• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved.
4  *
5  * Licensed under the OpenSSL license (the "License").  You may not use
6  * this file except in compliance with the License.  You can obtain a copy
7  * in the file LICENSE in the source distribution or at
8  * https://www.openssl.org/source/license.html
9  */
10 
11 #ifndef OPENSSL_HEADER_BN_INTERNAL_H
12 #define OPENSSL_HEADER_BN_INTERNAL_H
13 
14 #include <openssl/bn.h>
15 
16 #if defined(OPENSSL_X86_64) && defined(_MSC_VER)
17 OPENSSL_MSVC_PRAGMA(warning(push, 3))
18 #include <intrin.h>
OPENSSL_MSVC_PRAGMA(warning (pop))19 OPENSSL_MSVC_PRAGMA(warning(pop))
20 #pragma intrinsic(__umulh, _umul128)
21 #endif
22 
23 #include "../../internal.h"
24 
25 #if defined(__cplusplus)
26 extern "C" {
27 #endif
28 
29 #if defined(OPENSSL_64_BIT)
30 
31 #if defined(BORINGSSL_HAS_UINT128)
32 // MSVC doesn't support two-word integers on 64-bit.
33 #define BN_ULLONG uint128_t
34 #if defined(BORINGSSL_CAN_DIVIDE_UINT128)
35 #define BN_CAN_DIVIDE_ULLONG
36 #endif
37 #endif
38 
39 #define BN_BITS2 64
40 #define BN_BITS2_LG 6
41 #define BN_BYTES 8
42 #define BN_BITS4 32
43 #define BN_MASK2 (0xffffffffffffffffUL)
44 #define BN_MASK2l (0xffffffffUL)
45 #define BN_MASK2h (0xffffffff00000000UL)
46 #define BN_MASK2h1 (0xffffffff80000000UL)
47 #define BN_MONT_CTX_N0_LIMBS 1
48 #define BN_DEC_CONV (10000000000000000000UL)
49 #define BN_DEC_NUM 19
50 #define TOBN(hi, lo) ((BN_ULONG)(hi) << 32 | (lo))
51 
52 #elif defined(OPENSSL_32_BIT)
53 
54 #define BN_ULLONG uint64_t
55 #define BN_CAN_DIVIDE_ULLONG
56 #define BN_BITS2 32
57 #define BN_BITS2_LG 5
58 #define BN_BYTES 4
59 #define BN_BITS4 16
60 #define BN_MASK2 (0xffffffffUL)
61 #define BN_MASK2l (0xffffUL)
62 #define BN_MASK2h1 (0xffff8000UL)
63 #define BN_MASK2h (0xffff0000UL)
64 // On some 32-bit platforms, Montgomery multiplication is done using 64-bit
65 // arithmetic with SIMD instructions. On such platforms, |BN_MONT_CTX::n0|
66 // needs to be two words long. Only certain 32-bit platforms actually make use
67 // of n0[1] and shorter R value would suffice for the others. However,
68 // currently only the assembly files know which is which.
69 #define BN_MONT_CTX_N0_LIMBS 2
70 #define BN_DEC_CONV (1000000000UL)
71 #define BN_DEC_NUM 9
72 #define TOBN(hi, lo) (lo), (hi)
73 
74 #else
75 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
76 #endif
77 
78 #if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
79 #define BN_CAN_USE_INLINE_ASM
80 #endif
81 
82 // MOD_EXP_CTIME_ALIGN is the alignment needed for |BN_mod_exp_mont_consttime|'s
83 // tables.
84 //
85 // TODO(davidben): Historically, this alignment came from cache line
86 // assumptions, which we've since removed. Is 64-byte alignment still necessary
87 // or ideal? The true alignment requirement seems to now be 32 bytes, coming
88 // from RSAZ's use of VMOVDQA to a YMM register. Non-x86_64 has even fewer
89 // requirements.
90 #define MOD_EXP_CTIME_ALIGN 64
91 
92 // MOD_EXP_CTIME_STORAGE_LEN is the number of |BN_ULONG|s needed for the
93 // |BN_mod_exp_mont_consttime| stack-allocated storage buffer. The buffer is
94 // just the right size for the RSAZ and is about ~1KB larger than what's
95 // necessary (4480 bytes) for 1024-bit inputs.
96 #define MOD_EXP_CTIME_STORAGE_LEN \
97   (((320u * 3u) + (32u * 9u * 16u)) / sizeof(BN_ULONG))
98 
99 #define STATIC_BIGNUM(x)                                    \
100   {                                                         \
101     (BN_ULONG *)(x), sizeof(x) / sizeof(BN_ULONG),          \
102         sizeof(x) / sizeof(BN_ULONG), 0, BN_FLG_STATIC_DATA \
103   }
104 
105 #if defined(BN_ULLONG)
106 #define Lw(t) ((BN_ULONG)(t))
107 #define Hw(t) ((BN_ULONG)((t) >> BN_BITS2))
108 #endif
109 
110 // bn_minimal_width returns the minimal number of words needed to represent
111 // |bn|.
