1 /* Copyright 2017 The BoringSSL Authors
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 #ifndef OPENSSL_HEADER_SSL_SPAN_H
16 #define OPENSSL_HEADER_SSL_SPAN_H
17
18 #include <openssl/base.h>
19
20 #if !defined(BORINGSSL_NO_CXX)
21
22 extern "C++" {
23
24 #include <stdlib.h>
25
26 #include <algorithm>
27 #include <string_view>
28 #include <type_traits>
29
30 #if __has_include(<version>)
31 #include <version>
32 #endif
33
34 #if defined(__cpp_lib_ranges) && __cpp_lib_ranges >= 201911L
35 #include <ranges>
36 BSSL_NAMESPACE_BEGIN
37 template <typename T>
38 class Span;
39 BSSL_NAMESPACE_END
40
41 // Mark `Span` as satisfying the `view` and `borrowed_range` concepts. This
42 // should be done before the definition of `Span`, so that any inlined calls to
43 // range functionality use the correct specializations.
44 template <typename T>
45 inline constexpr bool std::ranges::enable_view<bssl::Span<T>> = true;
46 template <typename T>
47 inline constexpr bool std::ranges::enable_borrowed_range<bssl::Span<T>> = true;
48 #endif
49
50 BSSL_NAMESPACE_BEGIN
51
52 template <typename T>
53 class Span;
54
55 namespace internal {
56 template <typename T>
57 class SpanBase {
58 // Put comparison operator implementations into a base class with const T, so
59 // they can be used with any type that implicitly converts into a Span.
60 static_assert(std::is_const<T>::value,
61 "Span<T> must be derived from SpanBase<const T>");
62
63 friend bool operator==(Span<T> lhs, Span<T> rhs) {
64 return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
65 }
66
67 friend bool operator!=(Span<T> lhs, Span<T> rhs) { return !(lhs == rhs); }
68 };
69
70 // Heuristically test whether C is a container type that can be converted into
71 // a Span<T> by checking for data() and size() member functions.
72 template <typename C, typename T>
73 using EnableIfContainer = std::enable_if_t<
74 std::is_convertible_v<decltype(std::declval<C>().data()), T *> &&
75 std::is_integral_v<decltype(std::declval<C>().size())>>;
76
77 } // namespace internal
78
79 // A Span<T> is a non-owning reference to a contiguous array of objects of type
80 // |T|. Conceptually, a Span is a simple a pointer to |T| and a count of
81 // elements accessible via that pointer. The elements referenced by the Span can
82 // be mutated if |T| is mutable.
83 //
84 // A Span can be constructed from container types implementing |data()| and
85 // |size()| methods. If |T| is constant, construction from a container type is
86 // implicit. This allows writing methods that accept data from some unspecified
87 // container type:
88 //
89 // // Foo views data referenced by v.
90 // void Foo(bssl::Span<const uint8_t> v) { ... }
91 //
92 // std::vector<uint8_t> vec;
93 // Foo(vec);
94 //
95 // For mutable Spans, conversion is explicit:
96 //
97 // // FooMutate mutates data referenced by v.
98 // void FooMutate(bssl::Span<uint8_t> v) { ... }
99 //
100 // FooMutate(bssl::Span<uint8_t>(vec));
101 //
102 // You can also use the |MakeSpan| and |MakeConstSpan| factory methods to
103 // construct Spans in order to deduce the type of the Span automatically.
104 //
105 // FooMutate(bssl::MakeSpan(vec));
106 //
107 // Note that Spans have value type sematics. They are cheap to construct and
108 // copy, and should be passed by value whenever a method would otherwise accept
109 // a reference or pointer to a container or array.
