• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1/*
2 * Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License").  You may not use
5 * this file except in compliance with the License.  You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include <openssl/aead.h>
11
12#include <assert.h>
13
14#include <openssl/cipher.h>
15#include <openssl/err.h>
16#include <openssl/mem.h>
17
18#include "../aes/internal.h"
19#include "../delocate.h"
20#include "../modes/internal.h"
21#include "../service_indicator/internal.h"
22#include "internal.h"
23
24
25struct ccm128_context {
26  block128_f block;
27  ctr128_f ctr;
28  unsigned M, L;
29};
30
31struct ccm128_state {
32  alignas(16) uint8_t nonce[16];
33  alignas(16) uint8_t cmac[16];
34};
35
36static int CRYPTO_ccm128_init(struct ccm128_context *ctx, const AES_KEY *key,
37                              block128_f block, ctr128_f ctr, unsigned M,
38                              unsigned L) {
39  if (M < 4 || M > 16 || (M & 1) != 0 || L < 2 || L > 8) {
40    return 0;
41  }
42  ctx->block = block;
43  ctx->ctr = ctr;
44  ctx->M = M;
45  ctx->L = L;
46  return 1;
47}
48
49static size_t CRYPTO_ccm128_max_input(const struct ccm128_context *ctx) {
50  return ctx->L >= sizeof(size_t) ? SIZE_MAX
51                                  : (((size_t)1) << (ctx->L * 8)) - 1;
52}
53
54static int ccm128_init_state(const struct ccm128_context *ctx,
55                             struct ccm128_state *state, const AES_KEY *key,
56                             const uint8_t *nonce, size_t nonce_len,
57                             const uint8_t *aad, size_t aad_len,
58                             size_t plaintext_len) {
59  const block128_f block = ctx->block;
60  const unsigned M = ctx->M;
61  const unsigned L = ctx->L;
62
63  // |L| determines the expected |nonce_len| and the limit for |plaintext_len|.
64  if (plaintext_len > CRYPTO_ccm128_max_input(ctx)  //
65      || nonce_len != 15 - L) {
66    return 0;
67  }
68
69  // Assemble the first block for computing the MAC.
70  OPENSSL_memset(state, 0, sizeof(*state));
71  state->nonce[0] = (uint8_t)((L - 1) | ((M - 2) / 2) << 3);
72  if (aad_len != 0) {
73    state->nonce[0] |= 0x40;  // Set AAD Flag
74  }
75  OPENSSL_memcpy(&state->nonce[1], nonce, nonce_len);
76  for (unsigned i = 0; i < L; i++) {
77    state->nonce[15 - i] = (uint8_t)(plaintext_len >> (8 * i));
78  }
79
80  (*block)(state->nonce, state->cmac, key);
81  size_t blocks = 1;
82
83  if (aad_len != 0) {
84    unsigned i;
85    // Cast to u64 to avoid the compiler complaining about invalid shifts.
86    uint64_t aad_len_u64 = aad_len;
87    if (aad_len_u64 < 0x10000 - 0x100) {
88      state->cmac[0] ^= (uint8_t)(aad_len_u64 >> 8);
89      state->cmac[1] ^= (uint8_t)aad_len_u64;
90      i = 2;
91    } else if (aad_len_u64 <= 0xffffffff) {
92      state->cmac[0] ^= 0xff;
93      state->cmac[1] ^= 0xfe;
94      state->cmac[2] ^= (uint8_t)(aad_len_u64 >> 24);
95      state->cmac[3] ^= (uint8_t)(aad_len_u64 >> 16);
96      state->cmac[4] ^= (uint8_t)(aad_len_u64 >> 8);
97      state->cmac[5] ^= (uint8_t)aad_len_u64;
98      i = 6;
99    } else {
100      state->cmac[0] ^= 0xff;
101      state->cmac[1] ^= 0xff;
102      state->cmac[2] ^= (uint8_t)(aad_len_u64 >> 56);
103      state->cmac[3] ^= (uint8_t)(aad_len_u64 >> 48);
104      state->cmac[4] ^= (uint8_t)(aad_len_u64 >> 40);
105      state->cmac[5] ^= (uint8_t)(aad_len_u64 >> 32);
106      state->cmac[6] ^= (uint8_t)(aad_len_u64 >> 24);
107      state->cmac[7] ^= (uint8_t)(aad_len_u64 >> 16);
108      state->cmac[8] ^= (uint8_t)(aad_len_u64 >> 8);
109      state->cmac[9] ^= (uint8_t)aad_len_u64;
110      i = 10;
111    }
112
113    do {
114      for (; i < 16 && aad_len != 0; i++) {
115        state->cmac[i] ^= *aad;
116        aad++;
117        aad_len--;
118      }
119      (*block)(state->cmac, state->cmac, key);
120      blocks++;
121      i = 0;
122    } while (aad_len != 0);
123  }
124
125  // Per RFC 3610, section 2.6, the total number of block cipher operations done
126  // must not exceed 2^61. There are two block cipher operations remaining per
127  // message block, plus one block at the end to encrypt the MAC.