112 int bn_minimal_width(const BIGNUM *bn);
113 
114 // bn_set_minimal_width sets |bn->width| to |bn_minimal_width(bn)|. If |bn| is
115 // zero, |bn->neg| is set to zero.
116 void bn_set_minimal_width(BIGNUM *bn);
117 
118 // bn_wexpand ensures that |bn| has at least |words| works of space without
119 // altering its value. It returns one on success or zero on allocation
120 // failure.
121 int bn_wexpand(BIGNUM *bn, size_t words);
122 
123 // bn_expand acts the same as |bn_wexpand|, but takes a number of bits rather
124 // than a number of words.
125 int bn_expand(BIGNUM *bn, size_t bits);
126 
127 // bn_resize_words adjusts |bn->width| to be |words|. It returns one on success
128 // and zero on allocation error or if |bn|'s value is too large.
129 OPENSSL_EXPORT int bn_resize_words(BIGNUM *bn, size_t words);
130 
131 // bn_select_words sets |r| to |a| if |mask| is all ones or |b| if |mask| is
132 // all zeros.
133 void bn_select_words(BN_ULONG *r, BN_ULONG mask, const BN_ULONG *a,
134                      const BN_ULONG *b, size_t num);
135 
136 // bn_set_words sets |bn| to the value encoded in the |num| words in |words|,
137 // least significant word first.
138 int bn_set_words(BIGNUM *bn, const BN_ULONG *words, size_t num);
139 
140 // bn_set_static_words acts like |bn_set_words|, but doesn't copy the data. A
141 // flag is set on |bn| so that |BN_free| won't attempt to free the data.
142 //
143 // The |STATIC_BIGNUM| macro is probably a better solution for this outside of
144 // the FIPS module. Inside of the FIPS module that macro generates rel.ro data,
145 // which doesn't work with FIPS requirements.
146 void bn_set_static_words(BIGNUM *bn, const BN_ULONG *words, size_t num);
147 
148 // bn_fits_in_words returns one if |bn| may be represented in |num| words, plus
149 // a sign bit, and zero otherwise.
150 int bn_fits_in_words(const BIGNUM *bn, size_t num);
151 
152 // bn_copy_words copies the value of |bn| to |out| and returns one if the value
153 // is representable in |num| words. Otherwise, it returns zero.
154 int bn_copy_words(BN_ULONG *out, size_t num, const BIGNUM *bn);
155 
156 // bn_assert_fits_in_bytes asserts that |bn| fits in |num| bytes. This is a
157 // no-op in release builds, but triggers an assert in debug builds, and
158 // declassifies all bytes which are therefore known to be zero in constant-time
159 // validation.
160 void bn_assert_fits_in_bytes(const BIGNUM *bn, size_t num);
161 
162 // bn_secret marks |bn|'s contents, but not its width or sign, as secret. See
163 // |CONSTTIME_SECRET| for details.
164 inline void bn_secret(BIGNUM *bn) {
165   CONSTTIME_SECRET(bn->d, bn->width * sizeof(BN_ULONG));
166 }
167 
168 // bn_declassify marks |bn|'s value as public. See |CONSTTIME_DECLASSIFY| for
169 // details.
170 inline void bn_declassify(BIGNUM *bn) {
171   CONSTTIME_DECLASSIFY(bn->d, bn->width * sizeof(BN_ULONG));
172 }
173 
174 // bn_mul_add_words multiples |ap| by |w|, adds the result to |rp|, and places
175 // the result in |rp|. |ap| and |rp| must both be |num| words long. It returns
176 // the carry word of the operation. |ap| and |rp| may be equal but otherwise may
177 // not alias.
178 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num,
179                           BN_ULONG w);
180 
181 // bn_mul_words multiples |ap| by |w| and places the result in |rp|. |ap| and
182 // |rp| must both be |num| words long. It returns the carry word of the
183 // operation. |ap| and |rp| may be equal but otherwise may not alias.
184 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, BN_ULONG w);
185 
186 // bn_sqr_words sets |rp[2*i]| and |rp[2*i+1]| to |ap[i]|'s square, for all |i|
187 // up to |num|. |ap| is an array of |num| words and |rp| an array of |2*num|
188 // words. |ap| and |rp| may not alias.
189 //
190 // This gives the contribution of the |ap[i]*ap[i]| terms when squaring |ap|.
191 void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num);
192 
193 // bn_add_words adds |ap| to |bp| and places the result in |rp|, each of which
194 // are |num| words long. It returns the carry bit, which is one if the operation
195 // overflowed and zero otherwise. Any pair of |ap|, |bp|, and |rp| may be equal
196 // to each other but otherwise may not alias.
