• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1/*
2 * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved.
4 *
5 * Licensed under the OpenSSL license (the "License").  You may not use
6 * this file except in compliance with the License.  You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11#include <openssl/ec.h>
12
13#include <openssl/bn.h>
14#include <openssl/err.h>
15#include <openssl/mem.h>
16
17#include "../bn/internal.h"
18#include "../delocate.h"
19#include "internal.h"
20
21
22static void ec_GFp_mont_felem_to_montgomery(const EC_GROUP *group,
23                                            EC_FELEM *out, const EC_FELEM *in) {
24  bn_to_montgomery_small(out->words, in->words, group->field.N.width,
25                         &group->field);
26}
27
28static void ec_GFp_mont_felem_from_montgomery(const EC_GROUP *group,
29                                              EC_FELEM *out,
30                                              const EC_FELEM *in) {
31  bn_from_montgomery_small(out->words, group->field.N.width, in->words,
32                           group->field.N.width, &group->field);
33}
34
35static void ec_GFp_mont_felem_inv0(const EC_GROUP *group, EC_FELEM *out,
36                                   const EC_FELEM *a) {
37  bn_mod_inverse0_prime_mont_small(out->words, a->words, group->field.N.width,
38                                   &group->field);
39}
40
41void ec_GFp_mont_felem_mul(const EC_GROUP *group, EC_FELEM *r,
42                           const EC_FELEM *a, const EC_FELEM *b) {
43  bn_mod_mul_montgomery_small(r->words, a->words, b->words,
44                              group->field.N.width, &group->field);
45}
46
47void ec_GFp_mont_felem_sqr(const EC_GROUP *group, EC_FELEM *r,
48                           const EC_FELEM *a) {
49  bn_mod_mul_montgomery_small(r->words, a->words, a->words,
50                              group->field.N.width, &group->field);
51}
52
53void ec_GFp_mont_felem_to_bytes(const EC_GROUP *group, uint8_t *out,
54                                size_t *out_len, const EC_FELEM *in) {
55  EC_FELEM tmp;
56  ec_GFp_mont_felem_from_montgomery(group, &tmp, in);
57  ec_GFp_simple_felem_to_bytes(group, out, out_len, &tmp);
58}
59
60int ec_GFp_mont_felem_from_bytes(const EC_GROUP *group, EC_FELEM *out,
61                                 const uint8_t *in, size_t len) {
62  if (!ec_GFp_simple_felem_from_bytes(group, out, in, len)) {
63    return 0;
64  }
65
66  ec_GFp_mont_felem_to_montgomery(group, out, out);
67  return 1;
68}
69
70void ec_GFp_mont_felem_reduce(const EC_GROUP *group, EC_FELEM *out,
71                              const BN_ULONG *words, size_t num) {
72  // Convert "from" Montgomery form so the value is reduced mod p.
73  bn_from_montgomery_small(out->words, group->field.N.width, words, num,
74                           &group->field);
75  // Convert "to" Montgomery form to remove the R^-1 factor added.
76  ec_GFp_mont_felem_to_montgomery(group, out, out);
77  // Convert to Montgomery form to match this implementation's representation.
78  ec_GFp_mont_felem_to_montgomery(group, out, out);
79}
80
81void ec_GFp_mont_felem_exp(const EC_GROUP *group, EC_FELEM *out,
82                           const EC_FELEM *a, const BN_ULONG *exp,
83                           size_t num_exp) {
84  bn_mod_exp_mont_small(out->words, a->words, group->field.N.width, exp,
85                        num_exp, &group->field);
86}
87
88static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group,
89                                                    const EC_JACOBIAN *point,
90                                                    EC_FELEM *x, EC_FELEM *y) {
91  if (constant_time_declassify_int(
92          ec_GFp_simple_is_at_infinity(group, point))) {
93    OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
94    return 0;
95  }
96
97  // Transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3). Note the check above
98  // ensures |point->Z| is non-zero, so the inverse always exists.
99  EC_FELEM z1, z2;
100  ec_GFp_mont_felem_inv0(group, &z2, &point->Z);
101  ec_GFp_mont_felem_sqr(group, &z1, &z2);
102
103  if (x != NULL) {
104    ec_GFp_mont_felem_mul(group, x, &point->X, &z1);
105  }
106
107  if (y != NULL) {
108    ec_GFp_mont_felem_mul(group, &z1, &z1, &z2);
109    ec_GFp_mont_felem_mul(group, y, &point->Y, &z1);
110  }
111
112  return 1;
113}
114
115static int ec_GFp_mont_jacobian_to_affine_batch(const EC_GROUP *group,
116                                                EC_AFFINE *out,
117                                                const EC_JACOBIAN *in,
118                                                size_t num) {
119  if (num == 0) {
120    return 1;
121  }
122
123  // Compute prefix products of all Zs. Use |out[i].X| as scratch space
124  // to store these values.
125  out[0].X = in[0].Z;
126  for (size_t i = 1; i < num; i++) {
127    ec_GFp_mont_felem_mul(group, &out[i].X, &out[i - 1].X, &in[i].Z);
128  }
129
130  // Some input was infinity iff the product of all Zs is zero.
131  if (ec_felem_non_zero_mask(group, &out[num - 1].X) == 0) {
132    OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
133    return 0;
134  }
135
136  // Invert the product of all Zs.
137  EC_FELEM zinvprod;
138  ec_GFp_mont_felem_inv0(group, &zinvprod, &out[num - 1].X);
139  for (size_t i = num - 1; i < num; i--) {
140    // Our loop invariant is that |zinvprod| is Z0^-1 * Z1^-1 * ... * Zi^-1.
