• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/strings/charconv.h"
16 
17 #include <algorithm>
18 #include <cassert>
19 #include <cstddef>
20 #include <cstdint>
21 #include <limits>
22 #include <system_error>  // NOLINT(build/c++11)
23 
24 #include "absl/base/casts.h"
25 #include "absl/base/config.h"
26 #include "absl/base/nullability.h"
27 #include "absl/numeric/bits.h"
28 #include "absl/numeric/int128.h"
29 #include "absl/strings/internal/charconv_bigint.h"
30 #include "absl/strings/internal/charconv_parse.h"
31 
32 // The macro ABSL_BIT_PACK_FLOATS is defined on x86-64, where IEEE floating
33 // point numbers have the same endianness in memory as a bitfield struct
34 // containing the corresponding parts.
35 //
36 // When set, we replace calls to ldexp() with manual bit packing, which is
37 // faster and is unaffected by floating point environment.
38 #ifdef ABSL_BIT_PACK_FLOATS
39 #error ABSL_BIT_PACK_FLOATS cannot be directly set
40 #elif defined(__x86_64__) || defined(_M_X64)
41 #define ABSL_BIT_PACK_FLOATS 1
42 #endif
43 
44 // A note about subnormals:
45 //
46 // The code below talks about "normals" and "subnormals".  A normal IEEE float
47 // has a fixed-width mantissa and power of two exponent.  For example, a normal
48 // `double` has a 53-bit mantissa.  Because the high bit is always 1, it is not
49 // stored in the representation.  The implicit bit buys an extra bit of
50 // resolution in the datatype.
51 //
52 // The downside of this scheme is that there is a large gap between DBL_MIN and
53 // zero.  (Large, at least, relative to the different between DBL_MIN and the
54 // next representable number).  This gap is softened by the "subnormal" numbers,
55 // which have the same power-of-two exponent as DBL_MIN, but no implicit 53rd
56 // bit.  An all-bits-zero exponent in the encoding represents subnormals.  (Zero
57 // is represented as a subnormal with an all-bits-zero mantissa.)
58 //
59 // The code below, in calculations, represents the mantissa as a uint64_t.  The
60 // end result normally has the 53rd bit set.  It represents subnormals by using
61 // narrower mantissas.
62 
63 namespace absl {
64 ABSL_NAMESPACE_BEGIN
65 namespace {
66 
67 template <typename FloatType>
68 struct FloatTraits;
69 
70 template <>
71 struct FloatTraits<double> {
72   using mantissa_t = uint64_t;
73 
74   // The number of bits in the given float type.
75   static constexpr int kTargetBits = 64;
76 
77   // The number of exponent bits in the given float type.
78   static constexpr int kTargetExponentBits = 11;
79 
80   // The number of mantissa bits in the given float type.  This includes the
81   // implied high bit.
82   static constexpr int kTargetMantissaBits = 53;
83 
84   // The largest supported IEEE exponent, in our integral mantissa
85   // representation.
86   //
87   // If `m` is the largest possible int kTargetMantissaBits bits wide, then
88   // m * 2**kMaxExponent is exactly equal to DBL_MAX.
89   static constexpr int kMaxExponent = 971;
90 
91   // The smallest supported IEEE normal exponent, in our integral mantissa
92   // representation.
93   //
94   // If `m` is the smallest possible int kTargetMantissaBits bits wide, then
95   // m * 2**kMinNormalExponent is exactly equal to DBL_MIN.
96   static constexpr int kMinNormalExponent = -1074;
97 
98   // The IEEE exponent bias.  It equals ((1 << (kTargetExponentBits - 1)) - 1).
99   static constexpr int kExponentBias = 1023;
100 
101   // The Eisel-Lemire "Shifting to 54/25 Bits" adjustment.  It equals (63 - 1 -
102   // kTargetMantissaBits).
103   static constexpr int kEiselLemireShift = 9;
104 
105   // The Eisel-Lemire high64_mask.  It equals ((1 << kEiselLemireShift) - 1).
106   static constexpr uint64_t kEiselLemireMask = uint64_t{0x1FF};
107 
108   // The smallest negative integer N (smallest negative means furthest from
109   // zero) such that parsing 9999999999999999999eN, with 19 nines, is still
110   // positive. Parsing a smaller (more negative) N will produce zero.
111   //
112   // Adjusting the decimal point and exponent, without adjusting the value,
113   // 9999999999999999999eN equals 9.999999999999999999eM where M = N + 18.
114   //
115   // 9999999999999999999, with 19 nines but no decimal point, is the largest
116   // "repeated nines" integer that fits in a uint64_t.
117   static constexpr int kEiselLemireMinInclusiveExp10 = -324 - 18;
118 
119   // The smallest positive integer N such that parsing 1eN produces infinity.
120   // Parsing a smaller N will produce something finite.
121   static constexpr int kEiselLemireMaxExclusiveExp10 = 309;
122 
MakeNanabsl::__anon268d8b570111::FloatTraits123   static double MakeNan(absl::Nonnull<const char*> tagp) {
124 #if ABSL_HAVE_BUILTIN(__builtin_nan)
125     // Use __builtin_nan() if available since it has a fix for
126     // https://bugs.llvm.org/show_bug.cgi?id=37778
127     // std::nan may use the glibc implementation.
128     return __builtin_nan(tagp);
129 #else
130     // Support nan no matter which namespace it's in.  Some platforms
131     // incorrectly don't put it in namespace std.
132     using namespace std;  // NOLINT
133     return nan(tagp);
134 #endif
135   }
136 
137   // Builds a nonzero floating point number out of the provided parts.
138   //
139   // This is intended to do the same operation as ldexp(mantissa, exponent),
140   // but using purely integer math, to avoid -ffastmath and floating
141   // point environment issues.  Using type punning is also faster. We fall back
142   // to ldexp on a per-platform basis for portability.
143   //
144   // `exponent` must be between kMinNormalExponent and kMaxExponent.
145   //
146   // `mantissa` must either be exactly kTargetMantissaBits wide, in which case
147   // a normal value is made, or it must be less narrow than that, in which case
148   // `exponent` must be exactly kMinNormalExponent, and a subnormal value is
149   // made.
Makeabsl::__anon268d8b570111::FloatTraits150   static double Make(mantissa_t mantissa, int exponent, bool sign) {
151 #ifndef ABSL_BIT_PACK_FLOATS
152     // Support ldexp no matter which namespace it's in.  Some platforms
153     // incorrectly don't put it in namespace std.
154     using namespace std;  // NOLINT
155     return sign ? -ldexp(mantissa, exponent) : ldexp(mantissa, exponent);
156 #else
157     constexpr uint64_t kMantissaMask =
158         (uint64_t{1} << (kTargetMantissaBits - 1)) - 1;
159     uint64_t dbl = static_cast<uint64_t>(sign) << 63;
160     if (mantissa > kMantissaMask) {
161       // Normal value.
162       // Adjust by 1023 for the exponent representation bias, and an additional
163       // 52 due to the implied decimal point in the IEEE mantissa
164       // representation.
165       dbl += static_cast<uint64_t>(exponent + 1023 + kTargetMantissaBits - 1)
166              << 52;
167       mantissa &= kMantissaMask;
168     } else {
169       // subnormal value
170       assert(exponent == kMinNormalExponent);
171     }
172     dbl += mantissa;
173     return absl::bit_cast<double>(dbl);
174 #endif  // ABSL_BIT_PACK_FLOATS
175   }
176 };
177 
178 // Specialization of floating point traits for the `float` type.  See the
179 // FloatTraits<double> specialization above for meaning of each of the following
180 // members and methods.
181 template <>
182 struct FloatTraits<float> {
183   using mantissa_t = uint32_t;
184 
185   static constexpr int kTargetBits = 32;
186   static constexpr int kTargetExponentBits = 8;
187   static constexpr int kTargetMantissaBits = 24;
188   static constexpr int kMaxExponent = 104;
189   static constexpr int kMinNormalExponent = -149;
190   static constexpr int kExponentBias = 127;
191   static constexpr int kEiselLemireShift = 38;
192   static constexpr uint64_t kEiselLemireMask = uint64_t{0x3FFFFFFFFF};
193   static constexpr int kEiselLemireMinInclusiveExp10 = -46 - 18;
194   static constexpr int kEiselLemireMaxExclusiveExp10 = 39;
195 
MakeNanabsl::__anon268d8b570111::FloatTraits196   static float MakeNan(absl::Nonnull<const char*> tagp) {
197 #if ABSL_HAVE_BUILTIN(__builtin_nanf)
198     // Use __builtin_nanf() if available since it has a fix for
199     // https://bugs.llvm.org/show_bug.cgi?id=37778
200     // std::nanf may use the glibc implementation.
201     return __builtin_nanf(tagp);
202 #else
203     // Support nanf no matter which namespace it's in.  Some platforms
204     // incorrectly don't put it in namespace std.
205     using namespace std;  // NOLINT
206     return std::nanf(tagp);
207 #endif
208   }
209 
Makeabsl::__anon268d8b570111::FloatTraits210   static float Make(mantissa_t mantissa, int exponent, bool sign) {
211 #ifndef ABSL_BIT_PACK_FLOATS
212     // Support ldexpf no matter which namespace it's in.  Some platforms
213     // incorrectly don't put it in namespace std.
214     using namespace std;  // NOLINT
215     return sign ? -ldexpf(mantissa, exponent) : ldexpf(mantissa, exponent);
216 #else
217     constexpr uint32_t kMantissaMask =
218         (uint32_t{1} << (kTargetMantissaBits - 1)) - 1;
219     uint32_t flt = static_cast<uint32_t>(sign) << 31;
220     if (mantissa > kMantissaMask) {
221       // Normal value.
222       // Adjust by 127 for the exponent representation bias, and an additional
223       // 23 due to the implied decimal point in the IEEE mantissa
224       // representation.
225       flt += static_cast<uint32_t>(exponent + 127 + kTargetMantissaBits - 1)
226              << 23;
227       mantissa &= kMantissaMask;
228     } else {
229       // subnormal value
230       assert(exponent == kMinNormalExponent);
231     }
232     flt += mantissa;
233     return absl::bit_cast<float>(flt);
234 #endif  // ABSL_BIT_PACK_FLOATS
235   }
236 };
237 
238 // Decimal-to-binary conversions require coercing powers of 10 into a mantissa
239 // and a power of 2.  The two helper functions Power10Mantissa(n) and
240 // Power10Exponent(n) perform this task.  Together, these represent a hand-
241 // rolled floating point value which is equal to or just less than 10**n.
242 //
243 // The return values satisfy two range guarantees:
244 //
245 //   Power10Mantissa(n) * 2**Power10Exponent(n) <= 10**n
246 //     < (Power10Mantissa(n) + 1) * 2**Power10Exponent(n)
247 //
248 //   2**63 <= Power10Mantissa(n) < 2**64.
249 //
250 // See the "Table of powers of 10" comment below for a "1e60" example.
251 //
252 // Lookups into the power-of-10 table must first check the Power10Overflow() and
253 // Power10Underflow() functions, to avoid out-of-bounds table access.
254 //
255 // Indexes into these tables are biased by -kPower10TableMinInclusive. Valid
256 // indexes range from kPower10TableMinInclusive to kPower10TableMaxExclusive.
257 extern const uint64_t kPower10MantissaHighTable[];  // High 64 of 128 bits.
258 extern const uint64_t kPower10MantissaLowTable[];   // Low  64 of 128 bits.
259 
260 // The smallest (inclusive) allowed value for use with the Power10Mantissa()
261 // and Power10Exponent() functions below.  (If a smaller exponent is needed in
262 // calculations, the end result is guaranteed to underflow.)
263 constexpr int kPower10TableMinInclusive = -342;
264 
265 // The largest (exclusive) allowed value for use with the Power10Mantissa() and
266 // Power10Exponent() functions below.  (If a larger-or-equal exponent is needed
267 // in calculations, the end result is guaranteed to overflow.)
268 constexpr int kPower10TableMaxExclusive = 309;
269 
Power10Mantissa(int n)270 uint64_t Power10Mantissa(int n) {
271   return kPower10MantissaHighTable[n - kPower10TableMinInclusive];
272 }
273 
Power10Exponent(int n)274 int Power10Exponent(int n) {
275   // The 217706 etc magic numbers encode the results as a formula instead of a
276   // table. Their equivalence (over the kPower10TableMinInclusive ..