197 BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
198                       size_t num);
199 
200 // bn_sub_words subtracts |bp| from |ap| and places the result in |rp|. It
201 // returns the borrow bit, which is one if the computation underflowed and zero
202 // otherwise. Any pair of |ap|, |bp|, and |rp| may be equal to each other but
203 // otherwise may not alias.
204 BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
205                       size_t num);
206 
207 // bn_mul_comba4 sets |r| to the product of |a| and |b|.
208 void bn_mul_comba4(BN_ULONG r[8], const BN_ULONG a[4], const BN_ULONG b[4]);
209 
210 // bn_mul_comba8 sets |r| to the product of |a| and |b|.
211 void bn_mul_comba8(BN_ULONG r[16], const BN_ULONG a[8], const BN_ULONG b[8]);
212 
213 // bn_sqr_comba8 sets |r| to |a|^2.
214 void bn_sqr_comba8(BN_ULONG r[16], const BN_ULONG a[8]);
215 
216 // bn_sqr_comba4 sets |r| to |a|^2.
217 void bn_sqr_comba4(BN_ULONG r[8], const BN_ULONG a[4]);
218 
219 // bn_less_than_words returns one if |a| < |b| and zero otherwise, where |a|
220 // and |b| both are |len| words long. It runs in constant time.
221 int bn_less_than_words(const BN_ULONG *a, const BN_ULONG *b, size_t len);
222 
223 // bn_in_range_words returns one if |min_inclusive| <= |a| < |max_exclusive|,
224 // where |a| and |max_exclusive| both are |len| words long. |a| and
225 // |max_exclusive| are treated as secret.
226 int bn_in_range_words(const BN_ULONG *a, BN_ULONG min_inclusive,
227                       const BN_ULONG *max_exclusive, size_t len);
228 
229 // bn_rand_range_words sets |out| to a uniformly distributed random number from
230 // |min_inclusive| to |max_exclusive|. Both |out| and |max_exclusive| are |len|
231 // words long.
232 //
233 // This function runs in time independent of the result, but |min_inclusive| and
234 // |max_exclusive| are public data. (Information about the range is unavoidably
235 // leaked by how many iterations it took to select a number.)
236 int bn_rand_range_words(BN_ULONG *out, BN_ULONG min_inclusive,
237                         const BN_ULONG *max_exclusive, size_t len,
238                         const uint8_t additional_data[32]);
239 
240 // bn_range_secret_range behaves like |BN_rand_range_ex|, but treats
241 // |max_exclusive| as secret. Because of this constraint, the distribution of
242 // values returned is more complex.
243 //
244 // Rather than repeatedly generating values until one is in range, which would
245 // leak information, it generates one value. If the value is in range, it sets
246 // |*out_is_uniform| to one. Otherwise, it sets |*out_is_uniform| to zero,
247 // fixing up the value to force it in range.
248 //
249 // The subset of calls to |bn_rand_secret_range| which set |*out_is_uniform| to
250 // one are uniformly distributed in the target range. Calls overall are not.
251 // This function is intended for use in situations where the extra values are
252 // still usable and where the number of iterations needed to reach the target
253 // number of uniform outputs may be blinded for negligible probabilities of
254 // timing leaks.
255 //
256 // Although this function treats |max_exclusive| as secret, it treats the number
257 // of bits in |max_exclusive| as public.
258 int bn_rand_secret_range(BIGNUM *r, int *out_is_uniform, BN_ULONG min_inclusive,
259                          const BIGNUM *max_exclusive);
260 
261 // BN_MONTGOMERY_MAX_WORDS is the maximum numer of words allowed in a |BIGNUM|
262 // used with Montgomery reduction. Ideally this limit would be applied to all
263 // |BIGNUM|s, in |bn_wexpand|, but the exactfloat library needs to create 8 MiB
264 // values for other operations.
265 #define BN_MONTGOMERY_MAX_WORDS (8 * 1024 / sizeof(BN_ULONG))
266 
267 #if !defined(OPENSSL_NO_ASM) &&                         \
268     (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
269      defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
270 #define OPENSSL_BN_ASM_MONT
271 // bn_mul_mont writes |ap| * |bp| mod |np| to |rp|, each |num| words
272 // long. Inputs and outputs are in Montgomery form. |n0| is a pointer to the
273 // corresponding field in |BN_MONT_CTX|. It returns one if |bn_mul_mont| handles
274 // inputs of this size and zero otherwise.
275 //
276 // If at least one of |ap| or |bp| is fully reduced, |rp| will be fully reduced.
277 // If neither is fully-reduced, the output may not be either.
278 //
279 // This function allocates |num| words on the stack, so |num| should be at most
280 // |BN_MONTGOMERY_MAX_WORDS|.
