1/* 2 * Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved. 3 * 4 * Licensed under the OpenSSL license (the "License"). You may not use 5 * this file except in compliance with the License. You can obtain a copy 6 * in the file LICENSE in the source distribution or at 7 * https://www.openssl.org/source/license.html 8 */ 9 10#include <openssl/cmac.h> 11 12#include <assert.h> 13#include <limits.h> 14#include <string.h> 15 16#include <openssl/aes.h> 17#include <openssl/cipher.h> 18#include <openssl/mem.h> 19 20#include "../../internal.h" 21#include "../service_indicator/internal.h" 22 23 24struct cmac_ctx_st { 25 EVP_CIPHER_CTX cipher_ctx; 26 // k1 and k2 are the CMAC subkeys. See 27 // https://tools.ietf.org/html/rfc4493#section-2.3 28 uint8_t k1[AES_BLOCK_SIZE]; 29 uint8_t k2[AES_BLOCK_SIZE]; 30 // Last (possibly partial) scratch 31 uint8_t block[AES_BLOCK_SIZE]; 32 // block_used contains the number of valid bytes in |block|. 33 unsigned block_used; 34}; 35 36static void CMAC_CTX_init(CMAC_CTX *ctx) { 37 EVP_CIPHER_CTX_init(&ctx->cipher_ctx); 38} 39 40static void CMAC_CTX_cleanup(CMAC_CTX *ctx) { 41 EVP_CIPHER_CTX_cleanup(&ctx->cipher_ctx); 42 OPENSSL_cleanse(ctx->k1, sizeof(ctx->k1)); 43 OPENSSL_cleanse(ctx->k2, sizeof(ctx->k2)); 44 OPENSSL_cleanse(ctx->block, sizeof(ctx->block)); 45} 46 47int AES_CMAC(uint8_t out[16], const uint8_t *key, size_t key_len, 48 const uint8_t *in, size_t in_len) { 49 const EVP_CIPHER *cipher; 50 switch (key_len) { 51 // WARNING: this code assumes that all supported key sizes are FIPS 52 // Approved. 53 case 16: 54 cipher = EVP_aes_128_cbc(); 55 break; 56 case 32: 57 cipher = EVP_aes_256_cbc(); 58 break; 59 default: 60 return 0; 61 } 62 63 size_t scratch_out_len; 64 CMAC_CTX ctx; 65 CMAC_CTX_init(&ctx); 66 67 // We have to verify that all the CMAC services actually succeed before 68 // updating the indicator state, so we lock the state here. 69 FIPS_service_indicator_lock_state(); 70 const int ok = CMAC_Init(&ctx, key, key_len, cipher, NULL /* engine */) && 71 CMAC_Update(&ctx, in, in_len) && 72 CMAC_Final(&ctx, out, &scratch_out_len); 73 FIPS_service_indicator_unlock_state(); 74 75 if (ok) { 76 FIPS_service_indicator_update_state(); 77 } 78 CMAC_CTX_cleanup(&ctx); 79 return ok; 80} 81 82CMAC_CTX *CMAC_CTX_new(void) { 83 CMAC_CTX *ctx = reinterpret_cast<CMAC_CTX *>(OPENSSL_malloc(sizeof(*ctx))); 84 if (ctx != NULL) { 85 CMAC_CTX_init(ctx); 86 } 87 return ctx; 88} 89 90void CMAC_CTX_free(CMAC_CTX *ctx) { 91 if (ctx == NULL) { 92 return; 93 } 94 95 CMAC_CTX_cleanup(ctx); 96 OPENSSL_free(ctx); 97} 98 99int CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in) { 100 if (!EVP_CIPHER_CTX_copy(&out->cipher_ctx, &in->cipher_ctx)) { 101 return 0; 102 } 103 OPENSSL_memcpy(out->k1, in->k1, AES_BLOCK_SIZE); 104 OPENSSL_memcpy(out->k2, in->k2, AES_BLOCK_SIZE); 105 OPENSSL_memcpy(out->block, in->block, AES_BLOCK_SIZE); 106 out->block_used = in->block_used; 107 return 1; 108} 109 110// binary_field_mul_x_128 treats the 128 bits at |in| as an element of GF(2¹²⁸) 111// with a hard-coded reduction polynomial and sets |out| as x times the input. 112// 113// See https://tools.ietf.org/html/rfc4493#section-2.3 114static void binary_field_mul_x_128(uint8_t out[16], const uint8_t in[16]) { 115 unsigned i; 116 117 // Shift |in| to left, including carry. 118 for (i = 0; i < 15; i++) { 119 out[i] = (in[i] << 1) | (in[i + 1] >> 7); 120 } 121 122 // If MSB set fixup with R. 123 const uint8_t carry = in[0] >> 7; 124 out[i] = (in[i] << 1) ^ ((0 - carry) & 0x87); 125} 126 127// binary_field_mul_x_64 behaves like |binary_field_mul_x_128| but acts on an 128// element of GF(2⁶⁴). 129// 130// See https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf 131static void binary_field_mul_x_64(uint8_t out[8], const uint8_t in[8]) { 132 unsigned i; 133 134 // Shift |in| to left, including carry. 