277   // kPower10TableMaxExclusive range) is confirmed by
278   // https://github.com/google/wuffs/blob/315b2e52625ebd7b02d8fac13e3cd85ea374fb80/script/print-mpb-powers-of-10.go
279   return (217706 * n >> 16) - 63;
280 }
281 
282 // Returns true if n is large enough that 10**n always results in an IEEE
283 // overflow.
Power10Overflow(int n)284 bool Power10Overflow(int n) { return n >= kPower10TableMaxExclusive; }
285 
286 // Returns true if n is small enough that 10**n times a ParsedFloat mantissa
287 // always results in an IEEE underflow.
Power10Underflow(int n)288 bool Power10Underflow(int n) { return n < kPower10TableMinInclusive; }
289 
290 // Returns true if Power10Mantissa(n) * 2**Power10Exponent(n) is exactly equal
291 // to 10**n numerically.  Put another way, this returns true if there is no
292 // truncation error in Power10Mantissa(n).
Power10Exact(int n)293 bool Power10Exact(int n) { return n >= 0 && n <= 27; }
294 
295 // Sentinel exponent values for representing numbers too large or too close to
296 // zero to represent in a double.
297 constexpr int kOverflow = 99999;
298 constexpr int kUnderflow = -99999;
299 
300 // Struct representing the calculated conversion result of a positive (nonzero)
301 // floating point number.
302 //
303 // The calculated number is mantissa * 2**exponent (mantissa is treated as an
304 // integer.)  `mantissa` is chosen to be the correct width for the IEEE float
305 // representation being calculated.  (`mantissa` will always have the same bit
306 // width for normal values, and narrower bit widths for subnormals.)
307 //
308 // If the result of conversion was an underflow or overflow, exponent is set
309 // to kUnderflow or kOverflow.
310 struct CalculatedFloat {
311   uint64_t mantissa = 0;
312   int exponent = 0;
313 };
314 
315 // Returns the bit width of the given uint128.  (Equivalently, returns 128
316 // minus the number of leading zero bits.)
BitWidth(uint128 value)317 int BitWidth(uint128 value) {
318   if (Uint128High64(value) == 0) {
319     // This static_cast is only needed when using a std::bit_width()
320     // implementation that does not have the fix for LWG 3656 applied.
321     return static_cast<int>(bit_width(Uint128Low64(value)));
322   }
323   return 128 - countl_zero(Uint128High64(value));
324 }
325 
326 // Calculates how far to the right a mantissa needs to be shifted to create a
327 // properly adjusted mantissa for an IEEE floating point number.
328 //
329 // `mantissa_width` is the bit width of the mantissa to be shifted, and
330 // `binary_exponent` is the exponent of the number before the shift.
331 //
332 // This accounts for subnormal values, and will return a larger-than-normal
333 // shift if binary_exponent would otherwise be too low.
334 template <typename FloatType>
NormalizedShiftSize(int mantissa_width,int binary_exponent)335 int NormalizedShiftSize(int mantissa_width, int binary_exponent) {
336   const int normal_shift =
337       mantissa_width - FloatTraits<FloatType>::kTargetMantissaBits;
338   const int minimum_shift =
339       FloatTraits<FloatType>::kMinNormalExponent - binary_exponent;
340   return std::max(normal_shift, minimum_shift);
341 }
342 
343 // Right shifts a uint128 so that it has the requested bit width.  (The
344 // resulting value will have 128 - bit_width leading zeroes.)  The initial
345 // `value` must be wider than the requested bit width.
346 //
347 // Returns the number of bits shifted.
TruncateToBitWidth(int bit_width,absl::Nonnull<uint128 * > value)348 int TruncateToBitWidth(int bit_width, absl::Nonnull<uint128*> value) {
349   const int current_bit_width = BitWidth(*value);
350   const int shift = current_bit_width - bit_width;
351   *value >>= shift;
352   return shift;
353 }
354 
355 // Checks if the given ParsedFloat represents one of the edge cases that are
356 // not dependent on number base: zero, infinity, or NaN.  If so, sets *value
357 // the appropriate double, and returns true.
358 template <typename FloatType>
HandleEdgeCase(const strings_internal::ParsedFloat & input,bool negative,absl::Nonnull<FloatType * > value)359 bool HandleEdgeCase(const strings_internal::ParsedFloat& input, bool negative,
360                     absl::Nonnull<FloatType*> value) {
361   if (input.type == strings_internal::FloatType::kNan) {
362     // A bug in gcc would cause the compiler to optimize away the buffer we are
363     // building below.  Declaring the buffer volatile avoids the issue, and has
364     // no measurable performance impact in microbenchmarks.
365     //
366     // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86113
367     constexpr ptrdiff_t kNanBufferSize = 128;
368 #if (defined(__GNUC__) && !defined(__clang__))
369     volatile char n_char_sequence[kNanBufferSize];
370 #else
371     char n_char_sequence[kNanBufferSize];
372 #endif
373     if (input.subrange_begin == nullptr) {
374       n_char_sequence[0] = '\0';
375     } else {
376       ptrdiff_t nan_size = input.subrange_end - input.subrange_begin;
377       nan_size = std::min(nan_size, kNanBufferSize - 1);
378       std::copy_n(input.subrange_begin, nan_size, n_char_sequence);
379       n_char_sequence[nan_size] = '\0';
380     }
381     char* nan_argument = const_cast<char*>(n_char_sequence);
382     *value = negative ? -FloatTraits<FloatType>::MakeNan(nan_argument)
383                       : FloatTraits<FloatType>::MakeNan(nan_argument);
384     return true;
385   }
386   if (input.type == strings_internal::FloatType::kInfinity) {
387     *value = negative ? -std::numeric_limits<FloatType>::infinity()
388                       : std::numeric_limits<FloatType>::infinity();
389     return true;
390   }
391   if (input.mantissa == 0) {
392     *value = negative ? -0.0f : 0.0f;
393     return true;
394   }
395   return false;
396 }
397 
398 // Given a CalculatedFloat result of a from_chars conversion, generate the
399 // correct output values.
400 //
401 // CalculatedFloat can represent an underflow or overflow, in which case the
402 // error code in *result is set.  Otherwise, the calculated floating point
403 // number is stored in *value.
404 template <typename FloatType>
EncodeResult(const CalculatedFloat & calculated,bool negative,absl::Nonnull<absl::from_chars_result * > result,absl::Nonnull<FloatType * > value)405 void EncodeResult(const CalculatedFloat& calculated, bool negative,
406                   absl::Nonnull<absl::from_chars_result*> result,
407                   absl::Nonnull<FloatType*> value) {
408   if (calculated.exponent == kOverflow) {
409     result->ec = std::errc::result_out_of_range;
410     *value = negative ? -std::numeric_limits<FloatType>::max()
411                       : std::numeric_limits<FloatType>::max();
412     return;
413   } else if (calculated.mantissa == 0 || calculated.exponent == kUnderflow) {
414     result->ec = std::errc::result_out_of_range;
415     *value = negative ? -0.0f : 0.0f;
416     return;
417   }
418   *value = FloatTraits<FloatType>::Make(
419       static_cast<typename FloatTraits<FloatType>::mantissa_t>(
420           calculated.mantissa),
421       calculated.exponent, negative);
422 }
423 
424 // Returns the given uint128 shifted to the right by `shift` bits, and rounds
425 // the remaining bits using round_to_nearest logic.  The value is returned as a
426 // uint64_t, since this is the type used by this library for storing calculated
427 // floating point mantissas.
428 //
429 // It is expected that the width of the input value shifted by `shift` will
430 // be the correct bit-width for the target mantissa, which is strictly narrower
431 // than a uint64_t.
432 //
433 // If `input_exact` is false, then a nonzero error epsilon is assumed.  For
434 // rounding purposes, the true value being rounded is strictly greater than the
435 // input value.  The error may represent a single lost carry bit.
436 //
437 // When input_exact, shifted bits of the form 1000000... represent a tie, which
438 // is broken by rounding to even -- the rounding direction is chosen so the low
439 // bit of the returned value is 0.
440 //
441 // When !input_exact, shifted bits of the form 10000000... represent a value
442 // strictly greater than one half (due to the error epsilon), and so ties are
443 // always broken by rounding up.
444 //
445 // When !input_exact, shifted bits of the form 01111111... are uncertain;
446 // the true value may or may not be greater than 10000000..., due to the
447 // possible lost carry bit.  The correct rounding direction is unknown.  In this
448 // case, the result is rounded down, and `output_exact` is set to false.
449 //
450 // Zero and negative values of `shift` are accepted, in which case the word is
451 // shifted left, as necessary.
ShiftRightAndRound(uint128 value,int shift,bool input_exact,absl::Nonnull<bool * > output_exact)452 uint64_t ShiftRightAndRound(uint128 value, int shift, bool input_exact,
453                             absl::Nonnull<bool*> output_exact) {
454   if (shift <= 0) {
455     *output_exact = input_exact;
456     return static_cast<uint64_t>(value << -shift);
457   }
458   if (shift >= 128) {
459     // Exponent is so small that we are shifting away all significant bits.
460     // Answer will not be representable, even as a subnormal, so return a zero
461     // mantissa (which represents underflow).
462     *output_exact = true;
463     return 0;
464   }
465 
466   *output_exact = true;
467   const uint128 shift_mask = (uint128(1) << shift) - 1;
468   const uint128 halfway_point = uint128(1) << (shift - 1);
469 
470   const uint128 shifted_bits = value & shift_mask;
471   value >>= shift;
472   if (shifted_bits > halfway_point) {
473     // Shifted bits greater than 10000... require rounding up.
474     return static_cast<uint64_t>(value + 1);
475   }
476   if (shifted_bits == halfway_point) {
477     // In exact mode, shifted bits of 10000... mean we're exactly halfway
478     // between two numbers, and we must round to even.  So only round up if
479     // the low bit of `value` is set.
480     //
481     // In inexact mode, the nonzero error means the actual value is greater
482     // than the halfway point and we must always round up.
483     if ((value & 1) == 1 || !input_exact) {
484       ++value;
485     }
486     return static_cast<uint64_t>(value);
487   }
488   if (!input_exact && shifted_bits == halfway_point - 1) {
489     // Rounding direction is unclear, due to error.
490     *output_exact = false;
491   }
492   // Otherwise, round down.
493   return static_cast<uint64_t>(value);
494 }
495 
496 // Checks if a floating point guess needs to be rounded up, using high precision
497 // math.
498 //
499 // `guess_mantissa` and `guess_exponent` represent a candidate guess for the
500 // number represented by `parsed_decimal`.
501 //
502 // The exact number represented by `parsed_decimal` must lie between the two
503 // numbers:
504 //   A = `guess_mantissa * 2**guess_exponent`
505 //   B = `(guess_mantissa + 1) * 2**guess_exponent`
506 //
507 // This function returns false if `A` is the better guess, and true if `B` is
508 // the better guess, with rounding ties broken by rounding to even.
MustRoundUp(uint64_t guess_mantissa,int guess_exponent,const strings_internal::ParsedFloat & parsed_decimal)509 bool MustRoundUp(uint64_t guess_mantissa, int guess_exponent,
510                  const strings_internal::ParsedFloat& parsed_decimal) {
511   // 768 is the number of digits needed in the worst case.  We could determine a
512   // better limit dynamically based on the value of parsed_decimal.exponent.
513   // This would optimize pathological input cases only.  (Sane inputs won't have
514   // hundreds of digits of mantissa.)
515   absl::strings_internal::BigUnsigned<84> exact_mantissa;
516   int exact_exponent = exact_mantissa.ReadFloatMantissa(parsed_decimal, 768);
517 
518   // Adjust the `guess` arguments to be halfway between A and B.
519   guess_mantissa = guess_mantissa * 2 + 1;
520   guess_exponent -= 1;
521 
522   // In our comparison:
523   // lhs = exact = exact_mantissa * 10**exact_exponent
524   //             = exact_mantissa * 5**exact_exponent * 2**exact_exponent
525   // rhs = guess = guess_mantissa * 2**guess_exponent
526   //
527   // Because we are doing integer math, we can't directly deal with negative
528   // exponents.  We instead move these to the other side of the inequality.
529   absl::strings_internal::BigUnsigned<84>& lhs = exact_mantissa;
530   int comparison;
531   if (exact_exponent >= 0) {
532     lhs.MultiplyByFiveToTheNth(exact_exponent);
533     absl::strings_internal::BigUnsigned<84> rhs(guess_mantissa);
534     // There are powers of 2 on both sides of the inequality; reduce this to
535     // a single bit-shift.