281 //
282 // TODO(davidben): The x86_64 implementation expects a 32-bit input and masks
283 // off upper bits. The aarch64 implementation expects a 64-bit input and does
284 // not. |size_t| is the safer option but not strictly correct for x86_64. But
285 // the |BN_MONTGOMERY_MAX_WORDS| bound makes this moot.
286 //
287 // See also discussion in |ToWord| in abi_test.h for notes on smaller-than-word
288 // inputs.
289 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
290                 const BN_ULONG *np, const BN_ULONG *n0, size_t num);
291 
292 #if defined(OPENSSL_X86_64)
293 inline int bn_mulx_adx_capable(void) {
294   // MULX is in BMI2.
295   return CRYPTO_is_BMI2_capable() && CRYPTO_is_ADX_capable();
296 }
297 int bn_mul_mont_nohw(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
298                      const BN_ULONG *np, const BN_ULONG *n0, size_t num);
299 inline int bn_mul4x_mont_capable(size_t num) {
300   return num >= 8 && (num & 3) == 0;
301 }
302 int bn_mul4x_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
303                   const BN_ULONG *np, const BN_ULONG *n0, size_t num);
304 inline int bn_mulx4x_mont_capable(size_t num) {
305   return bn_mul4x_mont_capable(num) && bn_mulx_adx_capable();
306 }
307 int bn_mulx4x_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
308                    const BN_ULONG *np, const BN_ULONG *n0, size_t num);
309 inline int bn_sqr8x_mont_capable(size_t num) {
310   return num >= 8 && (num & 7) == 0;
311 }
312 int bn_sqr8x_mont(BN_ULONG *rp, const BN_ULONG *ap, BN_ULONG mulx_adx_capable,
313                   const BN_ULONG *np, const BN_ULONG *n0, size_t num);
314 #elif defined(OPENSSL_ARM)
315 inline int bn_mul8x_mont_neon_capable(size_t num) {
316   return (num & 7) == 0 && CRYPTO_is_NEON_capable();
317 }
318 int bn_mul8x_mont_neon(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
319                        const BN_ULONG *np, const BN_ULONG *n0, size_t num);
320 int bn_mul_mont_nohw(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
321                      const BN_ULONG *np, const BN_ULONG *n0, size_t num);
322 #endif
323 
324 #endif  // OPENSSL_BN_ASM_MONT
325 
326 #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64)
327 #define OPENSSL_BN_ASM_MONT5
328 
329 // The following functions implement |bn_mul_mont_gather5|. See
330 // |bn_mul_mont_gather5| for details.
331 inline int bn_mul4x_mont_gather5_capable(int num) { return (num & 7) == 0; }
332 void bn_mul4x_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
333                            const BN_ULONG *table, const BN_ULONG *np,
334                            const BN_ULONG *n0, int num, int power);
335 
336 inline int bn_mulx4x_mont_gather5_capable(int num) {
337   return bn_mul4x_mont_gather5_capable(num) && CRYPTO_is_ADX_capable() &&
338          CRYPTO_is_BMI1_capable() && CRYPTO_is_BMI2_capable();
339 }
340 void bn_mulx4x_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
341                             const BN_ULONG *table, const BN_ULONG *np,
342                             const BN_ULONG *n0, int num, int power);
343 
344 void bn_mul_mont_gather5_nohw(BN_ULONG *rp, const BN_ULONG *ap,
345                               const BN_ULONG *table, const BN_ULONG *np,
346                               const BN_ULONG *n0, int num, int power);
347 
348 // bn_scatter5 stores |inp| to index |power| of |table|. |inp| and each entry of
349 // |table| are |num| words long. |power| must be less than 32 and is treated as
350 // public. |table| must be 32*|num| words long. |table| must be aligned to at
351 // least 16 bytes.
352 void bn_scatter5(const BN_ULONG *inp, size_t num, BN_ULONG *table,
353                  size_t power);
354 
355 // bn_gather5 loads index |power| of |table| and stores it in |out|. |out| and
356 // each entry of |table| are |num| words long. |power| must be less than 32 and
357 // is treated as secret. |table| must be aligned to at least 16 bytes.
358 void bn_gather5(BN_ULONG *out, size_t num, const BN_ULONG *table, size_t power);
359 
360 // The following functions implement |bn_power5|. See |bn_power5| for details.
