• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2017 The BoringSSL Authors
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #ifndef OPENSSL_HEADER_SSL_SPAN_H
16 #define OPENSSL_HEADER_SSL_SPAN_H
17 
18 #include <openssl/base.h>
19 
20 #if !defined(BORINGSSL_NO_CXX)
21 
22 extern "C++" {
23 
24 #include <stdlib.h>
25 
26 #include <algorithm>
27 #include <string_view>
28 #include <type_traits>
29 
30 #if __has_include(<version>)
31 #include <version>
32 #endif
33 
34 #if defined(__cpp_lib_ranges) && __cpp_lib_ranges >= 201911L
35 #include <ranges>
36 BSSL_NAMESPACE_BEGIN
37 template <typename T>
38 class Span;
39 BSSL_NAMESPACE_END
40 
41 // Mark `Span` as satisfying the `view` and `borrowed_range` concepts. This
42 // should be done before the definition of `Span`, so that any inlined calls to
43 // range functionality use the correct specializations.
44 template <typename T>
45 inline constexpr bool std::ranges::enable_view<bssl::Span<T>> = true;
46 template <typename T>
47 inline constexpr bool std::ranges::enable_borrowed_range<bssl::Span<T>> = true;
48 #endif
49 
50 BSSL_NAMESPACE_BEGIN
51 
52 template <typename T>
53 class Span;
54 
55 namespace internal {
56 template <typename T>
57 class SpanBase {
58   // Put comparison operator implementations into a base class with const T, so
59   // they can be used with any type that implicitly converts into a Span.
60   static_assert(std::is_const<T>::value,
61                 "Span<T> must be derived from SpanBase<const T>");
62 
63   friend bool operator==(Span<T> lhs, Span<T> rhs) {
64     return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
65   }
66 
67   friend bool operator!=(Span<T> lhs, Span<T> rhs) { return !(lhs == rhs); }
68 };
69 
70 // Heuristically test whether C is a container type that can be converted into
71 // a Span<T> by checking for data() and size() member functions.
72 template <typename C, typename T>
73 using EnableIfContainer = std::enable_if_t<
74     std::is_convertible_v<decltype(std::declval<C>().data()), T *> &&
75     std::is_integral_v<decltype(std::declval<C>().size())>>;
76 
77 }  // namespace internal
78 
79 // A Span<T> is a non-owning reference to a contiguous array of objects of type
80 // |T|. Conceptually, a Span is a simple a pointer to |T| and a count of
81 // elements accessible via that pointer. The elements referenced by the Span can
82 // be mutated if |T| is mutable.
83 //
84 // A Span can be constructed from container types implementing |data()| and
85 // |size()| methods. If |T| is constant, construction from a container type is
86 // implicit. This allows writing methods that accept data from some unspecified
87 // container type:
88 //
89 // // Foo views data referenced by v.
90 // void Foo(bssl::Span<const uint8_t> v) { ... }
91 //
92 // std::vector<uint8_t> vec;
93 // Foo(vec);
94 //
95 // For mutable Spans, conversion is explicit:
96 //
97 // // FooMutate mutates data referenced by v.
98 // void FooMutate(bssl::Span<uint8_t> v) { ... }
99 //
100 // FooMutate(bssl::Span<uint8_t>(vec));
101 //
102 // You can also use the |MakeSpan| and |MakeConstSpan| factory methods to
103 // construct Spans in order to deduce the type of the Span automatically.
104 //
105 // FooMutate(bssl::MakeSpan(vec));
106 //
107 // Note that Spans have value type sematics. They are cheap to construct and
108 // copy, and should be passed by value whenever a method would otherwise accept
109 // a reference or pointer to a container or array.