536     if (exact_exponent > guess_exponent) {
537       lhs.ShiftLeft(exact_exponent - guess_exponent);
538     } else {
539       rhs.ShiftLeft(guess_exponent - exact_exponent);
540     }
541     comparison = Compare(lhs, rhs);
542   } else {
543     // Move the power of 5 to the other side of the equation, giving us:
544     // lhs = exact_mantissa * 2**exact_exponent
545     // rhs = guess_mantissa * 5**(-exact_exponent) * 2**guess_exponent
546     absl::strings_internal::BigUnsigned<84> rhs =
547         absl::strings_internal::BigUnsigned<84>::FiveToTheNth(-exact_exponent);
548     rhs.MultiplyBy(guess_mantissa);
549     if (exact_exponent > guess_exponent) {
550       lhs.ShiftLeft(exact_exponent - guess_exponent);
551     } else {
552       rhs.ShiftLeft(guess_exponent - exact_exponent);
553     }
554     comparison = Compare(lhs, rhs);
555   }
556   if (comparison < 0) {
557     return false;
558   } else if (comparison > 0) {
559     return true;
560   } else {
561     // When lhs == rhs, the decimal input is exactly between A and B.
562     // Round towards even -- round up only if the low bit of the initial
563     // `guess_mantissa` was a 1.  We shifted guess_mantissa left 1 bit at
564     // the beginning of this function, so test the 2nd bit here.
565     return (guess_mantissa & 2) == 2;
566   }
567 }
568 
569 // Constructs a CalculatedFloat from a given mantissa and exponent, but
570 // with the following normalizations applied:
571 //
572 // If rounding has caused mantissa to increase just past the allowed bit
573 // width, shift and adjust exponent.
574 //
575 // If exponent is too high, sets kOverflow.
576 //
577 // If mantissa is zero (representing a non-zero value not representable, even
578 // as a subnormal), sets kUnderflow.
579 template <typename FloatType>
CalculatedFloatFromRawValues(uint64_t mantissa,int exponent)580 CalculatedFloat CalculatedFloatFromRawValues(uint64_t mantissa, int exponent) {
581   CalculatedFloat result;
582   if (mantissa == uint64_t{1} << FloatTraits<FloatType>::kTargetMantissaBits) {
583     mantissa >>= 1;
584     exponent += 1;
585   }
586   if (exponent > FloatTraits<FloatType>::kMaxExponent) {
587     result.exponent = kOverflow;
588   } else if (mantissa == 0) {
589     result.exponent = kUnderflow;
590   } else {
591     result.exponent = exponent;
592     result.mantissa = mantissa;
593   }
594   return result;
595 }
596 
597 template <typename FloatType>
CalculateFromParsedHexadecimal(const strings_internal::ParsedFloat & parsed_hex)598 CalculatedFloat CalculateFromParsedHexadecimal(
599     const strings_internal::ParsedFloat& parsed_hex) {
600   uint64_t mantissa = parsed_hex.mantissa;
601   int exponent = parsed_hex.exponent;
602   // This static_cast is only needed when using a std::bit_width()
603   // implementation that does not have the fix for LWG 3656 applied.
604   int mantissa_width = static_cast<int>(bit_width(mantissa));
605   const int shift = NormalizedShiftSize<FloatType>(mantissa_width, exponent);
606   bool result_exact;
607   exponent += shift;
608   mantissa = ShiftRightAndRound(mantissa, shift,
609                                 /* input exact= */ true, &result_exact);
610   // ParseFloat handles rounding in the hexadecimal case, so we don't have to
611   // check `result_exact` here.
612   return CalculatedFloatFromRawValues<FloatType>(mantissa, exponent);
613 }
614 
615 template <typename FloatType>
CalculateFromParsedDecimal(const strings_internal::ParsedFloat & parsed_decimal)616 CalculatedFloat CalculateFromParsedDecimal(
617     const strings_internal::ParsedFloat& parsed_decimal) {
618   CalculatedFloat result;
619 
620   // Large or small enough decimal exponents will always result in overflow
621   // or underflow.
622   if (Power10Underflow(parsed_decimal.exponent)) {
623     result.exponent = kUnderflow;
624     return result;
625   } else if (Power10Overflow(parsed_decimal.exponent)) {
626     result.exponent = kOverflow;
627     return result;
628   }
629 
630   // Otherwise convert our power of 10 into a power of 2 times an integer
631   // mantissa, and multiply this by our parsed decimal mantissa.
632   uint128 wide_binary_mantissa = parsed_decimal.mantissa;
633   wide_binary_mantissa *= Power10Mantissa(parsed_decimal.exponent);
634   int binary_exponent = Power10Exponent(parsed_decimal.exponent);
635 
636   // Discard bits that are inaccurate due to truncation error.  The magic
637   // `mantissa_width` constants below are justified in
638   // https://abseil.io/about/design/charconv. They represent the number of bits
639   // in `wide_binary_mantissa` that are guaranteed to be unaffected by error
640   // propagation.
641   bool mantissa_exact;
642   int mantissa_width;
643   if (parsed_decimal.subrange_begin) {
644     // Truncated mantissa
645     mantissa_width = 58;
646     mantissa_exact = false;
647     binary_exponent +=
648         TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
649   } else if (!Power10Exact(parsed_decimal.exponent)) {
650     // Exact mantissa, truncated power of ten
651     mantissa_width = 63;
652     mantissa_exact = false;
653     binary_exponent +=
654         TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
655   } else {
656     // Product is exact
657     mantissa_width = BitWidth(wide_binary_mantissa);
658     mantissa_exact = true;
659   }
660 
661   // Shift into an FloatType-sized mantissa, and round to nearest.
662   const int shift =
663       NormalizedShiftSize<FloatType>(mantissa_width, binary_exponent);
664   bool result_exact;
665   binary_exponent += shift;
666   uint64_t binary_mantissa = ShiftRightAndRound(wide_binary_mantissa, shift,
667                                                 mantissa_exact, &result_exact);
668   if (!result_exact) {
669     // We could not determine the rounding direction using int128 math.  Use
670     // full resolution math instead.
671     if (MustRoundUp(binary_mantissa, binary_exponent, parsed_decimal)) {
672       binary_mantissa += 1;
673     }
674   }
675 
676   return CalculatedFloatFromRawValues<FloatType>(binary_mantissa,
677                                                  binary_exponent);
678 }
679 
680 // As discussed in https://nigeltao.github.io/blog/2020/eisel-lemire.html the
681 // primary goal of the Eisel-Lemire algorithm is speed, for 99+% of the cases,
682 // not 100% coverage. As long as Eisel-Lemire doesn’t claim false positives,
683 // the combined approach (falling back to an alternative implementation when
684 // this function returns false) is both fast and correct.
685 template <typename FloatType>
EiselLemire(const strings_internal::ParsedFloat & input,bool negative,absl::Nonnull<FloatType * > value,absl::Nonnull<std::errc * > ec)686 bool EiselLemire(const strings_internal::ParsedFloat& input, bool negative,
687                  absl::Nonnull<FloatType*> value,
688                  absl::Nonnull<std::errc*> ec) {
689   uint64_t man = input.mantissa;
690   int exp10 = input.exponent;
691   if (exp10 < FloatTraits<FloatType>::kEiselLemireMinInclusiveExp10) {
692     *value = negative ? -0.0f : 0.0f;
693     *ec = std::errc::result_out_of_range;
694     return true;
695   } else if (exp10 >= FloatTraits<FloatType>::kEiselLemireMaxExclusiveExp10) {
696     // Return max (a finite value) consistent with from_chars and DR 3081. For
697     // SimpleAtod and SimpleAtof, post-processing will return infinity.
698     *value = negative ? -std::numeric_limits<FloatType>::max()
699                       : std::numeric_limits<FloatType>::max();
700     *ec = std::errc::result_out_of_range;
701     return true;
702   }
703 
704   // Assert kPower10TableMinInclusive <= exp10 < kPower10TableMaxExclusive.
705   // Equivalently, !Power10Underflow(exp10) and !Power10Overflow(exp10).
706   static_assert(
707       FloatTraits<FloatType>::kEiselLemireMinInclusiveExp10 >=
708           kPower10TableMinInclusive,
709       "(exp10-kPower10TableMinInclusive) in kPower10MantissaHighTable bounds");
710   static_assert(
711       FloatTraits<FloatType>::kEiselLemireMaxExclusiveExp10 <=
712           kPower10TableMaxExclusive,
713       "(exp10-kPower10TableMinInclusive) in kPower10MantissaHighTable bounds");
714 
715   // The terse (+) comments in this function body refer to sections of the
716   // https://nigeltao.github.io/blog/2020/eisel-lemire.html blog post.
717   //
718   // That blog post discusses double precision (11 exponent bits with a -1023
719   // bias, 52 mantissa bits), but the same approach applies to single precision
720   // (8 exponent bits with a -127 bias, 23 mantissa bits). Either way, the
721   // computation here happens with 64-bit values (e.g. man) or 128-bit values
722   // (e.g. x) before finally converting to 64- or 32-bit floating point.
723   //
724   // See also "Number Parsing at a Gigabyte per Second, Software: Practice and
725   // Experience 51 (8), 2021" (https://arxiv.org/abs/2101.11408) for detail.
726 
727   // (+) Normalization.
728   int clz = countl_zero(man);
729   man <<= static_cast<unsigned int>(clz);
730   // The 217706 etc magic numbers are from the Power10Exponent function.
731   uint64_t ret_exp2 =
732       static_cast<uint64_t>((217706 * exp10 >> 16) + 64 +
733                             FloatTraits<FloatType>::kExponentBias - clz);
734 
735   // (+) Multiplication.
736   uint128 x = static_cast<uint128>(man) *
737               static_cast<uint128>(
738                   kPower10MantissaHighTable[exp10 - kPower10TableMinInclusive]);
739 
740   // (+) Wider Approximation.
741   static constexpr uint64_t high64_mask =
742       FloatTraits<FloatType>::kEiselLemireMask;
743   if (((Uint128High64(x) & high64_mask) == high64_mask) &&
744       (man > (std::numeric_limits<uint64_t>::max() - Uint128Low64(x)))) {
745     uint128 y =
746         static_cast<uint128>(man) *
747         static_cast<uint128>(
748             kPower10MantissaLowTable[exp10 - kPower10TableMinInclusive]);
749     x += Uint128High64(y);
750     // For example, parsing "4503599627370497.5" will take the if-true
751     // branch here (for double precision), since:
752     //  - x   = 0x8000000000000BFF_FFFFFFFFFFFFFFFF
753     //  - y   = 0x8000000000000BFF_7FFFFFFFFFFFF400
754     //  - man = 0xA000000000000F00
755     // Likewise, when parsing "0.0625" for single precision:
756     //  - x   = 0x7FFFFFFFFFFFFFFF_FFFFFFFFFFFFFFFF
757     //  - y   = 0x813FFFFFFFFFFFFF_8A00000000000000
758     //  - man = 0x9C40000000000000
759     if (((Uint128High64(x) & high64_mask) == high64_mask) &&
760         ((Uint128Low64(x) + 1) == 0) &&
761         (man > (std::numeric_limits<uint64_t>::max() - Uint128Low64(y)))) {
762       return false;
763     }
764   }
765 
766   // (+) Shifting to 54 Bits (or for single precision, to 25 bits).
767   uint64_t msb = Uint128High64(x) >> 63;
768   uint64_t ret_man =
769       Uint128High64(x) >> (msb + FloatTraits<FloatType>::kEiselLemireShift);
770   ret_exp2 -= 1 ^ msb;
771 
772   // (+) Half-way Ambiguity.
773   //
774   // For example, parsing "1e+23" will take the if-true branch here (for double
775   // precision), since:
776   //  - x       = 0x54B40B1F852BDA00_0000000000000000
777   //  - ret_man = 0x002A5A058FC295ED
778   // Likewise, when parsing "20040229.0" for single precision:
779   //  - x       = 0x4C72894000000000_0000000000000000
780   //  - ret_man = 0x000000000131CA25
781   if ((Uint128Low64(x) == 0) && ((Uint128High64(x) & high64_mask) == 0) &&
782       ((ret_man & 3) == 1)) {
783     return false;
784   }
785 
786   // (+) From 54 to 53 Bits (or for single precision, from 25 to 24 bits).
787   ret_man += ret_man & 1;  // Line From54a.
788   ret_man >>= 1;           // Line From54b.
789   // Incrementing ret_man (at line From54a) may have overflowed 54 bits (53
790   // bits after the right shift by 1 at line From54b), so adjust for that.