128  size_t remaining_blocks = 2 * ((plaintext_len + 15) / 16) + 1;
129  if (plaintext_len + 15 < plaintext_len ||
130      remaining_blocks + blocks < blocks ||
131      (uint64_t)remaining_blocks + blocks > UINT64_C(1) << 61) {
132    return 0;
133  }
134
135  // Assemble the first block for encrypting and decrypting. The bottom |L|
136  // bytes are replaced with a counter and all bit the encoding of |L| is
137  // cleared in the first byte.
138  state->nonce[0] &= 7;
139  return 1;
140}
141
142static int ccm128_encrypt(const struct ccm128_context *ctx,
143                          struct ccm128_state *state, const AES_KEY *key,
144                          uint8_t *out, const uint8_t *in, size_t len) {
145  // The counter for encryption begins at one.
146  for (unsigned i = 0; i < ctx->L; i++) {
147    state->nonce[15 - i] = 0;
148  }
149  state->nonce[15] = 1;
150
151  uint8_t partial_buf[16];
152  unsigned num = 0;
153  CRYPTO_ctr128_encrypt_ctr32(in, out, len, key, state->nonce, partial_buf,
154                              &num, ctx->ctr);
155  return 1;
156}
157
158static int ccm128_compute_mac(const struct ccm128_context *ctx,
159                              struct ccm128_state *state, const AES_KEY *key,
160                              uint8_t *out_tag, size_t tag_len,
161                              const uint8_t *in, size_t len) {
162  block128_f block = ctx->block;
163  if (tag_len != ctx->M) {
164    return 0;
165  }
166
167  // Incorporate |in| into the MAC.
168  while (len >= 16) {
169    CRYPTO_xor16(state->cmac, state->cmac, in);
170    (*block)(state->cmac, state->cmac, key);
171    in += 16;
172    len -= 16;
173  }
174  if (len > 0) {
175    for (size_t i = 0; i < len; i++) {
176      state->cmac[i] ^= in[i];
177    }
178    (*block)(state->cmac, state->cmac, key);
179  }
180
181  // Encrypt the MAC with counter zero.
182  for (unsigned i = 0; i < ctx->L; i++) {
183    state->nonce[15 - i] = 0;
184  }
185  alignas(16) uint8_t tmp[16];
186  (*block)(state->nonce, tmp, key);
187  CRYPTO_xor16(state->cmac, state->cmac, tmp);
188
189  OPENSSL_memcpy(out_tag, state->cmac, tag_len);
190  return 1;
191}
192
193static int CRYPTO_ccm128_encrypt(const struct ccm128_context *ctx,
194                                 const AES_KEY *key, uint8_t *out,
195                                 uint8_t *out_tag, size_t tag_len,
196                                 const uint8_t *nonce, size_t nonce_len,
197                                 const uint8_t *in, size_t len,
198                                 const uint8_t *aad, size_t aad_len) {
199  struct ccm128_state state;
200  return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len,
201                           len) &&
202         ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, in, len) &&
203         ccm128_encrypt(ctx, &state, key, out, in, len);
204}
205
206static int CRYPTO_ccm128_decrypt(const struct ccm128_context *ctx,
207                                 const AES_KEY *key, uint8_t *out,
208                                 uint8_t *out_tag, size_t tag_len,
209                                 const uint8_t *nonce, size_t nonce_len,
210                                 const uint8_t *in, size_t len,
211                                 const uint8_t *aad, size_t aad_len) {
212  struct ccm128_state state;
213  return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len,
214                           len) &&
215         ccm128_encrypt(ctx, &state, key, out, in, len) &&
216         ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, out, len);
217}
218
219#define EVP_AEAD_AES_CCM_MAX_TAG_LEN 16
220
221namespace {
222struct aead_aes_ccm_ctx {
223  union {
224    double align;
225    AES_KEY ks;
226  } ks;
227  struct ccm128_context ccm;
228};
229}  // namespace
230
231static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >=
232                  sizeof(struct aead_aes_ccm_ctx),
233              "AEAD state is too small");
234static_assert(alignof(union evp_aead_ctx_st_state) >=
235                  alignof(struct aead_aes_ccm_ctx),
236              "AEAD state has insufficient alignment");
237
238static int aead_aes_ccm_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
239                             size_t key_len, size_t tag_len, unsigned M,
240                             unsigned L) {
241  assert(M == EVP_AEAD_max_overhead(ctx->aead));
242  assert(M == EVP_AEAD_max_tag_len(ctx->aead));
243  assert(15 - L == EVP_AEAD_nonce_length(ctx->aead));
244
245  if (key_len != EVP_AEAD_key_length(ctx->aead)) {
246    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
247    return 0;  // EVP_AEAD_CTX_init should catch this.