110 template <typename T>
111 class Span : private internal::SpanBase<const T> {
112 public:
113 static const size_t npos = static_cast<size_t>(-1);
114
115 using element_type = T;
116 using value_type = std::remove_cv_t<T>;
117 using size_type = size_t;
118 using difference_type = ptrdiff_t;
119 using pointer = T *;
120 using const_pointer = const T *;
121 using reference = T &;
122 using const_reference = const T &;
123 using iterator = T *;
124 using const_iterator = const T *;
125
Span()126 constexpr Span() : Span(nullptr, 0) {}
Span(T * ptr,size_t len)127 constexpr Span(T *ptr, size_t len) : data_(ptr), size_(len) {}
128
129 template <size_t N>
Span(T (& array)[N])130 constexpr Span(T (&array)[N]) : Span(array, N) {}
131
132 template <typename C, typename = internal::EnableIfContainer<C, T>,
133 typename = std::enable_if_t<std::is_const<T>::value, C>>
Span(const C & container)134 constexpr Span(const C &container)
135 : data_(container.data()), size_(container.size()) {}
136
137 template <typename C, typename = internal::EnableIfContainer<C, T>,
138 typename = std::enable_if_t<!std::is_const<T>::value, C>>
Span(C & container)139 constexpr explicit Span(C &container)
140 : data_(container.data()), size_(container.size()) {}
141
data()142 constexpr T *data() const { return data_; }
size()143 constexpr size_t size() const { return size_; }
empty()144 constexpr bool empty() const { return size_ == 0; }
145
begin()146 constexpr iterator begin() const { return data_; }
cbegin()147 constexpr const_iterator cbegin() const { return data_; }
end()148 constexpr iterator end() const { return data_ + size_; }
cend()149 constexpr const_iterator cend() const { return end(); }
150
front()151 constexpr T &front() const {
152 if (size_ == 0) {
153 abort();
154 }
155 return data_[0];
156 }
back()157 constexpr T &back() const {
158 if (size_ == 0) {
159 abort();
160 }
161 return data_[size_ - 1];
162 }
163
164 constexpr T &operator[](size_t i) const {
165 if (i >= size_) {
166 abort();
167 }
168 return data_[i];
169 }
at(size_t i)170 T &at(size_t i) const { return (*this)[i]; }
171
172 constexpr Span subspan(size_t pos = 0, size_t len = npos) const {
173 if (pos > size_) {
174 // absl::Span throws an exception here. Note std::span and Chromium
175 // base::span additionally forbid pos + len being out of range, with a
176 // special case at npos/dynamic_extent, while absl::Span::subspan clips
177 // the span. For now, we align with absl::Span in case we switch to it in
178 // the future.
179 abort();
180 }
181 return Span(data_ + pos, std::min(size_ - pos, len));
182 }
183
first(size_t len)184 constexpr Span first(size_t len) const {
185 if (len > size_) {
186 abort();
187 }
188 return Span(data_, len);
189 }
190
last(size_t len)191 constexpr Span last(size_t len) const {
192 if (len > size_) {
193 abort();
194 }
195 return Span(data_ + size_ - len, len);
196 }
197
198 private:
199 T *data_;
200 size_t size_;
201 };
202
203 template <typename T>
204 const size_t Span<T>::npos;
205
206 template <typename T>
207 Span(T *, size_t) -> Span<T>;
208 template <typename T, size_t size>
209 Span(T (&array)[size]) -> Span<T>;
210 template <
211 typename C,
212 typename T = std::remove_pointer_t<decltype(std::declval<C>().data())>,
213 typename = internal::EnableIfContainer<C, T>>
214 Span(C &) -> Span<T>;
215
216 template <typename T>
MakeSpan(T * ptr,size_t size)217 constexpr Span<T> MakeSpan(T *ptr, size_t size) {
218 return Span<T>(ptr, size);
219 }
220
221 template <typename C>
222 constexpr auto MakeSpan(C &c) -> decltype(MakeSpan(c.data(), c.size())) {
223 return MakeSpan(c.data(), c.size());
224 }
225
226 template <typename T, size_t N>
MakeSpan(T (& array)[N])227 constexpr Span<T> MakeSpan(T (&array)[N]) {
228 return Span<T>(array, N);
229 }
230
231 template <typename T>
MakeConstSpan(T * ptr,size_t size)232 constexpr Span<const T> MakeConstSpan(T *ptr, size_t size) {
233 return Span<const T>(ptr, size);
234 }
235
236 template <typename C>
237 constexpr auto MakeConstSpan(const C &c)
238 -> decltype(MakeConstSpan(c.data(), c.size())) {
239 return MakeConstSpan(c.data(), c.size());
240 }
241
242 template <typename T, size_t size>
MakeConstSpan(T (& array)[size])243 constexpr Span<const T> MakeConstSpan(T (&array)[size]) {
244 return array;
245 }
246
StringAsBytes(std::string_view s)247 inline Span<const uint8_t> StringAsBytes(std::string_view s) {
248 return MakeConstSpan(reinterpret_cast<const uint8_t *>(s.data()), s.size());
249 }
250
BytesAsStringView(bssl::Span<const uint8_t> b)251 inline std::string_view BytesAsStringView(bssl::Span<const uint8_t> b) {
252 return std::string_view(reinterpret_cast<const char *>(b.data()), b.size());
253 }
254
255 BSSL_NAMESPACE_END
256
257 } // extern C++
258
259 #endif // !defined(BORINGSSL_NO_CXX)
260
261 #endif // OPENSSL_HEADER_SSL_SPAN_H
262