135 for (i = 0; i < 7; i++) { 136 out[i] = (in[i] << 1) | (in[i + 1] >> 7); 137 } 138 139 // If MSB set fixup with R. 140 const uint8_t carry = in[0] >> 7; 141 out[i] = (in[i] << 1) ^ ((0 - carry) & 0x1b); 142} 143 144static const uint8_t kZeroIV[AES_BLOCK_SIZE] = {0}; 145 146int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t key_len, 147 const EVP_CIPHER *cipher, ENGINE *engine) { 148 int ret = 0; 149 uint8_t scratch[AES_BLOCK_SIZE]; 150 151 // We have to avoid the underlying AES-CBC |EVP_CIPHER| services updating the 152 // indicator state, so we lock the state here. 153 FIPS_service_indicator_lock_state(); 154 155 size_t block_size = EVP_CIPHER_block_size(cipher); 156 if ((block_size != AES_BLOCK_SIZE && block_size != 8 /* 3-DES */) || 157 EVP_CIPHER_key_length(cipher) != key_len || 158 !EVP_EncryptInit_ex(&ctx->cipher_ctx, cipher, NULL, 159 reinterpret_cast<const uint8_t *>(key), kZeroIV) || 160 !EVP_Cipher(&ctx->cipher_ctx, scratch, kZeroIV, block_size) || 161 // Reset context again ready for first data. 162 !EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV)) { 163 goto out; 164 } 165 166 if (block_size == AES_BLOCK_SIZE) { 167 binary_field_mul_x_128(ctx->k1, scratch); 168 binary_field_mul_x_128(ctx->k2, ctx->k1); 169 } else { 170 binary_field_mul_x_64(ctx->k1, scratch); 171 binary_field_mul_x_64(ctx->k2, ctx->k1); 172 } 173 ctx->block_used = 0; 174 ret = 1; 175 176out: 177 FIPS_service_indicator_unlock_state(); 178 return ret; 179} 180 181int CMAC_Reset(CMAC_CTX *ctx) { 182 ctx->block_used = 0; 183 return EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV); 184} 185 186int CMAC_Update(CMAC_CTX *ctx, const uint8_t *in, size_t in_len) { 187 int ret = 0; 188 189 // We have to avoid the underlying AES-CBC |EVP_Cipher| services updating the 190 // indicator state, so we lock the state here. 191 FIPS_service_indicator_lock_state(); 192 193 size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx); 194 assert(block_size <= AES_BLOCK_SIZE); 195 uint8_t scratch[AES_BLOCK_SIZE]; 196 197 if (ctx->block_used > 0) { 198 size_t todo = block_size - ctx->block_used; 199 if (in_len < todo) { 200 todo = in_len; 201 } 202 203 OPENSSL_memcpy(ctx->block + ctx->block_used, in, todo); 204 in += todo; 205 in_len -= todo; 206 ctx->block_used += todo; 207 208 // If |in_len| is zero then either |ctx->block_used| is less than 209 // |block_size|, in which case we can stop here, or |ctx->block_used| is 210 // exactly |block_size| but there's no more data to process. In the latter 211 // case we don't want to process this block now because it might be the last 212 // block and that block is treated specially. 213 if (in_len == 0) { 214 ret = 1; 215 goto out; 216 } 217 218 assert(ctx->block_used == block_size); 219 220 if (!EVP_Cipher(&ctx->cipher_ctx, scratch, ctx->block, block_size)) { 221 goto out; 222 } 223 } 224 225 // Encrypt all but one of the remaining blocks. 226 while (in_len > block_size) { 227 if (!EVP_Cipher(&ctx->cipher_ctx, scratch, in, block_size)) { 228 goto out; 229 } 230 in += block_size; 231 in_len -= block_size; 232 } 233 234 OPENSSL_memcpy(ctx->block, in, in_len); 235 // |in_len| is bounded by |block_size|, which fits in |unsigned|. 236 static_assert(EVP_MAX_BLOCK_LENGTH < UINT_MAX, 237 "EVP_MAX_BLOCK_LENGTH is too large"); 238 ctx->block_used = (unsigned)in_len; 239 ret = 1; 240 241out: 242 FIPS_service_indicator_unlock_state(); 243 return ret; 244} 245 246int CMAC_Final(CMAC_CTX *ctx, uint8_t *out, size_t *out_len) { 247 int ret = 0; 248 size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx); 249 assert(block_size <= AES_BLOCK_SIZE); 250 251 // We have to avoid the underlying AES-CBC |EVP_Cipher| services updating the 252 // indicator state, so we lock the state here. 253 FIPS_service_indicator_lock_state(); 254 255 *out_len = block_size; 256 const uint8_t *mask = ctx->k1; 257 if (out == NULL) { 258 ret = 1; 259 goto out; 260 } 261 262 if (ctx->block_used != block_size) { 263 // If the last block is incomplete, terminate it with a single 'one' bit 264 // followed by zeros. 265 ctx->block[ctx->block_used] = 0x80; 266 OPENSSL_memset(ctx->block + ctx->block_used + 1, 0, 267 block_size - (ctx->block_used + 1)); 268 269 mask = ctx->k2; 270 } 271 272 for (unsigned i = 0; i < block_size; i++) { 273 out[i] = ctx->block[i] ^ mask[i]; 274 } 275 ret = EVP_Cipher(&ctx->cipher_ctx, out, out, block_size); 276 277out: 278 FIPS_service_indicator_unlock_state(); 279 if (ret) { 280 FIPS_service_indicator_update_state(); 281 } 282 return ret; 283} 284