248  }
249
250  if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
251    tag_len = M;
252  }
253
254  if (tag_len != M) {
255    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
256    return 0;
257  }
258
259  struct aead_aes_ccm_ctx *ccm_ctx = (struct aead_aes_ccm_ctx *)&ctx->state;
260
261  block128_f block;
262  ctr128_f ctr = aes_ctr_set_key(&ccm_ctx->ks.ks, NULL, &block, key, key_len);
263  ctx->tag_len = tag_len;
264  if (!CRYPTO_ccm128_init(&ccm_ctx->ccm, &ccm_ctx->ks.ks, block, ctr, M, L)) {
265    OPENSSL_PUT_ERROR(CIPHER, ERR_R_INTERNAL_ERROR);
266    return 0;
267  }
268
269  return 1;
270}
271
272static void aead_aes_ccm_cleanup(EVP_AEAD_CTX *ctx) {}
273
274static int aead_aes_ccm_seal_scatter(
275    const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
276    size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
277    size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
278    size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
279  const struct aead_aes_ccm_ctx *ccm_ctx =
280      (struct aead_aes_ccm_ctx *)&ctx->state;
281
282  if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) {
283    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
284    return 0;
285  }
286
287  if (max_out_tag_len < ctx->tag_len) {
288    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
289    return 0;
290  }
291
292  if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
293    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
294    return 0;
295  }
296
297  if (!CRYPTO_ccm128_encrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, out_tag,
298                             ctx->tag_len, nonce, nonce_len, in, in_len, ad,
299                             ad_len)) {
300    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
301    return 0;
302  }
303
304  *out_tag_len = ctx->tag_len;
305  AEAD_CCM_verify_service_indicator(ctx);
306  return 1;
307}
308
309static int aead_aes_ccm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out,
310                                    const uint8_t *nonce, size_t nonce_len,
311                                    const uint8_t *in, size_t in_len,
312                                    const uint8_t *in_tag, size_t in_tag_len,
313                                    const uint8_t *ad, size_t ad_len) {
314  const struct aead_aes_ccm_ctx *ccm_ctx =
315      (struct aead_aes_ccm_ctx *)&ctx->state;
316
317  if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) {
318    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
319    return 0;
320  }
321
322  if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) {
323    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
324    return 0;
325  }
326
327  if (in_tag_len != ctx->tag_len) {
328    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
329    return 0;
330  }
331
332  uint8_t tag[EVP_AEAD_AES_CCM_MAX_TAG_LEN];
333  assert(ctx->tag_len <= EVP_AEAD_AES_CCM_MAX_TAG_LEN);
334  if (!CRYPTO_ccm128_decrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, tag,
335                             ctx->tag_len, nonce, nonce_len, in, in_len, ad,
336                             ad_len)) {
337    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
338    return 0;
339  }
340
341  if (CRYPTO_memcmp(tag, in_tag, ctx->tag_len) != 0) {
342    OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
343    return 0;
344  }
345
346  AEAD_CCM_verify_service_indicator(ctx);
347  return 1;
348}
349
350static int aead_aes_ccm_bluetooth_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
351                                       size_t key_len, size_t tag_len) {
352  return aead_aes_ccm_init(ctx, key, key_len, tag_len, 4, 2);
353}
354
355DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_bluetooth) {
356  memset(out, 0, sizeof(EVP_AEAD));
357
358  out->key_len = 16;
359  out->nonce_len = 13;
360  out->overhead = 4;
361  out->max_tag_len = 4;
362
363  out->init = aead_aes_ccm_bluetooth_init;
364  out->cleanup = aead_aes_ccm_cleanup;
365  out->seal_scatter = aead_aes_ccm_seal_scatter;
366  out->open_gather = aead_aes_ccm_open_gather;
367}
368
369static int aead_aes_ccm_bluetooth_8_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
370                                         size_t key_len, size_t tag_len) {
371  return aead_aes_ccm_init(ctx, key, key_len, tag_len, 8, 2);
372}
373
374DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_bluetooth_8) {
375  memset(out, 0, sizeof(EVP_AEAD));
376
377  out->key_len = 16;
378  out->nonce_len = 13;
379  out->overhead = 8;
380  out->max_tag_len = 8;
381
382  out->init = aead_aes_ccm_bluetooth_8_init;
383  out->cleanup = aead_aes_ccm_cleanup;
384  out->seal_scatter = aead_aes_ccm_seal_scatter;
385  out->open_gather = aead_aes_ccm_open_gather;
386}
387
388static int aead_aes_ccm_matter_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
389                                    size_t key_len, size_t tag_len) {
390  return aead_aes_ccm_init(ctx, key, key_len, tag_len, 16, 2);
391}
392
393DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_matter) {
394  memset(out, 0, sizeof(EVP_AEAD));
395
396  out->key_len = 16;
397  out->nonce_len = 13;
398  out->overhead = 16;
399  out->max_tag_len = 16;
400
401  out->init = aead_aes_ccm_matter_init;
402  out->cleanup = aead_aes_ccm_cleanup;
403  out->seal_scatter = aead_aes_ccm_seal_scatter;
404  out->open_gather = aead_aes_ccm_open_gather;
405}
406