791   //
792   // For example, parsing "9223372036854775807" will take the if-true branch
793   // here (for double precision), since:
794   //  - ret_man = 0x0020000000000000 = (1 << 53)
795   // Likewise, when parsing "2147483647.0" for single precision:
796   //  - ret_man = 0x0000000001000000 = (1 << 24)
797   if ((ret_man >> FloatTraits<FloatType>::kTargetMantissaBits) > 0) {
798     ret_exp2 += 1;
799     // Conceptually, we need a "ret_man >>= 1" in this if-block to balance
800     // incrementing ret_exp2 in the line immediately above. However, we only
801     // get here when line From54a overflowed (after adding a 1), so ret_man
802     // here is (1 << 53). Its low 53 bits are therefore all zeroes. The only
803     // remaining use of ret_man is to mask it with ((1 << 52) - 1), so only its
804     // low 52 bits matter. A "ret_man >>= 1" would have no effect in practice.
805     //
806     // We omit the "ret_man >>= 1", even if it is cheap (and this if-branch is
807     // rarely taken) and technically 'more correct', so that mutation tests
808     // that would otherwise modify or omit that "ret_man >>= 1" don't complain
809     // that such code mutations have no observable effect.
810   }
811 
812   // ret_exp2 is a uint64_t. Zero or underflow means that we're in subnormal
813   // space. max_exp2 (0x7FF for double precision, 0xFF for single precision) or
814   // above means that we're in Inf/NaN space.
815   //
816   // The if block is equivalent to (but has fewer branches than):
817   //   if ((ret_exp2 <= 0) || (ret_exp2 >= max_exp2)) { etc }
818   //
819   // For example, parsing "4.9406564584124654e-324" will take the if-true
820   // branch here, since ret_exp2 = -51.
821   static constexpr uint64_t max_exp2 =
822       (1 << FloatTraits<FloatType>::kTargetExponentBits) - 1;
823   if ((ret_exp2 - 1) >= (max_exp2 - 1)) {
824     return false;
825   }
826 
827 #ifndef ABSL_BIT_PACK_FLOATS
828   if (FloatTraits<FloatType>::kTargetBits == 64) {
829     *value = FloatTraits<FloatType>::Make(
830         (ret_man & 0x000FFFFFFFFFFFFFu) | 0x0010000000000000u,
831         static_cast<int>(ret_exp2) - 1023 - 52, negative);
832     return true;
833   } else if (FloatTraits<FloatType>::kTargetBits == 32) {
834     *value = FloatTraits<FloatType>::Make(
835         (static_cast<uint32_t>(ret_man) & 0x007FFFFFu) | 0x00800000u,
836         static_cast<int>(ret_exp2) - 127 - 23, negative);
837     return true;
838   }
839 #else
840   if (FloatTraits<FloatType>::kTargetBits == 64) {
841     uint64_t ret_bits = (ret_exp2 << 52) | (ret_man & 0x000FFFFFFFFFFFFFu);
842     if (negative) {
843       ret_bits |= 0x8000000000000000u;
844     }
845     *value = static_cast<FloatType>(absl::bit_cast<double>(ret_bits));
846     return true;
847   } else if (FloatTraits<FloatType>::kTargetBits == 32) {
848     uint32_t ret_bits = (static_cast<uint32_t>(ret_exp2) << 23) |
849                         (static_cast<uint32_t>(ret_man) & 0x007FFFFFu);
850     if (negative) {
851       ret_bits |= 0x80000000u;
852     }
853     *value = static_cast<FloatType>(absl::bit_cast<float>(ret_bits));
854     return true;
855   }
856 #endif  // ABSL_BIT_PACK_FLOATS
857   return false;
858 }
859 
860 template <typename FloatType>
FromCharsImpl(absl::Nonnull<const char * > first,absl::Nonnull<const char * > last,FloatType & value,chars_format fmt_flags)861 from_chars_result FromCharsImpl(absl::Nonnull<const char*> first,
862                                 absl::Nonnull<const char*> last,
863                                 FloatType& value, chars_format fmt_flags) {
864   from_chars_result result;
865   result.ptr = first;  // overwritten on successful parse
866   result.ec = std::errc();
867 
868   bool negative = false;
869   if (first != last && *first == '-') {
870     ++first;
871     negative = true;
872   }
873   // If the `hex` flag is *not* set, then we will accept a 0x prefix and try
874   // to parse a hexadecimal float.
875   if ((fmt_flags & chars_format::hex) == chars_format{} && last - first >= 2 &&
876       *first == '0' && (first[1] == 'x' || first[1] == 'X')) {
877     const char* hex_first = first + 2;
878     strings_internal::ParsedFloat hex_parse =
879         strings_internal::ParseFloat<16>(hex_first, last, fmt_flags);
880     if (hex_parse.end == nullptr ||
881         hex_parse.type != strings_internal::FloatType::kNumber) {
882       // Either we failed to parse a hex float after the "0x", or we read
883       // "0xinf" or "0xnan" which we don't want to match.
884       //
885       // However, a string that begins with "0x" also begins with "0", which
886       // is normally a valid match for the number zero.  So we want these
887       // strings to match zero unless fmt_flags is `scientific`.  (This flag
888       // means an exponent is required, which the string "0" does not have.)
889       if (fmt_flags == chars_format::scientific) {
890         result.ec = std::errc::invalid_argument;
891       } else {
892         result.ptr = first + 1;
893         value = negative ? -0.0f : 0.0f;
894       }
895       return result;
896     }
897     // We matched a value.
898     result.ptr = hex_parse.end;
899     if (HandleEdgeCase(hex_parse, negative, &value)) {
900       return result;
901     }
902     CalculatedFloat calculated =
903         CalculateFromParsedHexadecimal<FloatType>(hex_parse);
904     EncodeResult(calculated, negative, &result, &value);
905     return result;
906   }
907   // Otherwise, we choose the number base based on the flags.
908   if ((fmt_flags & chars_format::hex) == chars_format::hex) {
909     strings_internal::ParsedFloat hex_parse =
910         strings_internal::ParseFloat<16>(first, last, fmt_flags);
911     if (hex_parse.end == nullptr) {
912       result.ec = std::errc::invalid_argument;
913       return result;
914     }
915     result.ptr = hex_parse.end;
916     if (HandleEdgeCase(hex_parse, negative, &value)) {
917       return result;
918     }
919     CalculatedFloat calculated =
920         CalculateFromParsedHexadecimal<FloatType>(hex_parse);
921     EncodeResult(calculated, negative, &result, &value);
922     return result;
923   } else {
924     strings_internal::ParsedFloat decimal_parse =
925         strings_internal::ParseFloat<10>(first, last, fmt_flags);
926     if (decimal_parse.end == nullptr) {
927       result.ec = std::errc::invalid_argument;
928       return result;
929     }
930     result.ptr = decimal_parse.end;
931     if (HandleEdgeCase(decimal_parse, negative, &value)) {
932       return result;
933     }
934     // A nullptr subrange_begin means that the decimal_parse.mantissa is exact
935     // (not truncated), a precondition of the Eisel-Lemire algorithm.
936     if ((decimal_parse.subrange_begin == nullptr) &&
937         EiselLemire<FloatType>(decimal_parse, negative, &value, &result.ec)) {
938       return result;
939     }
940     CalculatedFloat calculated =
941         CalculateFromParsedDecimal<FloatType>(decimal_parse);
942     EncodeResult(calculated, negative, &result, &value);
943     return result;
944   }
945 }
946 }  // namespace
947 
from_chars(absl::Nonnull<const char * > first,absl::Nonnull<const char * > last,double & value,chars_format fmt)948 from_chars_result from_chars(absl::Nonnull<const char*> first,
949                              absl::Nonnull<const char*> last, double& value,
950                              chars_format fmt) {
951   return FromCharsImpl(first, last, value, fmt);
952 }
953 
from_chars(absl::Nonnull<const char * > first,absl::Nonnull<const char * > last,float & value,chars_format fmt)954 from_chars_result from_chars(absl::Nonnull<const char*> first,
955                              absl::Nonnull<const char*> last, float& value,
956                              chars_format fmt) {
957   return FromCharsImpl(first, last, value, fmt);
958 }
959 
960 namespace {
961 
962 // Table of powers of 10, from kPower10TableMinInclusive to
963 // kPower10TableMaxExclusive.
964 //
965 // kPower10MantissaHighTable[i - kPower10TableMinInclusive] stores the 64-bit
966 // mantissa. The high bit is always on.
967 //
968 // kPower10MantissaLowTable extends that 64-bit mantissa to 128 bits.
969 //
970 // Power10Exponent(i) calculates the power-of-two exponent.
971 //
972 // For a number i, this gives the unique mantissaHigh and exponent such that
973 // (mantissaHigh * 2**exponent) <= 10**i < ((mantissaHigh + 1) * 2**exponent).
974 //
975 // For example, Python can confirm that the exact hexadecimal value of 1e60 is:
976 //    >>> a = 1000000000000000000000000000000000000000000000000000000000000
977 //    >>> hex(a)
978 //    '0x9f4f2726179a224501d762422c946590d91000000000000000'
979 // Adding underscores at every 8th hex digit shows 50 hex digits:
980 //    '0x9f4f2726_179a2245_01d76242_2c946590_d9100000_00000000_00'.
981 // In this case, the high bit of the first hex digit, 9, is coincidentally set,
982 // so we do not have to do further shifting to deduce the 128-bit mantissa:
983 //   - kPower10MantissaHighTable[60 - kP10TMI] = 0x9f4f2726179a2245U
984 //   - kPower10MantissaLowTable[ 60 - kP10TMI] = 0x01d762422c946590U
985 // where kP10TMI is kPower10TableMinInclusive. The low 18 of those 50 hex
986 // digits are truncated.
987 //
988 // 50 hex digits (with the high bit set) is 200 bits and mantissaHigh holds 64
989 // bits, so Power10Exponent(60) = 200 - 64 = 136. Again, Python can confirm:
990 //    >>> b = 0x9f4f2726179a2245
991 //    >>> ((b+0)<<136) <= a
992 //    True
993 //    >>> ((b+1)<<136) <= a
994 //    False
995 //
996 // The tables were generated by
997 // https://github.com/google/wuffs/blob/315b2e52625ebd7b02d8fac13e3cd85ea374fb80/script/print-mpb-powers-of-10.go
998 // after re-formatting its output into two arrays of N uint64_t values (instead
999 // of an N element array of uint64_t pairs).