110 template <typename T>
111 class Span : private internal::SpanBase<const T> {
112  public:
113   static const size_t npos = static_cast<size_t>(-1);
114 
115   using element_type = T;
116   using value_type = std::remove_cv_t<T>;
117   using size_type = size_t;
118   using difference_type = ptrdiff_t;
119   using pointer = T *;
120   using const_pointer = const T *;
121   using reference = T &;
122   using const_reference = const T &;
123   using iterator = T *;
124   using const_iterator = const T *;
125 
Span()126   constexpr Span() : Span(nullptr, 0) {}
Span(T * ptr,size_t len)127   constexpr Span(T *ptr, size_t len) : data_(ptr), size_(len) {}
128 
129   template <size_t N>
Span(T (& array)[N])130   constexpr Span(T (&array)[N]) : Span(array, N) {}
131 
132   template <typename C, typename = internal::EnableIfContainer<C, T>,
133             typename = std::enable_if_t<std::is_const<T>::value, C>>
Span(const C & container)134   constexpr Span(const C &container)
135       : data_(container.data()), size_(container.size()) {}
136 
137   template <typename C, typename = internal::EnableIfContainer<C, T>,
138             typename = std::enable_if_t<!std::is_const<T>::value, C>>
Span(C & container)139   constexpr explicit Span(C &container)
140       : data_(container.data()), size_(container.size()) {}
141 
data()142   constexpr T *data() const { return data_; }
size()143   constexpr size_t size() const { return size_; }
empty()144   constexpr bool empty() const { return size_ == 0; }
145 
begin()146   constexpr iterator begin() const { return data_; }
cbegin()147   constexpr const_iterator cbegin() const { return data_; }
end()148   constexpr iterator end() const { return data_ + size_; }
cend()149   constexpr const_iterator cend() const { return end(); }
150 
front()151   constexpr T &front() const {
152     if (size_ == 0) {
153       abort();
154     }
155     return data_[0];
156   }
back()157   constexpr T &back() const {
158     if (size_ == 0) {
159       abort();
160     }
161     return data_[size_ - 1];
162   }
163 
164   constexpr T &operator[](size_t i) const {
165     if (i >= size_) {
166       abort();
167     }
168     return data_[i];
169   }
at(size_t i)170   T &at(size_t i) const { return (*this)[i]; }
171 
172   constexpr Span subspan(size_t pos = 0, size_t len = npos) const {
173     if (pos > size_) {
174       // absl::Span throws an exception here. Note std::span and Chromium
175       // base::span additionally forbid pos + len being out of range, with a
176       // special case at npos/dynamic_extent, while absl::Span::subspan clips
177       // the span. For now, we align with absl::Span in case we switch to it in
178       // the future.
179       abort();
180     }
181     return Span(data_ + pos, std::min(size_ - pos, len));
182   }
183 
first(size_t len)184   constexpr Span first(size_t len) const {
185     if (len > size_) {
186       abort();
187     }
188     return Span(data_, len);
189   }
190 
last(size_t len)191   constexpr Span last(size_t len) const {
192     if (len > size_) {
193       abort();
194     }
195     return Span(data_ + size_ - len, len);
196   }
197 
198  private:
199   T *data_;
200   size_t size_;
201 };
202 
203 template <typename T>
204 const size_t Span<T>::npos;
205 
206 template <typename T>
207 Span(T *, size_t) -> Span<T>;
208 template <typename T, size_t size>
209 Span(T (&array)[size]) -> Span<T>;
210 template <
211     typename C,
212     typename T = std::remove_pointer_t<decltype(std::declval<C>().data())>,
213     typename = internal::EnableIfContainer<C, T>>
214 Span(C &) -> Span<T>;
215 
216 template <typename T>
MakeSpan(T * ptr,size_t size)217 constexpr Span<T> MakeSpan(T *ptr, size_t size) {
218   return Span<T>(ptr, size);
219 }
220 
221 template <typename C>
222 constexpr auto MakeSpan(C &c) -> decltype(MakeSpan(c.data(), c.size())) {
223   return MakeSpan(c.data(), c.size());
224 }
225 
226 template <typename T, size_t N>
MakeSpan(T (& array)[N])227 constexpr Span<T> MakeSpan(T (&array)[N]) {
228   return Span<T>(array, N);
229 }
230 
231 template <typename T>
MakeConstSpan(T * ptr,size_t size)232 constexpr Span<const T> MakeConstSpan(T *ptr, size_t size) {
233   return Span<const T>(ptr, size);
234 }
235 
236 template <typename C>
237 constexpr auto MakeConstSpan(const C &c)
238     -> decltype(MakeConstSpan(c.data(), c.size())) {
239   return MakeConstSpan(c.data(), c.size());
240 }
241 
242 template <typename T, size_t size>
MakeConstSpan(T (& array)[size])243 constexpr Span<const T> MakeConstSpan(T (&array)[size]) {
244   return array;
245 }
246 
StringAsBytes(std::string_view s)247 inline Span<const uint8_t> StringAsBytes(std::string_view s) {
248   return MakeConstSpan(reinterpret_cast<const uint8_t *>(s.data()), s.size());
249 }
250 
BytesAsStringView(bssl::Span<const uint8_t> b)251 inline std::string_view BytesAsStringView(bssl::Span<const uint8_t> b) {
252   return std::string_view(reinterpret_cast<const char *>(b.data()), b.size());
253 }
254 
255 BSSL_NAMESPACE_END
256 
257 }  // extern C++
258 
259 #endif  // !defined(BORINGSSL_NO_CXX)
260 
261 #endif  // OPENSSL_HEADER_SSL_SPAN_H
262