d2cda62U,
1430 0x7641a140cc7810fbU, 0xa9e904c87fcb0a9dU, 0x546345fa9fbdcd44U,
1431 0xa97c177947ad4095U, 0x49ed8eabcccc485dU, 0x5c68f256bfff5a74U,
1432 0x73832eec6fff3111U, 0xc831fd53c5ff7eabU, 0xba3e7ca8b77f5e55U,
1433 0x28ce1bd2e55f35ebU, 0x7980d163cf5b81b3U, 0xd7e105bcc332621fU,
1434 0x8dd9472bf3fefaa7U, 0xb14f98f6f0feb951U, 0x6ed1bf9a569f33d3U,
1435 0x0a862f80ec4700c8U, 0xcd27bb612758c0faU, 0x8038d51cb897789cU,
1436 0xe0470a63e6bd56c3U, 0x1858ccfce06cac74U, 0x0f37801e0c43ebc8U,
1437 0xd30560258f54e6baU, 0x47c6b82ef32a2069U, 0x4cdc331d57fa5441U,
1438 0xe0133fe4adf8e952U, 0x58180fddd97723a6U, 0x570f09eaa7ea7648U,
1439 };
1440
1441 } // namespace
1442 ABSL_NAMESPACE_END
1443 } // namespace absl
1444