1000 
1001 const uint64_t kPower10MantissaHighTable[] = {
1002     0xeef453d6923bd65aU, 0x9558b4661b6565f8U, 0xbaaee17fa23ebf76U,
1003     0xe95a99df8ace6f53U, 0x91d8a02bb6c10594U, 0xb64ec836a47146f9U,
1004     0xe3e27a444d8d98b7U, 0x8e6d8c6ab0787f72U, 0xb208ef855c969f4fU,
1005     0xde8b2b66b3bc4723U, 0x8b16fb203055ac76U, 0xaddcb9e83c6b1793U,
1006     0xd953e8624b85dd78U, 0x87d4713d6f33aa6bU, 0xa9c98d8ccb009506U,
1007     0xd43bf0effdc0ba48U, 0x84a57695fe98746dU, 0xa5ced43b7e3e9188U,
1008     0xcf42894a5dce35eaU, 0x818995ce7aa0e1b2U, 0xa1ebfb4219491a1fU,
1009     0xca66fa129f9b60a6U, 0xfd00b897478238d0U, 0x9e20735e8cb16382U,
1010     0xc5a890362fddbc62U, 0xf712b443bbd52b7bU, 0x9a6bb0aa55653b2dU,
1011     0xc1069cd4eabe89f8U, 0xf148440a256e2c76U, 0x96cd2a865764dbcaU,
1012     0xbc807527ed3e12bcU, 0xeba09271e88d976bU, 0x93445b8731587ea3U,
1013     0xb8157268fdae9e4cU, 0xe61acf033d1a45dfU, 0x8fd0c16206306babU,
1014     0xb3c4f1ba87bc8696U, 0xe0b62e2929aba83cU, 0x8c71dcd9ba0b4925U,
1015     0xaf8e5410288e1b6fU, 0xdb71e91432b1a24aU, 0x892731ac9faf056eU,
1016     0xab70fe17c79ac6caU, 0xd64d3d9db981787dU, 0x85f0468293f0eb4eU,
1017     0xa76c582338ed2621U, 0xd1476e2c07286faaU, 0x82cca4db847945caU,
1018     0xa37fce126597973cU, 0xcc5fc196fefd7d0cU, 0xff77b1fcbebcdc4fU,
1019     0x9faacf3df73609b1U, 0xc795830d75038c1dU, 0xf97ae3d0d2446f25U,
1020     0x9becce62836ac577U, 0xc2e801fb244576d5U, 0xf3a20279ed56d48aU,
1021     0x9845418c345644d6U, 0xbe5691ef416bd60cU, 0xedec366b11c6cb8fU,
1022     0x94b3a202eb1c3f39U, 0xb9e08a83a5e34f07U, 0xe858ad248f5c22c9U,
1023     0x91376c36d99995beU, 0xb58547448ffffb2dU, 0xe2e69915b3fff9f9U,
1024     0x8dd01fad907ffc3bU, 0xb1442798f49ffb4aU, 0xdd95317f31c7fa1dU,
1025     0x8a7d3eef7f1cfc52U, 0xad1c8eab5ee43b66U, 0xd863b256369d4a40U,
1026     0x873e4f75e2224e68U, 0xa90de3535aaae202U, 0xd3515c2831559a83U,
1027     0x8412d9991ed58091U, 0xa5178fff668ae0b6U, 0xce5d73ff402d98e3U,
1028     0x80fa687f881c7f8eU, 0xa139029f6a239f72U, 0xc987434744ac874eU,
1029     0xfbe9141915d7a922U, 0x9d71ac8fada6c9b5U, 0xc4ce17b399107c22U,
1030     0xf6019da07f549b2bU, 0x99c102844f94e0fbU, 0xc0314325637a1939U,
1031     0xf03d93eebc589f88U, 0x96267c7535b763b5U, 0xbbb01b9283253ca2U,
1032     0xea9c227723ee8bcbU, 0x92a1958a7675175fU, 0xb749faed14125d36U,
1033     0xe51c79a85916f484U, 0x8f31cc0937ae58d2U, 0xb2fe3f0b8599ef07U,
1034     0xdfbdcece67006ac9U, 0x8bd6a141006042bdU, 0xaecc49914078536dU,
1035     0xda7f5bf590966848U, 0x888f99797a5e012dU, 0xaab37fd7d8f58178U,
1036     0xd5605fcdcf32e1d6U, 0x855c3be0a17fcd26U, 0xa6b34ad8c9dfc06fU,
1037     0xd0601d8efc57b08bU, 0x823c12795db6ce57U, 0xa2cb1717b52481edU,
1038     0xcb7ddcdda26da268U, 0xfe5d54150b090b02U, 0x9efa548d26e5a6e1U,
1039     0xc6b8e9b0709f109aU, 0xf867241c8cc6d4c0U, 0x9b407691d7fc44f8U,
1040     0xc21094364dfb5636U, 0xf294b943e17a2bc4U, 0x979cf3ca6cec5b5aU,
1041     0xbd8430bd08277231U, 0xece53cec4a314ebdU, 0x940f4613ae5ed136U,
1042     0xb913179899f68584U, 0xe757dd7ec07426e5U, 0x9096ea6f3848984fU,
1043     0xb4bca50b065abe63U, 0xe1ebce4dc7f16dfbU, 0x8d3360f09cf6e4bdU,
1044     0xb080392cc4349decU, 0xdca04777f541c567U, 0x89e42caaf9491b60U,
1045     0xac5d37d5b79b6239U, 0xd77485cb25823ac7U, 0x86a8d39ef77164bcU,
1046     0xa8530886b54dbdebU, 0xd267caa862a12d66U, 0x8380dea93da4bc60U,
1047     0xa46116538d0deb78U, 0xcd795be870516656U, 0x806bd9714632dff6U,
1048     0xa086cfcd97bf97f3U, 0xc8a883c0fdaf7df0U, 0xfad2a4b13d1b5d6cU,
1049     0x9cc3a6eec6311a63U, 0xc3f490aa77bd60fcU, 0xf4f1b4d515acb93bU,
1050     0x991711052d8bf3c5U, 0xbf5cd54678eef0b6U, 0xef340a98172aace4U,
1051     0x9580869f0e7aac0eU, 0xbae0a846d2195712U, 0xe998d258869facd7U,
1052     0x91ff83775423cc06U, 0xb67f6455292cbf08U, 0xe41f3d6a7377eecaU,
1053     0x8e938662882af53eU, 0xb23867fb2a35b28dU, 0xdec681f9f4c31f31U,
1054     0x8b3c113c38f9f37eU, 0xae0b158b4738705eU, 0xd98ddaee19068c76U,
1055     0x87f8a8d4cfa417c9U, 0xa9f6d30a038d1dbcU, 0xd47487cc8470652bU,
1056     0x84c8d4dfd2c63f3bU, 0xa5fb0a17c777cf09U, 0xcf79cc9db955c2ccU,
1057     0x81ac1fe293d599bfU, 0xa21727db38cb002fU, 0xca9cf1d206fdc03bU,
1058     0xfd442e4688bd304aU, 0x9e4a9cec15763e2eU, 0xc5dd44271ad3cdbaU,
1059     0xf7549530e188c128U, 0x9a94dd3e8cf578b9U, 0xc13a148e3032d6e7U,
1060     0xf18899b1bc3f8ca1U, 0x96f5600f15a7b7e5U, 0xbcb2b812db11a5deU,
1061     0xebdf661791d60f56U, 0x936b9fcebb25c995U, 0xb84687c269ef3bfbU,
1062     0xe65829b3046b0afaU, 0x8ff71a0fe2c2e6dcU, 0xb3f4e093db73a093U,
1063     0xe0f218b8d25088b8U, 0x8c974f7383725573U, 0xafbd2350644eeacfU,
1064     0xdbac6c247d62a583U, 0x894bc396ce5da772U, 0xab9eb47c81f5114fU,
1065     0xd686619ba27255a2U, 0x8613fd0145877585U, 0xa798fc4196e952e7U,
1066     0xd17f3b51fca3a7a0U, 0x82ef85133de648c4U, 0xa3ab66580d5fdaf5U,
1067     0xcc963fee10b7d1b3U, 0xffbbcfe994e5c61fU, 0x9fd561f1fd0f9bd3U,
1068     0xc7caba6e7c5382c8U, 0xf9bd690a1b68637bU, 0x9c1661a651213e2dU,
1069     0xc31bfa0fe5698db8U, 0xf3e2f893dec3f126U, 0x986ddb5c6b3a76b7U,
1070     0xbe89523386091465U, 0xee2ba6c0678b597fU, 0x94db483840b717efU,
1071     0xba121a4650e4ddebU, 0xe896a0d7e51e1566U, 0x915e2486ef32cd60U,
1072     0xb5b5ada8aaff80b8U, 0xe3231912d5bf60e6U, 0x8df5efabc5979c8fU,
1073     0xb1736b96b6fd83b3U, 0xddd0467c64bce4a0U, 0x8aa22c0dbef60ee4U,
1074     0xad4ab7112eb3929dU, 0xd89d64d57a607744U, 0x87625f056c7c4a8bU,
1075     0xa93af6c6c79b5d2dU, 0xd389b47879823479U, 0x843610cb4bf160cbU,
1076     0xa54394fe1eedb8feU, 0xce947a3da6a9273eU, 0x811ccc668829b887U,
1077     0xa163ff802a3426a8U, 0xc9bcff6034c13052U, 0xfc2c3f3841f17c67U,
1078     0x9d9ba7832936edc0U, 0xc5029163f384a931U, 0xf64335bcf065d37dU,
1079     0x99ea0196163fa42eU, 0xc06481fb9bcf8d39U, 0xf07da27a82c37088U,
1080     0x964e858c91ba2655U, 0xbbe226efb628afeaU, 0xeadab0aba3b2dbe5U,
1081     0x92c8ae6b464fc96fU, 0xb77ada0617e3bbcbU, 0xe55990879ddcaabdU,
1082     0x8f57fa54c2a9eab6U, 0xb32df8e9f3546564U, 0xdff9772470297ebdU,
1083     0x8bfbea76c619ef36U, 0xaefae51477a06b03U, 0xdab99e59958885c4U,
1084     0x88b402f7fd75539bU, 0xaae103b5fcd2a881U, 0xd59944a37c0752a2U,
1085     0x857fcae62d8493a5U, 0xa6dfbd9fb8e5b88eU, 0xd097ad07a71f26b2U,
1086     0x825ecc24c873782fU, 0xa2f67f2dfa90563bU, 0xcbb41ef979346bcaU,
1087     0xfea126b7d78186bcU, 0x9f24b832e6b0f436U, 0xc6ede63fa05d3143U,
1088     0xf8a95fcf88747d94U, 0x9b69dbe1b548ce7cU, 0xc24452da229b021bU,
1089     0xf2d56790ab41c2a2U, 0x97c560ba6b0919a5U, 0xbdb6b8e905cb600fU,
1090     0xed246723473e3813U, 0x9436c0760c86e30bU, 0xb94470938fa89bceU,
1091     0xe7958cb87392c2c2U, 0x90bd77f3483bb9b9U, 0xb4ecd5f01a4aa828U,
1092     0xe2280b6c20dd5232U, 0x8d590723948a535fU, 0xb0af48ec79ace837U,
1093     0xdcdb1b2798182244U, 0x8a08f0f8bf0f156bU, 0xac8b2d36eed2dac5U,
1094     0xd7adf884aa879177U, 0x86ccbb52ea94baeaU, 0xa87fea27a539e9a5U,
1095     0xd29fe4b18e88640eU, 0x83a3eeeef9153e89U, 0xa48ceaaab75a8e2bU,
1096     0xcdb02555653131b6U, 0x808e17555f3ebf11U, 0xa0b19d2ab70e6ed6U,
1097     0xc8de047564d20a8bU, 0xfb158592be068d2eU, 0x9ced737bb6c4183dU,
1098     0xc428d05aa4751e4cU, 0xf53304714d9265dfU, 0x993fe2c6d07b7fabU,
1099     0xbf8fdb78849a5f96U, 0xef73d256a5c0f77cU, 0x95a8637627989aadU,
1100     0xbb127c53b17ec159U, 0xe9d71b689dde71afU, 0x9226712162ab070dU,
1101     0xb6b00d69bb55c8d1U, 0xe45c10c42a2b3b05U, 0x8eb98a7a9a5b04e3U,
1102     0xb267ed1940f1c61cU, 0xdf01e85f912e37a3U, 0x8b61313bbabce2c6U,
1103     0xae397d8aa96c1b77U, 0xd9c7dced53c72255U, 0x881cea14545c7575U,
1104     0xaa242499697392d2U, 0xd4ad2dbfc3d07787U, 0x84ec3c97da624ab4U,
1105     0xa6274bbdd0fadd61U, 0xcfb11ead453994baU, 0x81ceb32c4b43fcf4U,
1106     0xa2425ff75e14fc31U, 0xcad2f7f5359a3b3eU, 0xfd87b5f28300ca0dU,
1107     0x9e74d1b791e07e48U, 0xc612062576589ddaU, 0xf79687aed3eec551U,
1108     0x9abe14cd44753b52U, 0xc16d9a0095928a27U, 0xf1c90080baf72cb1U,
1109     0x971da05074da7beeU, 0xbce5086492111aeaU, 0xec1e4a7db69561a5U,