361 void bn_power5_nohw(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *table,
362                     const BN_ULONG *np, const BN_ULONG *n0, int num, int power);
363 
364 inline int bn_power5_capable(int num) { return (num & 7) == 0; }
365 
366 inline int bn_powerx5_capable(int num) {
367   return bn_power5_capable(num) && CRYPTO_is_ADX_capable() &&
368          CRYPTO_is_BMI1_capable() && CRYPTO_is_BMI2_capable();
369 }
370 void bn_powerx5(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *table,
371                 const BN_ULONG *np, const BN_ULONG *n0, int num, int power);
372 
373 #endif  // !OPENSSL_NO_ASM && OPENSSL_X86_64
374 
375 uint64_t bn_mont_n0(const BIGNUM *n);
376 
377 // bn_mont_ctx_set_RR_consttime initializes |mont->RR|. It returns one on
378 // success and zero on error. |mont->N| and |mont->n0| must have been
379 // initialized already. The bit width of |mont->N| is assumed public, but
380 // |mont->N| is otherwise treated as secret.
381 int bn_mont_ctx_set_RR_consttime(BN_MONT_CTX *mont, BN_CTX *ctx);
382 
383 #if defined(_MSC_VER)
384 #if defined(OPENSSL_X86_64)
385 #define BN_UMULT_LOHI(low, high, a, b) ((low) = _umul128((a), (b), &(high)))
386 #elif defined(OPENSSL_AARCH64)
387 #define BN_UMULT_LOHI(low, high, a, b) \
388   do {                                 \
389     const BN_ULONG _a = (a);           \
390     const BN_ULONG _b = (b);           \
391     (low) = _a * _b;                   \
392     (high) = __umulh(_a, _b);          \
393   } while (0)
394 #endif
395 #endif  // _MSC_VER
396 
397 #if !defined(BN_ULLONG) && !defined(BN_UMULT_LOHI)
398 #error "Either BN_ULLONG or BN_UMULT_LOHI must be defined on every platform."
399 #endif
400 
401 // bn_jacobi returns the Jacobi symbol of |a| and |b| (which is -1, 0 or 1), or
402 // -2 on error.
403 int bn_jacobi(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
404 
405 // bn_is_bit_set_words returns one if bit |bit| is set in |a| and zero
406 // otherwise.
407 int bn_is_bit_set_words(const BN_ULONG *a, size_t num, size_t bit);
408 
409 // bn_one_to_montgomery sets |r| to one in Montgomery form. It returns one on
410 // success and zero on error. This function treats the bit width of the modulus
411 // as public.
412 int bn_one_to_montgomery(BIGNUM *r, const BN_MONT_CTX *mont, BN_CTX *ctx);
413 
414 // bn_less_than_montgomery_R returns one if |bn| is less than the Montgomery R
415 // value for |mont| and zero otherwise.
416 int bn_less_than_montgomery_R(const BIGNUM *bn, const BN_MONT_CTX *mont);
417 
418 // bn_mod_u16_consttime returns |bn| mod |d|, ignoring |bn|'s sign bit. It runs
419 // in time independent of the value of |bn|, but it treats |d| as public.
420 OPENSSL_EXPORT uint16_t bn_mod_u16_consttime(const BIGNUM *bn, uint16_t d);
421 
422 // bn_odd_number_is_obviously_composite returns one if |bn| is divisible by one
423 // of the first several odd primes and zero otherwise.
424 int bn_odd_number_is_obviously_composite(const BIGNUM *bn);
425 
426 // A BN_MILLER_RABIN stores state common to each Miller-Rabin iteration. It is
427 // initialized within an existing |BN_CTX| scope and may not be used after
428 // that scope is released with |BN_CTX_end|. Field names match those in FIPS
429 // 186-4, section C.3.1.
430 typedef struct {
431   // w1 is w-1.
432   BIGNUM *w1;
433   // m is (w-1)/2^a.
434   BIGNUM *m;
435   // one_mont is 1 (mod w) in Montgomery form.
436   BIGNUM *one_mont;
437   // w1_mont is w-1 (mod w) in Montgomery form.
438   BIGNUM *w1_mont;
439   // w_bits is BN_num_bits(w).
440   int w_bits;
441   // a is the largest integer such that 2^a divides w-1.
442   int a;
443 } BN_MILLER_RABIN;
444 
445 // bn_miller_rabin_init initializes |miller_rabin| for testing if |mont->N| is
446 // prime. It returns one on success and zero on error.
447 OPENSSL_EXPORT int bn_miller_rabin_init(BN_MILLER_RABIN *miller_rabin,
448                                         const BN_MONT_CTX *mont, BN_CTX *ctx);
449 
450 // bn_miller_rabin_iteration performs one Miller-Rabin iteration, checking if
451 // |b| is a composite witness for |mont->N|. |miller_rabin| must have been
452 // initialized with |bn_miller_rabin_setup|. On success, it returns one and sets
453 // |*out_is_possibly_prime| to one if |mont->N| may still be prime or zero if
454 // |b| shows it is composite. On allocation or internal failure, it returns
455 // zero.