1110     0x9392ee8e921d5d07U, 0xb877aa3236a4b449U, 0xe69594bec44de15bU,
1111     0x901d7cf73ab0acd9U, 0xb424dc35095cd80fU, 0xe12e13424bb40e13U,
1112     0x8cbccc096f5088cbU, 0xafebff0bcb24aafeU, 0xdbe6fecebdedd5beU,
1113     0x89705f4136b4a597U, 0xabcc77118461cefcU, 0xd6bf94d5e57a42bcU,
1114     0x8637bd05af6c69b5U, 0xa7c5ac471b478423U, 0xd1b71758e219652bU,
1115     0x83126e978d4fdf3bU, 0xa3d70a3d70a3d70aU, 0xccccccccccccccccU,
1116     0x8000000000000000U, 0xa000000000000000U, 0xc800000000000000U,
1117     0xfa00000000000000U, 0x9c40000000000000U, 0xc350000000000000U,
1118     0xf424000000000000U, 0x9896800000000000U, 0xbebc200000000000U,
1119     0xee6b280000000000U, 0x9502f90000000000U, 0xba43b74000000000U,
1120     0xe8d4a51000000000U, 0x9184e72a00000000U, 0xb5e620f480000000U,
1121     0xe35fa931a0000000U, 0x8e1bc9bf04000000U, 0xb1a2bc2ec5000000U,
1122     0xde0b6b3a76400000U, 0x8ac7230489e80000U, 0xad78ebc5ac620000U,
1123     0xd8d726b7177a8000U, 0x878678326eac9000U, 0xa968163f0a57b400U,
1124     0xd3c21bcecceda100U, 0x84595161401484a0U, 0xa56fa5b99019a5c8U,
1125     0xcecb8f27f4200f3aU, 0x813f3978f8940984U, 0xa18f07d736b90be5U,
1126     0xc9f2c9cd04674edeU, 0xfc6f7c4045812296U, 0x9dc5ada82b70b59dU,
1127     0xc5371912364ce305U, 0xf684df56c3e01bc6U, 0x9a130b963a6c115cU,
1128     0xc097ce7bc90715b3U, 0xf0bdc21abb48db20U, 0x96769950b50d88f4U,
1129     0xbc143fa4e250eb31U, 0xeb194f8e1ae525fdU, 0x92efd1b8d0cf37beU,
1130     0xb7abc627050305adU, 0xe596b7b0c643c719U, 0x8f7e32ce7bea5c6fU,
1131     0xb35dbf821ae4f38bU, 0xe0352f62a19e306eU, 0x8c213d9da502de45U,
1132     0xaf298d050e4395d6U, 0xdaf3f04651d47b4cU, 0x88d8762bf324cd0fU,
1133     0xab0e93b6efee0053U, 0xd5d238a4abe98068U, 0x85a36366eb71f041U,
1134     0xa70c3c40a64e6c51U, 0xd0cf4b50cfe20765U, 0x82818f1281ed449fU,
1135     0xa321f2d7226895c7U, 0xcbea6f8ceb02bb39U, 0xfee50b7025c36a08U,
1136     0x9f4f2726179a2245U, 0xc722f0ef9d80aad6U, 0xf8ebad2b84e0d58bU,
1137     0x9b934c3b330c8577U, 0xc2781f49ffcfa6d5U, 0xf316271c7fc3908aU,
1138     0x97edd871cfda3a56U, 0xbde94e8e43d0c8ecU, 0xed63a231d4c4fb27U,
1139     0x945e455f24fb1cf8U, 0xb975d6b6ee39e436U, 0xe7d34c64a9c85d44U,
1140     0x90e40fbeea1d3a4aU, 0xb51d13aea4a488ddU, 0xe264589a4dcdab14U,
1141     0x8d7eb76070a08aecU, 0xb0de65388cc8ada8U, 0xdd15fe86affad912U,
1142     0x8a2dbf142dfcc7abU, 0xacb92ed9397bf996U, 0xd7e77a8f87daf7fbU,
1143     0x86f0ac99b4e8dafdU, 0xa8acd7c0222311bcU, 0xd2d80db02aabd62bU,
1144     0x83c7088e1aab65dbU, 0xa4b8cab1a1563f52U, 0xcde6fd5e09abcf26U,
1145     0x80b05e5ac60b6178U, 0xa0dc75f1778e39d6U, 0xc913936dd571c84cU,
1146     0xfb5878494ace3a5fU, 0x9d174b2dcec0e47bU, 0xc45d1df942711d9aU,
1147     0xf5746577930d6500U, 0x9968bf6abbe85f20U, 0xbfc2ef456ae276e8U,
1148     0xefb3ab16c59b14a2U, 0x95d04aee3b80ece5U, 0xbb445da9ca61281fU,
1149     0xea1575143cf97226U, 0x924d692ca61be758U, 0xb6e0c377cfa2e12eU,
1150     0xe498f455c38b997aU, 0x8edf98b59a373fecU, 0xb2977ee300c50fe7U,
1151     0xdf3d5e9bc0f653e1U, 0x8b865b215899f46cU, 0xae67f1e9aec07187U,
1152     0xda01ee641a708de9U, 0x884134fe908658b2U, 0xaa51823e34a7eedeU,
1153     0xd4e5e2cdc1d1ea96U, 0x850fadc09923329eU, 0xa6539930bf6bff45U,
1154     0xcfe87f7cef46ff16U, 0x81f14fae158c5f6eU, 0xa26da3999aef7749U,
1155     0xcb090c8001ab551cU, 0xfdcb4fa002162a63U, 0x9e9f11c4014dda7eU,
1156     0xc646d63501a1511dU, 0xf7d88bc24209a565U, 0x9ae757596946075fU,
1157     0xc1a12d2fc3978937U, 0xf209787bb47d6b84U, 0x9745eb4d50ce6332U,
1158     0xbd176620a501fbffU, 0xec5d3fa8ce427affU, 0x93ba47c980e98cdfU,
1159     0xb8a8d9bbe123f017U, 0xe6d3102ad96cec1dU, 0x9043ea1ac7e41392U,
1160     0xb454e4a179dd1877U, 0xe16a1dc9d8545e94U, 0x8ce2529e2734bb1dU,
1161     0xb01ae745b101e9e4U, 0xdc21a1171d42645dU, 0x899504ae72497ebaU,
1162     0xabfa45da0edbde69U, 0xd6f8d7509292d603U, 0x865b86925b9bc5c2U,
1163     0xa7f26836f282b732U, 0xd1ef0244af2364ffU, 0x8335616aed761f1fU,
1164     0xa402b9c5a8d3a6e7U, 0xcd036837130890a1U, 0x802221226be55a64U,
1165     0xa02aa96b06deb0fdU, 0xc83553c5c8965d3dU, 0xfa42a8b73abbf48cU,
1166     0x9c69a97284b578d7U, 0xc38413cf25e2d70dU, 0xf46518c2ef5b8cd1U,
1167     0x98bf2f79d5993802U, 0xbeeefb584aff8603U, 0xeeaaba2e5dbf6784U,
1168     0x952ab45cfa97a0b2U, 0xba756174393d88dfU, 0xe912b9d1478ceb17U,
1169     0x91abb422ccb812eeU, 0xb616a12b7fe617aaU, 0xe39c49765fdf9d94U,
1170     0x8e41ade9fbebc27dU, 0xb1d219647ae6b31cU, 0xde469fbd99a05fe3U,
1171     0x8aec23d680043beeU, 0xada72ccc20054ae9U, 0xd910f7ff28069da4U,
1172     0x87aa9aff79042286U, 0xa99541bf57452b28U, 0xd3fa922f2d1675f2U,
1173     0x847c9b5d7c2e09b7U, 0xa59bc234db398c25U, 0xcf02b2c21207ef2eU,
1174     0x8161afb94b44f57dU, 0xa1ba1ba79e1632dcU, 0xca28a291859bbf93U,
1175     0xfcb2cb35e702af78U, 0x9defbf01b061adabU, 0xc56baec21c7a1916U,
1176     0xf6c69a72a3989f5bU, 0x9a3c2087a63f6399U, 0xc0cb28a98fcf3c7fU,
1177     0xf0fdf2d3f3c30b9fU, 0x969eb7c47859e743U, 0xbc4665b596706114U,
1178     0xeb57ff22fc0c7959U, 0x9316ff75dd87cbd8U, 0xb7dcbf5354e9beceU,
1179     0xe5d3ef282a242e81U, 0x8fa475791a569d10U, 0xb38d92d760ec4455U,
1180     0xe070f78d3927556aU, 0x8c469ab843b89562U, 0xaf58416654a6babbU,
1181     0xdb2e51bfe9d0696aU, 0x88fcf317f22241e2U, 0xab3c2fddeeaad25aU,
1182     0xd60b3bd56a5586f1U, 0x85c7056562757456U, 0xa738c6bebb12d16cU,
1183     0xd106f86e69d785c7U, 0x82a45b450226b39cU, 0xa34d721642b06084U,
1184     0xcc20ce9bd35c78a5U, 0xff290242c83396ceU, 0x9f79a169bd203e41U,
1185     0xc75809c42c684dd1U, 0xf92e0c3537826145U, 0x9bbcc7a142b17ccbU,
1186     0xc2abf989935ddbfeU, 0xf356f7ebf83552feU, 0x98165af37b2153deU,
1187     0xbe1bf1b059e9a8d6U, 0xeda2ee1c7064130cU, 0x9485d4d1c63e8be7U,
1188     0xb9a74a0637ce2ee1U, 0xe8111c87c5c1ba99U, 0x910ab1d4db9914a0U,
1189     0xb54d5e4a127f59c8U, 0xe2a0b5dc971f303aU, 0x8da471a9de737e24U,
1190     0xb10d8e1456105dadU, 0xdd50f1996b947518U, 0x8a5296ffe33cc92fU,
1191     0xace73cbfdc0bfb7bU, 0xd8210befd30efa5aU, 0x8714a775e3e95c78U,
1192     0xa8d9d1535ce3b396U, 0xd31045a8341ca07cU, 0x83ea2b892091e44dU,
1193     0xa4e4b66b68b65d60U, 0xce1de40642e3f4b9U, 0x80d2ae83e9ce78f3U,
1194     0xa1075a24e4421730U, 0xc94930ae1d529cfcU, 0xfb9b7cd9a4a7443cU,
1195     0x9d412e0806e88aa5U, 0xc491798a08a2ad4eU, 0xf5b5d7ec8acb58a2U,
1196     0x9991a6f3d6bf1765U, 0xbff610b0cc6edd3fU, 0xeff394dcff8a948eU,
1197     0x95f83d0a1fb69cd9U, 0xbb764c4ca7a4440fU, 0xea53df5fd18d5513U,
1198     0x92746b9be2f8552cU, 0xb7118682dbb66a77U, 0xe4d5e82392a40515U,
1199     0x8f05b1163ba6832dU, 0xb2c71d5bca9023f8U, 0xdf78e4b2bd342cf6U,
1200     0x8bab8eefb6409c1aU, 0xae9672aba3d0c320U, 0xda3c0f568cc4f3e8U,
1201     0x8865899617fb1871U, 0xaa7eebfb9df9de8dU, 0xd51ea6fa85785631U,
1202     0x8533285c936b35deU, 0xa67ff273b8460356U, 0xd01fef10a657842cU,
1203     0x8213f56a67f6b29bU, 0xa298f2c501f45f42U, 0xcb3f2f7642717713U,
1204     0xfe0efb53d30dd4d7U, 0x9ec95d1463e8a506U, 0xc67bb4597ce2ce48U,
1205     0xf81aa16fdc1b81daU, 0x9b10a4e5e9913128U, 0xc1d4ce1f63f57d72U,
1206     0xf24a01a73cf2dccfU, 0x976e41088617ca01U, 0xbd49d14aa79dbc82U,
1207     0xec9c459d51852ba2U, 0x93e1ab8252f33b45U, 0xb8da1662e7b00a17U,
1208     0xe7109bfba19c0c9dU, 0x906a617d450187e2U, 0xb484f9dc9641e9daU,
1209     0xe1a63853bbd26451U, 0x8d07e33455637eb2U, 0xb049dc016abc5e5fU,
1210     0xdc5c5301c56b75f7U, 0x89b9b3e11b6329baU, 0xac2820d9623bf429U,
1211     0xd732290fbacaf133U, 0x867f59a9d4bed6c0U, 0xa81f301449ee8c70U,
1212     0xd226fc195c6a2f8cU, 0x83585d8fd9c25db7U, 0xa42e74f3d032f525U,
1213     0xcd3a1230c43fb26fU, 0x80444b5e7aa7cf85U, 0xa0555e361951c366U,
1214     0xc86ab5c39fa63440U, 0xfa856334878fc150U, 0x9c935e00d4b9d8d2U,
1215     0xc3b8358109e84f07U, 0xf4a642e14c6262c8U, 0x98e7e9cccfbd7dbdU,
1216     0xbf21e44003acdd2cU, 0xeeea5d5004981478U, 0x95527a5202df0ccbU,
1217     0xbaa718e68396cffdU, 0xe950df20247c83fdU, 0x91d28b7416cdd27eU,
1218     0xb6472e511c81471dU, 0xe3d8f9e563a198e5U, 0x8e679c2f5e44ff8fU,
1219 };
1220 
1221 const uint64_t kPower10MantissaLowTable[] = {
1222     0x113faa2906a13b3fU, 0x4ac7ca59a424c507U, 0x5d79bcf00d2df649U,
1223     0xf4d82c2c107973dcU, 0x79071b9b8a4be869U, 0x9748e2826cdee284U,
1224     0xfd1b1b2308169b25U, 0xfe30f0f5e50e20f7U, 0xbdbd2d335e51a935U,
1225     0xad2c788035e61382U, 0x4c3bcb5021afcc31U, 0xdf4abe242a1bbf3dU,
1226     0xd71d6dad34a2af0dU, 0x8672648c40e5ad68U, 0x680efdaf511f18c2U,
1227     0x0212bd1b2566def2U, 0x014bb630f7604b57U, 0x419ea3bd35385e2dU,
1228     0x52064cac828675b9U, 0x7343efebd1940993U, 0x1014ebe6c5f90bf8U,
1229     0xd41a26e077774ef6U, 0x8920b098955522b4U, 0x55b46e5f5d5535b0U,
1230     0xeb2189f734aa831dU, 0xa5e9ec7501d523e4U, 0x47b233c92125366eU,
1231     0x999ec0bb696e840aU, 0xc00670ea43ca250dU, 0x380406926a5e5728U,
1232     0xc605083704f5ecf2U, 0xf7864a44c633682eU, 0x7ab3ee6afbe0211dU,
1233     0x5960ea05bad82964U, 0x6fb92487298e33bdU, 0xa5d3b6d479f8e056U,
1234     0x8f48a4899877186cU, 0x331acdabfe94de87U, 0x9ff0c08b7f1d0b14U,
1235     0x07ecf0ae5ee44dd9U, 0xc9e82cd9f69d6150U, 0xbe311c083a225cd2U,
1236     0x6dbd630a48aaf406U, 0x092cbbccdad5b108U, 0x25bbf56008c58ea5U,
1237     0xaf2af2b80af6f24eU, 0x1af5af660db4aee1U, 0x50d98d9fc890ed4dU,
1238     0xe50ff107bab528a0U, 0x1e53ed49a96272c8U, 0x25e8e89c13bb0f7aU,
1239     0x77b191618c54e9acU, 0xd59df5b9ef6a2417U, 0x4b0573286b44ad1dU,
1240     0x4ee367f9430aec32U, 0x229c41f793cda73fU, 0x6b43527578c1110fU,
1241     0x830a13896b78aaa9U, 0x23cc986bc656d553U, 0x2cbfbe86b7ec8aa8U,
1242     0x7bf7d71432f3d6a9U, 0xdaf5ccd93fb0cc53U, 0xd1b3400f8f9cff68U,
1243     0x23100809b9c21fa1U, 0xabd40a0c2832a78aU, 0x16c90c8f323f516cU,
1244     0xae3da7d97f6792e3U, 0x99cd11cfdf41779cU, 0x40405643d711d583U,
1245     0x482835ea666b2572U, 0xda3243650005eecfU, 0x90bed43e40076a82U,
1246     0x5a7744a6e804a291U, 0x711515d0a205cb36U, 0x0d5a5b44ca873e03U,
1247     0xe858790afe9486c2U, 0x626e974dbe39a872U, 0xfb0a3d212dc8128fU,
1248     0x7ce66634bc9d0b99U, 0x1c1fffc1ebc44e80U, 0xa327ffb266b56220U,
1249     0x4bf1ff9f0062baa8U, 0x6f773fc3603db4a9U, 0xcb550fb4384d21d3U,
1250     0x7e2a53a146606a48U, 0x2eda7444cbfc426dU, 0xfa911155fefb5308U,
1251     0x793555ab7eba27caU, 0x4bc1558b2f3458deU, 0x9eb1aaedfb016f16U,
1252     0x465e15a979c1cadcU, 0x0bfacd89ec191ec9U, 0xcef980ec671f667bU,
1253     0x82b7e12780e7401aU, 0xd1b2ecb8b0908810U, 0x861fa7e6dcb4aa15U,
1254     0x67a791e093e1d49aU, 0xe0c8bb2c5c6d24e0U, 0x58fae9f773886e18U,
1255     0xaf39a475506a899eU, 0x6d8406c952429603U, 0xc8e5087ba6d33b83U,
1256     0xfb1e4a9a90880a64U, 0x5cf2eea09a55067fU, 0xf42faa48c0ea481eU,
1257     0xf13b94daf124da26U, 0x76c53d08d6b70858U, 0x54768c4b0c64ca6eU,
1258     0xa9942f5dcf7dfd09U, 0xd3f93b35435d7c4cU, 0xc47bc5014a1a6dafU,
1259     0x359ab6419ca1091bU, 0xc30163d203c94b62U, 0x79e0de63425dcf1dU,
1260     0x985915fc12f542e4U, 0x3e6f5b7b17b2939dU, 0xa705992ceecf9c42U,
1261     0x50c6ff782a838353U, 0xa4f8bf5635246428U, 0x871b7795e136be99U,
1262     0x28e2557b59846e3fU, 0x331aeada2fe589cfU, 0x3ff0d2c85def7621U,
1263     0x0fed077a756b53a9U, 0xd3e8495912c62894U, 0x64712dd7abbbd95cU,
1264     0xbd8d794d96aacfb3U, 0xecf0d7a0fc5583a0U, 0xf41686c49db57244U,
1265     0x311c2875c522ced5U, 0x7d633293366b828bU, 0xae5dff9c02033197U,
1266     0xd9f57f830283fdfcU, 0xd072df63c324fd7bU, 0x4247cb9e59f71e6dU,
1267     0x52d9be85f074e608U, 0x67902e276c921f8bU, 0x00ba1cd8a3db53b6U,
1268     0x80e8a40eccd228a4U, 0x6122cd128006b2cdU, 0x796b805720085f81U,
1269     0xcbe3303674053bb0U, 0xbedbfc4411068a9cU, 0xee92fb5515482d44U,
1270     0x751bdd152d4d1c4aU, 0xd262d45a78a0635dU, 0x86fb897116c87c34U,
1271     0xd45d35e6ae3d4da0U, 0x8974836059cca109U, 0x2bd1a438703fc94bU,
1272     0x7b6306a34627ddcfU, 0x1a3bc84c17b1d542U, 0x20caba5f1d9e4a93U,
1273     0x547eb47b7282ee9cU, 0xe99e619a4f23aa43U, 0x6405fa00e2ec94d4U,
1274     0xde83bc408dd3dd04U, 0x9624ab50b148d445U, 0x3badd624dd9b0957U,
1275     0xe54ca5d70a80e5d6U, 0x5e9fcf4ccd211f4cU, 0x7647c3200069671fU,
1276     0x29ecd9f40041e073U, 0xf468107100525890U, 0x7182148d4066eeb4U,
1277     0xc6f14cd848405530U, 0xb8ada00e5a506a7cU, 0xa6d90811f0e4851cU,
1278     0x908f4a166d1da663U, 0x9a598e4e043287feU, 0x40eff1e1853f29fdU,
1279     0xd12bee59e68ef47cU, 0x82bb74f8301958ceU, 0xe36a52363c1faf01U,
1280     0xdc44e6c3cb279ac1U, 0x29ab103a5ef8c0b9U, 0x7415d448f6b6f0e7U,
1281     0x111b495b3464ad21U, 0xcab10dd900beec34U, 0x3d5d514f40eea742U,
1282     0x0cb4a5a3112a5112U, 0x47f0e785eaba72abU, 0x59ed216765690f56U,
1283     0x306869c13ec3532cU, 0x1e414218c73a13fbU, 0xe5d1929ef90898faU,
1284     0xdf45f746b74abf39U, 0x6b8bba8c328eb783U, 0x066ea92f3f326564U,
1285     0xc80a537b0efefebdU, 0xbd06742ce95f5f36U, 0x2c48113823b73704U,
1286     0xf75a15862ca504c5U, 0x9a984d73dbe722fbU, 0xc13e60d0d2e0ebbaU,
1287     0x318df905079926a8U, 0xfdf17746497f7052U, 0xfeb6ea8bedefa633U,
1288     0xfe64a52ee96b8fc0U, 0x3dfdce7aa3c673b0U, 0x06bea10ca65c084eU,
1289     0x486e494fcff30a62U, 0x5a89dba3c3efccfaU, 0xf89629465a75e01cU,
1290     0xf6bbb397f1135823U, 0x746aa07ded582e2cU, 0xa8c2a44eb4571cdcU,
1291     0x92f34d62616ce413U, 0x77b020baf9c81d17U, 0x0ace1474dc1d122eU,
1292     0x0d819992132456baU, 0x10e1fff697ed6c69U, 0xca8d3ffa1ef463c1U,
1293     0xbd308ff8a6b17cb2U, 0xac7cb3f6d05ddbdeU, 0x6bcdf07a423aa96bU,
1294     0x86c16c98d2c953c6U, 0xe871c7bf077ba8b7U, 0x11471cd764ad4972U,
1295     0xd598e40d3dd89bcfU, 0x4aff1d108d4ec2c3U, 0xcedf722a585139baU,
1296     0xc2974eb4ee658828U, 0x733d226229feea32U, 0x0806357d5a3f525fU,
1297     0xca07c2dcb0cf26f7U, 0xfc89b393dd02f0b5U, 0xbbac2078d443ace2U,
1298     0xd54b944b84aa4c0dU, 0x0a9e795e65d4df11U, 0x4d4617b5ff4a16d5U,
1299     0x504bced1bf8e4e45U, 0xe45ec2862f71e1d6U, 0x5d767327bb4e5a4cU,
1300     0x3a6a07f8d510f86fU, 0x890489f70a55368bU, 0x2b45ac74ccea842eU,
1301     0x3b0b8bc90012929dU, 0x09ce6ebb40173744U, 0xcc420a6a101d0515U,
1302     0x9fa946824a12232dU, 0x47939822dc96abf9U, 0x59787e2b93bc56f7U,
1303     0x57eb4edb3c55b65aU, 0xede622920b6b23f1U, 0xe95fab368e45ecedU,
1304     0x11dbcb0218ebb414U, 0xd652bdc29f26a119U, 0x4be76d3346f0495fU,
1305     0x6f70a4400c562ddbU, 0xcb4ccd500f6bb952U, 0x7e2000a41346a7a7U,
1306     0x8ed400668c0c28c8U, 0x728900802f0f32faU, 0x4f2b40a03ad2ffb9U,
1307     0xe2f610c84987bfa8U, 0x0dd9ca7d2df4d7c9U, 0x91503d1c79720dbbU,
1308     0x75a44c6397ce912aU, 0xc986afbe3ee11abaU, 0xfbe85badce996168U,
1309     0xfae27299423fb9c3U, 0xdccd879fc967d41aU, 0x5400e987bbc1c920U,
1310     0x290123e9aab23b68U, 0xf9a0b6720aaf6521U, 0xf808e40e8d5b3e69U,
1311     0xb60b1d1230b20e04U, 0xb1c6f22b5e6f48c2U, 0x1e38aeb6360b1af3U,
1312     0x25c6da63c38de1b0U, 0x579c487e5a38ad0eU, 0x2d835a9df0c6d851U,
1313     0xf8e431456cf88e65U, 0x1b8e9ecb641b58ffU, 0xe272467e3d222f3fU,
1314     0x5b0ed81dcc6abb0fU, 0x98e947129fc2b4e9U, 0x3f2398d747b36224U,
1315     0x8eec7f0d19a03aadU, 0x1953cf68300424acU, 0x5fa8c3423c052dd7U,
1316     0x3792f412cb06794dU, 0xe2bbd88bbee40bd0U, 0x5b6aceaeae9d0ec4U,
1317     0xf245825a5a445275U, 0xeed6e2f0f0d56712U, 0x55464dd69685606bU,
1318     0xaa97e14c3c26b886U, 0xd53dd99f4b3066a8U, 0xe546a8038efe4029U,
1319     0xde98520472bdd033U, 0x963e66858f6d4440U, 0xdde7001379a44aa8U,
1320     0x5560c018580d5d52U, 0xaab8f01e6e10b4a6U, 0xcab3961304ca70e8U,
1321     0x3d607b97c5fd0d22U, 0x8cb89a7db77c506aU, 0x77f3608e92adb242U,
1322     0x55f038b237591ed3U, 0x6b6c46dec52f6688U, 0x2323ac4b3b3da015U,
1323     0xabec975e0a0d081aU, 0x96e7bd358c904a21U, 0x7e50d64177da2e54U,
1324     0xdde50bd1d5d0b9e9U, 0x955e4ec64b44e864U, 0xbd5af13bef0b113eU,
1325     0xecb1ad8aeacdd58eU, 0x67de18eda5814af2U, 0x80eacf948770ced7U,
1326     0xa1258379a94d028dU, 0x096ee45813a04330U, 0x8bca9d6e188853fcU,
1327     0x775ea264cf55347dU, 0x95364afe032a819dU, 0x3a83ddbd83f52204U,
1328     0xc4926a9672793542U, 0x75b7053c0f178293U, 0x5324c68b12dd6338U,
1329     0xd3f6fc16ebca5e03U, 0x88f4bb1ca6bcf584U, 0x2b31e9e3d06c32e5U,