456 OPENSSL_EXPORT int bn_miller_rabin_iteration(
457     const BN_MILLER_RABIN *miller_rabin, int *out_is_possibly_prime,
458     const BIGNUM *b, const BN_MONT_CTX *mont, BN_CTX *ctx);
459 
460 // bn_rshift1_words sets |r| to |a| >> 1, where both arrays are |num| bits wide.
461 void bn_rshift1_words(BN_ULONG *r, const BN_ULONG *a, size_t num);
462 
463 // bn_rshift_words sets |r| to |a| >> |shift|, where both arrays are |num| bits
464 // wide.
465 void bn_rshift_words(BN_ULONG *r, const BN_ULONG *a, unsigned shift,
466                      size_t num);
467 
468 // bn_rshift_secret_shift behaves like |BN_rshift| but runs in time independent
469 // of both |a| and |n|.
470 OPENSSL_EXPORT int bn_rshift_secret_shift(BIGNUM *r, const BIGNUM *a,
471                                           unsigned n, BN_CTX *ctx);
472 
473 // bn_reduce_once sets |r| to |a| mod |m| where 0 <= |a| < 2*|m|. It returns
474 // zero if |a| < |m| and a mask of all ones if |a| >= |m|. Each array is |num|
475 // words long, but |a| has an additional word specified by |carry|. |carry| must
476 // be zero or one, as implied by the bounds on |a|.
477 //
478 // |r|, |a|, and |m| may not alias. Use |bn_reduce_once_in_place| if |r| and |a|
479 // must alias.
480 BN_ULONG bn_reduce_once(BN_ULONG *r, const BN_ULONG *a, BN_ULONG carry,
481                         const BN_ULONG *m, size_t num);
482 
483 // bn_reduce_once_in_place behaves like |bn_reduce_once| but acts in-place on
484 // |r|, using |tmp| as scratch space. |r|, |tmp|, and |m| may not alias.
485 BN_ULONG bn_reduce_once_in_place(BN_ULONG *r, BN_ULONG carry, const BN_ULONG *m,
486                                  BN_ULONG *tmp, size_t num);
487 
488 
489 // Constant-time non-modular arithmetic.
490 //
491 // The following functions implement non-modular arithmetic in constant-time
492 // and pessimally set |r->width| to the largest possible word size.
493 //
494 // Note this means that, e.g., repeatedly multiplying by one will cause widths
495 // to increase without bound. The corresponding public API functions minimize
496 // their outputs to avoid regressing calculator consumers.
497 
498 // bn_uadd_consttime behaves like |BN_uadd|, but it pessimally sets
499 // |r->width| = |a->width| + |b->width| + 1.
500 int bn_uadd_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
501 
502 // bn_usub_consttime behaves like |BN_usub|, but it pessimally sets
503 // |r->width| = |a->width|.
504 int bn_usub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
505 
506 // bn_abs_sub_consttime sets |r| to the absolute value of |a| - |b|, treating
507 // both inputs as secret. It returns one on success and zero on error.
508 OPENSSL_EXPORT int bn_abs_sub_consttime(BIGNUM *r, const BIGNUM *a,
509                                         const BIGNUM *b, BN_CTX *ctx);
510 
511 // bn_mul_consttime behaves like |BN_mul|, but it rejects negative inputs and
512 // pessimally sets |r->width| to |a->width| + |b->width|, to avoid leaking
513 // information about |a| and |b|.
514 int bn_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
515 
516 // bn_sqrt_consttime behaves like |BN_sqrt|, but it pessimally sets |r->width|
517 // to 2*|a->width|, to avoid leaking information about |a| and |b|.
518 int bn_sqr_consttime(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
519 
520 // bn_div_consttime behaves like |BN_div|, but it rejects negative inputs and
521 // treats both inputs, including their magnitudes, as secret. It is, as a
522 // result, much slower than |BN_div| and should only be used for rare operations
523 // where Montgomery reduction is not available. |divisor_min_bits| is a
524 // public lower bound for |BN_num_bits(divisor)|. When |divisor|'s bit width is
525 // public, this can speed up the operation.
526 //
527 // Note that |quotient->width| will be set pessimally to |numerator->width|.
528 OPENSSL_EXPORT int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder,
529                                     const BIGNUM *numerator,
530                                     const BIGNUM *divisor,
531                                     unsigned divisor_min_bits, BN_CTX *ctx);
532 
533 // bn_is_relatively_prime checks whether GCD(|x|, |y|) is one. On success, it
534 // returns one and sets |*out_relatively_prime| to one if the GCD was one and
535 // zero otherwise. On error, it returns zero.
536 OPENSSL_EXPORT int bn_is_relatively_prime(int *out_relatively_prime,
537                                           const BIGNUM *x, const BIGNUM *y,
538                                           BN_CTX *ctx);
539 
540 // bn_lcm_consttime sets |r| to LCM(|a|, |b|). It returns one and success and
541 // zero on error. |a| and |b| are both treated as secret.
542 OPENSSL_EXPORT int bn_lcm_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
543                                     BN_CTX *ctx);
544 
545 // bn_mont_ctx_init zero-initialies |mont|.
546 void bn_mont_ctx_init(BN_MONT_CTX *mont);
547 
548 // bn_mont_ctx_cleanup releases memory associated with |mont|, without freeing
549 // |mont| itself.
550 void bn_mont_ctx_cleanup(BN_MONT_CTX *mont);
551 
552 
553 // Constant-time modular arithmetic.
554 //
555 // The following functions implement basic constant-time modular arithmetic.
556 
557 // bn_mod_add_words sets |r| to |a| + |b| (mod |m|), using |tmp| as scratch
558 // space. Each array is |num| words long. |a| and |b| must be < |m|. Any pair of
559 // |r|, |a|, and |b| may alias.
560 void bn_mod_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
561                       const BN_ULONG *m, BN_ULONG *tmp, size_t num);
562 
563 // bn_mod_add_consttime acts like |BN_mod_add_quick| but takes a |BN_CTX|.
564 int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
565                          const BIGNUM *m, BN_CTX *ctx);
566 
567 // bn_mod_sub_words sets |r| to |a| - |b| (mod |m|), using |tmp| as scratch
568 // space. Each array is |num| words long. |a| and |b| must be < |m|. Any pair of
569 // |r|, |a|, and |b| may alias.
570 void bn_mod_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
571                       const BN_ULONG *m, BN_ULONG *tmp, size_t num);
572 
573 // bn_mod_sub_consttime acts like |BN_mod_sub_quick| but takes a |BN_CTX|.
574 int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
575                          const BIGNUM *m, BN_CTX *ctx);
576 
577 // bn_mod_lshift1_consttime acts like |BN_mod_lshift1_quick| but takes a
578 // |BN_CTX|.
579 int bn_mod_lshift1_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *m,
580                              BN_CTX *ctx);
581 
582 // bn_mod_lshift_consttime acts like |BN_mod_lshift_quick| but takes a |BN_CTX|.
583 int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
584                             BN_CTX *ctx);
585 
586 // bn_mod_inverse_consttime sets |r| to |a|^-1, mod |n|. |a| must be non-
587 // negative and less than |n|. It returns one on success and zero on error. On
588 // failure, if the failure was caused by |a| having no inverse mod |n| then
589 // |*out_no_inverse| will be set to one; otherwise it will be set to zero.
590 //
591 // This function treats both |a| and |n| as secret, provided they are both non-
592 // zero and the inverse exists. It should only be used for even moduli where
593 // none of the less general implementations are applicable.
594 OPENSSL_EXPORT int bn_mod_inverse_consttime(BIGNUM *r, int *out_no_inverse,
595                                             const BIGNUM *a, const BIGNUM *n,
596                                             BN_CTX *ctx);
597 
598 // bn_mod_inverse_prime sets |out| to the modular inverse of |a| modulo |p|,
599 // computed with Fermat's Little Theorem. It returns one on success and zero on
600 // error. If |mont_p| is NULL, one will be computed temporarily.
601 int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
602                          BN_CTX *ctx, const BN_MONT_CTX *mont_p);
603 
604 // bn_mod_inverse_secret_prime behaves like |bn_mod_inverse_prime| but uses
605 // |BN_mod_exp_mont_consttime| instead of |BN_mod_exp_mont| in hopes of
606 // protecting the exponent.
607 int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p,
608                                 BN_CTX *ctx, const BN_MONT_CTX *mont_p);
609 
610 // BN_MONT_CTX_set_locked takes |lock| and checks whether |*pmont| is NULL. If
611 // so, it creates a new |BN_MONT_CTX| and sets the modulus for it to |mod|. It
612 // then stores it as |*pmont|. It returns one on success and zero on error. Note
613 // this function assumes |mod| is public.
614 //
615 // If |*pmont| is already non-NULL then it does nothing and returns one.
616 int BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_MUTEX *lock,
617                            const BIGNUM *mod, BN_CTX *bn_ctx);
618 
619 
620 // Low-level operations for small numbers.
621 //
622 // The following functions implement algorithms suitable for use with scalars
623 // and field elements in elliptic curves. They rely on the number being small
624 // both to stack-allocate various temporaries and because they do not implement
625 // optimizations useful for the larger values used in RSA.
626 
627 // BN_SMALL_MAX_WORDS is the largest size input these functions handle. This
628 // limit allows temporaries to be more easily stack-allocated. This limit is set
629 // to accommodate P-521.
630 #if defined(OPENSSL_32_BIT)
631 #define BN_SMALL_MAX_WORDS 17
632 #else
633 #define BN_SMALL_MAX_WORDS 9
634 #endif
635 
636 // bn_mul_small sets |r| to |a|*|b|. |num_r| must be |num_a| + |num_b|. |r| may
637 // not alias with |a| or |b|.