1330     0x3aff322e62439fcfU, 0x09befeb9fad487c2U, 0x4c2ebe687989a9b3U,
1331     0x0f9d37014bf60a10U, 0x538484c19ef38c94U, 0x2865a5f206b06fb9U,
1332     0xf93f87b7442e45d3U, 0xf78f69a51539d748U, 0xb573440e5a884d1bU,
1333     0x31680a88f8953030U, 0xfdc20d2b36ba7c3dU, 0x3d32907604691b4cU,
1334     0xa63f9a49c2c1b10fU, 0x0fcf80dc33721d53U, 0xd3c36113404ea4a8U,
1335     0x645a1cac083126e9U, 0x3d70a3d70a3d70a3U, 0xccccccccccccccccU,
1336     0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1337     0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1338     0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1339     0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1340     0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1341     0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1342     0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1343     0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1344     0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
1345     0x0000000000000000U, 0x4000000000000000U, 0x5000000000000000U,
1346     0xa400000000000000U, 0x4d00000000000000U, 0xf020000000000000U,
1347     0x6c28000000000000U, 0xc732000000000000U, 0x3c7f400000000000U,
1348     0x4b9f100000000000U, 0x1e86d40000000000U, 0x1314448000000000U,
1349     0x17d955a000000000U, 0x5dcfab0800000000U, 0x5aa1cae500000000U,
1350     0xf14a3d9e40000000U, 0x6d9ccd05d0000000U, 0xe4820023a2000000U,
1351     0xdda2802c8a800000U, 0xd50b2037ad200000U, 0x4526f422cc340000U,
1352     0x9670b12b7f410000U, 0x3c0cdd765f114000U, 0xa5880a69fb6ac800U,
1353     0x8eea0d047a457a00U, 0x72a4904598d6d880U, 0x47a6da2b7f864750U,
1354     0x999090b65f67d924U, 0xfff4b4e3f741cf6dU, 0xbff8f10e7a8921a4U,
1355     0xaff72d52192b6a0dU, 0x9bf4f8a69f764490U, 0x02f236d04753d5b4U,
1356     0x01d762422c946590U, 0x424d3ad2b7b97ef5U, 0xd2e0898765a7deb2U,
1357     0x63cc55f49f88eb2fU, 0x3cbf6b71c76b25fbU, 0x8bef464e3945ef7aU,
1358     0x97758bf0e3cbb5acU, 0x3d52eeed1cbea317U, 0x4ca7aaa863ee4bddU,
1359     0x8fe8caa93e74ef6aU, 0xb3e2fd538e122b44U, 0x60dbbca87196b616U,
1360     0xbc8955e946fe31cdU, 0x6babab6398bdbe41U, 0xc696963c7eed2dd1U,
1361     0xfc1e1de5cf543ca2U, 0x3b25a55f43294bcbU, 0x49ef0eb713f39ebeU,
1362     0x6e3569326c784337U, 0x49c2c37f07965404U, 0xdc33745ec97be906U,
1363     0x69a028bb3ded71a3U, 0xc40832ea0d68ce0cU, 0xf50a3fa490c30190U,
1364     0x792667c6da79e0faU, 0x577001b891185938U, 0xed4c0226b55e6f86U,
1365     0x544f8158315b05b4U, 0x696361ae3db1c721U, 0x03bc3a19cd1e38e9U,
1366     0x04ab48a04065c723U, 0x62eb0d64283f9c76U, 0x3ba5d0bd324f8394U,
1367     0xca8f44ec7ee36479U, 0x7e998b13cf4e1ecbU, 0x9e3fedd8c321a67eU,
1368     0xc5cfe94ef3ea101eU, 0xbba1f1d158724a12U, 0x2a8a6e45ae8edc97U,
1369     0xf52d09d71a3293bdU, 0x593c2626705f9c56U, 0x6f8b2fb00c77836cU,
1370     0x0b6dfb9c0f956447U, 0x4724bd4189bd5eacU, 0x58edec91ec2cb657U,
1371     0x2f2967b66737e3edU, 0xbd79e0d20082ee74U, 0xecd8590680a3aa11U,
1372     0xe80e6f4820cc9495U, 0x3109058d147fdcddU, 0xbd4b46f0599fd415U,
1373     0x6c9e18ac7007c91aU, 0x03e2cf6bc604ddb0U, 0x84db8346b786151cU,
1374     0xe612641865679a63U, 0x4fcb7e8f3f60c07eU, 0xe3be5e330f38f09dU,
1375     0x5cadf5bfd3072cc5U, 0x73d9732fc7c8f7f6U, 0x2867e7fddcdd9afaU,
1376     0xb281e1fd541501b8U, 0x1f225a7ca91a4226U, 0x3375788de9b06958U,
1377     0x0052d6b1641c83aeU, 0xc0678c5dbd23a49aU, 0xf840b7ba963646e0U,
1378     0xb650e5a93bc3d898U, 0xa3e51f138ab4cebeU, 0xc66f336c36b10137U,
1379     0xb80b0047445d4184U, 0xa60dc059157491e5U, 0x87c89837ad68db2fU,
1380     0x29babe4598c311fbU, 0xf4296dd6fef3d67aU, 0x1899e4a65f58660cU,
1381     0x5ec05dcff72e7f8fU, 0x76707543f4fa1f73U, 0x6a06494a791c53a8U,
1382     0x0487db9d17636892U, 0x45a9d2845d3c42b6U, 0x0b8a2392ba45a9b2U,
1383     0x8e6cac7768d7141eU, 0x3207d795430cd926U, 0x7f44e6bd49e807b8U,
1384     0x5f16206c9c6209a6U, 0x36dba887c37a8c0fU, 0xc2494954da2c9789U,
1385     0xf2db9baa10b7bd6cU, 0x6f92829494e5acc7U, 0xcb772339ba1f17f9U,
1386     0xff2a760414536efbU, 0xfef5138519684abaU, 0x7eb258665fc25d69U,
1387     0xef2f773ffbd97a61U, 0xaafb550ffacfd8faU, 0x95ba2a53f983cf38U,
1388     0xdd945a747bf26183U, 0x94f971119aeef9e4U, 0x7a37cd5601aab85dU,
1389     0xac62e055c10ab33aU, 0x577b986b314d6009U, 0xed5a7e85fda0b80bU,
1390     0x14588f13be847307U, 0x596eb2d8ae258fc8U, 0x6fca5f8ed9aef3bbU,
1391     0x25de7bb9480d5854U, 0xaf561aa79a10ae6aU, 0x1b2ba1518094da04U,
1392     0x90fb44d2f05d0842U, 0x353a1607ac744a53U, 0x42889b8997915ce8U,
1393     0x69956135febada11U, 0x43fab9837e699095U, 0x94f967e45e03f4bbU,
1394     0x1d1be0eebac278f5U, 0x6462d92a69731732U, 0x7d7b8f7503cfdcfeU,
1395     0x5cda735244c3d43eU, 0x3a0888136afa64a7U, 0x088aaa1845b8fdd0U,
1396     0x8aad549e57273d45U, 0x36ac54e2f678864bU, 0x84576a1bb416a7ddU,
1397     0x656d44a2a11c51d5U, 0x9f644ae5a4b1b325U, 0x873d5d9f0dde1feeU,
1398     0xa90cb506d155a7eaU, 0x09a7f12442d588f2U, 0x0c11ed6d538aeb2fU,
1399     0x8f1668c8a86da5faU, 0xf96e017d694487bcU, 0x37c981dcc395a9acU,
1400     0x85bbe253f47b1417U, 0x93956d7478ccec8eU, 0x387ac8d1970027b2U,
1401     0x06997b05fcc0319eU, 0x441fece3bdf81f03U, 0xd527e81cad7626c3U,
1402     0x8a71e223d8d3b074U, 0xf6872d5667844e49U, 0xb428f8ac016561dbU,
1403     0xe13336d701beba52U, 0xecc0024661173473U, 0x27f002d7f95d0190U,
1404     0x31ec038df7b441f4U, 0x7e67047175a15271U, 0x0f0062c6e984d386U,
1405     0x52c07b78a3e60868U, 0xa7709a56ccdf8a82U, 0x88a66076400bb691U,
1406     0x6acff893d00ea435U, 0x0583f6b8c4124d43U, 0xc3727a337a8b704aU,
1407     0x744f18c0592e4c5cU, 0x1162def06f79df73U, 0x8addcb5645ac2ba8U,
1408     0x6d953e2bd7173692U, 0xc8fa8db6ccdd0437U, 0x1d9c9892400a22a2U,
1409     0x2503beb6d00cab4bU, 0x2e44ae64840fd61dU, 0x5ceaecfed289e5d2U,
1410     0x7425a83e872c5f47U, 0xd12f124e28f77719U, 0x82bd6b70d99aaa6fU,
1411     0x636cc64d1001550bU, 0x3c47f7e05401aa4eU, 0x65acfaec34810a71U,
1412     0x7f1839a741a14d0dU, 0x1ede48111209a050U, 0x934aed0aab460432U,
1413     0xf81da84d5617853fU, 0x36251260ab9d668eU, 0xc1d72b7c6b426019U,
1414     0xb24cf65b8612f81fU, 0xdee033f26797b627U, 0x169840ef017da3b1U,
1415     0x8e1f289560ee864eU, 0xf1a6f2bab92a27e2U, 0xae10af696774b1dbU,
1416     0xacca6da1e0a8ef29U, 0x17fd090a58d32af3U, 0xddfc4b4cef07f5b0U,
1417     0x4abdaf101564f98eU, 0x9d6d1ad41abe37f1U, 0x84c86189216dc5edU,
1418     0x32fd3cf5b4e49bb4U, 0x3fbc8c33221dc2a1U, 0x0fabaf3feaa5334aU,
1419     0x29cb4d87f2a7400eU, 0x743e20e9ef511012U, 0x914da9246b255416U,
1420     0x1ad089b6c2f7548eU, 0xa184ac2473b529b1U, 0xc9e5d72d90a2741eU,
1421     0x7e2fa67c7a658892U, 0xddbb901b98feeab7U, 0x552a74227f3ea565U,
1422     0xd53a88958f87275fU, 0x8a892abaf368f137U, 0x2d2b7569b0432d85U,
1423     0x9c3b29620e29fc73U, 0x8349f3ba91b47b8fU, 0x241c70a936219a73U,
1424     0xed238cd383aa0110U, 0xf4363804324a40aaU, 0xb143c6053edcd0d5U,
1425     0xdd94b7868e94050aU, 0xca7cf2b4191c8326U, 0xfd1c2f611f63a3f0U,
1426     0xbc633b39673c8cecU, 0xd5be0503e085d813U, 0x4b2d8644d8a74e18U,
1427     0xddf8e7d60ed1219eU, 0xcabb90e5c942b503U, 0x3d6a751f3b936243U,
1428     0x0cc512670a783ad4U, 0x27fb2b80668b24c5U, 0xb1f9f660802dedf6U,
1429     0x5e7873f8a0396973U, 0xdb0b487b6423e1e8U, 0x91ce1a9a3d2cda62U,
1430     0x7641a140cc7810fbU, 0xa9e904c87fcb0a9dU, 0x546345fa9fbdcd44U,
1431     0xa97c177947ad4095U, 0x49ed8eabcccc485dU, 0x5c68f256bfff5a74U,
1432     0x73832eec6fff3111U, 0xc831fd53c5ff7eabU, 0xba3e7ca8b77f5e55U,
1433     0x28ce1bd2e55f35ebU, 0x7980d163cf5b81b3U, 0xd7e105bcc332621fU,
1434     0x8dd9472bf3fefaa7U, 0xb14f98f6f0feb951U, 0x6ed1bf9a569f33d3U,
1435     0x0a862f80ec4700c8U, 0xcd27bb612758c0faU, 0x8038d51cb897789cU,
1436     0xe0470a63e6bd56c3U, 0x1858ccfce06cac74U, 0x0f37801e0c43ebc8U,
1437     0xd30560258f54e6baU, 0x47c6b82ef32a2069U, 0x4cdc331d57fa5441U,
1438     0xe0133fe4adf8e952U, 0x58180fddd97723a6U, 0x570f09eaa7ea7648U,
1439 };
1440 
1441 }  // namespace
1442 ABSL_NAMESPACE_END
1443 }  // namespace absl
1444