638 void bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
639                  const BN_ULONG *b, size_t num_b);
640 
641 // bn_sqr_small sets |r| to |a|^2. |num_a| must be at most |BN_SMALL_MAX_WORDS|.
642 // |num_r| must be |num_a|*2. |r| and |a| may not alias.
643 void bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a);
644 
645 // In the following functions, the modulus must be at most |BN_SMALL_MAX_WORDS|
646 // words long.
647 
648 // bn_to_montgomery_small sets |r| to |a| translated to the Montgomery domain.
649 // |r| and |a| are |num| words long, which must be |mont->N.width|. |a| must be
650 // fully reduced and may alias |r|.
651 void bn_to_montgomery_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
652                             const BN_MONT_CTX *mont);
653 
654 // bn_from_montgomery_small sets |r| to |a| translated out of the Montgomery
655 // domain. |r| and |a| are |num_r| and |num_a| words long, respectively. |num_r|
656 // must be |mont->N.width|. |a| must be at most |mont->N|^2 and may alias |r|.
657 //
658 // Unlike most of these functions, only |num_r| is bounded by
659 // |BN_SMALL_MAX_WORDS|. |num_a| may exceed it, but must be at most 2 * |num_r|.
660 void bn_from_montgomery_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a,
661                               size_t num_a, const BN_MONT_CTX *mont);
662 
663 // bn_mod_mul_montgomery_small sets |r| to |a| * |b| mod |mont->N|. Both inputs
664 // and outputs are in the Montgomery domain. Each array is |num| words long,
665 // which must be |mont->N.width|. Any two of |r|, |a|, and |b| may alias. |a|
666 // and |b| must be reduced on input.
667 void bn_mod_mul_montgomery_small(BN_ULONG *r, const BN_ULONG *a,
668                                  const BN_ULONG *b, size_t num,
669                                  const BN_MONT_CTX *mont);
670 
671 // bn_mod_exp_mont_small sets |r| to |a|^|p| mod |mont->N|. It returns one on
672 // success and zero on programmer or internal error. Both inputs and outputs are
673 // in the Montgomery domain. |r| and |a| are |num| words long, which must be
674 // |mont->N.width| and at most |BN_SMALL_MAX_WORDS|. |num_p|, measured in bits,
675 // must fit in |size_t|. |a| must be fully-reduced. This function runs in time
676 // independent of |a|, but |p| and |mont->N| are public values. |a| must be
677 // fully-reduced and may alias with |r|.
678 //
679 // Note this function differs from |BN_mod_exp_mont| which uses Montgomery
680 // reduction but takes input and output outside the Montgomery domain. Combine
681 // this function with |bn_from_montgomery_small| and |bn_to_montgomery_small|
682 // if necessary.
683 void bn_mod_exp_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
684                            const BN_ULONG *p, size_t num_p,
685                            const BN_MONT_CTX *mont);
686 
687 // bn_mod_inverse0_prime_mont_small sets |r| to |a|^-1 mod |mont->N|. If |a| is
688 // zero, |r| is set to zero. |mont->N| must be a prime. |r| and |a| are |num|
689 // words long, which must be |mont->N.width| and at most |BN_SMALL_MAX_WORDS|.
690 // |a| must be fully-reduced and may alias |r|. This function runs in time
691 // independent of |a|, but |mont->N| is a public value.
692 void bn_mod_inverse0_prime_mont_small(BN_ULONG *r, const BN_ULONG *a,
693                                       size_t num, const BN_MONT_CTX *mont);
694 
695 
696 // Word-based byte conversion functions.
697 
698 // bn_big_endian_to_words interprets |in_len| bytes from |in| as a big-endian,
699 // unsigned integer and writes the result to |out_len| words in |out|. |out_len|
700 // must be large enough to represent any |in_len|-byte value. That is, |in_len|
701 // must be at most |BN_BYTES * out_len|.
702 void bn_big_endian_to_words(BN_ULONG *out, size_t out_len, const uint8_t *in,
703                             size_t in_len);
704 
705 // bn_words_to_big_endian represents |in_len| words from |in| as a big-endian,
706 // unsigned integer in |out_len| bytes. It writes the result to |out|. |out_len|
707 // must be large enough to represent |in| without truncation.
708 //
709 // Note |out_len| may be less than |BN_BYTES * in_len| if |in| is known to have
710 // leading zeros.
711 void bn_words_to_big_endian(uint8_t *out, size_t out_len, const BN_ULONG *in,
712                             size_t in_len);
713 
714 
715 #if defined(__cplusplus)
716 }  // extern C
717 #endif
718 
719 #endif  // OPENSSL_HEADER_BN_INTERNAL_H
720