141    // Recover Zi^-1 by multiplying by the previous product.
142    EC_FELEM zinv, zinv2;
143    if (i == 0) {
144      zinv = zinvprod;
145    } else {
146      ec_GFp_mont_felem_mul(group, &zinv, &zinvprod, &out[i - 1].X);
147      // Maintain the loop invariant for the next iteration.
148      ec_GFp_mont_felem_mul(group, &zinvprod, &zinvprod, &in[i].Z);
149    }
150
151    // Compute affine coordinates: x = X * Z^-2 and y = Y * Z^-3.
152    ec_GFp_mont_felem_sqr(group, &zinv2, &zinv);
153    ec_GFp_mont_felem_mul(group, &out[i].X, &in[i].X, &zinv2);
154    ec_GFp_mont_felem_mul(group, &out[i].Y, &in[i].Y, &zinv2);
155    ec_GFp_mont_felem_mul(group, &out[i].Y, &out[i].Y, &zinv);
156  }
157
158  return 1;
159}
160
161void ec_GFp_mont_add(const EC_GROUP *group, EC_JACOBIAN *out,
162                     const EC_JACOBIAN *a, const EC_JACOBIAN *b) {
163  if (a == b) {
164    ec_GFp_mont_dbl(group, out, a);
165    return;
166  }
167
168  // The method is taken from:
169  //   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl
170  //
171  // Coq transcription and correctness proof:
172  // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L467>
173  // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L544>
174  EC_FELEM x_out, y_out, z_out;
175  BN_ULONG z1nz = ec_felem_non_zero_mask(group, &a->Z);
176  BN_ULONG z2nz = ec_felem_non_zero_mask(group, &b->Z);
177
178  // z1z1 = z1z1 = z1**2
179  EC_FELEM z1z1;
180  ec_GFp_mont_felem_sqr(group, &z1z1, &a->Z);
181
182  // z2z2 = z2**2
183  EC_FELEM z2z2;
184  ec_GFp_mont_felem_sqr(group, &z2z2, &b->Z);
185
186  // u1 = x1*z2z2
187  EC_FELEM u1;
188  ec_GFp_mont_felem_mul(group, &u1, &a->X, &z2z2);
189
190  // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2
191  EC_FELEM two_z1z2;
192  ec_felem_add(group, &two_z1z2, &a->Z, &b->Z);
193  ec_GFp_mont_felem_sqr(group, &two_z1z2, &two_z1z2);
194  ec_felem_sub(group, &two_z1z2, &two_z1z2, &z1z1);
195  ec_felem_sub(group, &two_z1z2, &two_z1z2, &z2z2);
196
197  // s1 = y1 * z2**3
198  EC_FELEM s1;
199  ec_GFp_mont_felem_mul(group, &s1, &b->Z, &z2z2);
200  ec_GFp_mont_felem_mul(group, &s1, &s1, &a->Y);
201
202  // u2 = x2*z1z1
203  EC_FELEM u2;
204  ec_GFp_mont_felem_mul(group, &u2, &b->X, &z1z1);
205
206  // h = u2 - u1
207  EC_FELEM h;
208  ec_felem_sub(group, &h, &u2, &u1);
209
210  BN_ULONG xneq = ec_felem_non_zero_mask(group, &h);
211
212  // z_out = two_z1z2 * h
213  ec_GFp_mont_felem_mul(group, &z_out, &h, &two_z1z2);
214
215  // z1z1z1 = z1 * z1z1
216  EC_FELEM z1z1z1;
217  ec_GFp_mont_felem_mul(group, &z1z1z1, &a->Z, &z1z1);
218
219  // s2 = y2 * z1**3
220  EC_FELEM s2;
221  ec_GFp_mont_felem_mul(group, &s2, &b->Y, &z1z1z1);
222
223  // r = (s2 - s1)*2
224  EC_FELEM r;
225  ec_felem_sub(group, &r, &s2, &s1);
226  ec_felem_add(group, &r, &r, &r);
227
228  BN_ULONG yneq = ec_felem_non_zero_mask(group, &r);
229
230  // This case will never occur in the constant-time |ec_GFp_mont_mul|.
231  BN_ULONG is_nontrivial_double = ~xneq & ~yneq & z1nz & z2nz;
232  if (constant_time_declassify_w(is_nontrivial_double)) {
233    ec_GFp_mont_dbl(group, out, a);
234    return;
235  }
236
237  // I = (2h)**2
238  EC_FELEM i;
239  ec_felem_add(group, &i, &h, &h);
240  ec_GFp_mont_felem_sqr(group, &i, &i);
241
242  // J = h * I
243  EC_FELEM j;
244  ec_GFp_mont_felem_mul(group, &j, &h, &i);
245
246  // V = U1 * I
247  EC_FELEM v;
248  ec_GFp_mont_felem_mul(group, &v, &u1, &i);
249
250  // x_out = r**2 - J - 2V
251  ec_GFp_mont_felem_sqr(group, &x_out, &r);
252  ec_felem_sub(group, &x_out, &x_out, &j);
253  ec_felem_sub(group, &x_out, &x_out, &v);
254  ec_felem_sub(group, &x_out, &x_out, &v);
255
256  // y_out = r(V-x_out) - 2 * s1 * J
257  ec_felem_sub(group, &y_out, &v, &x_out);
258  ec_GFp_mont_felem_mul(group, &y_out, &y_out, &r);
259  EC_FELEM s1j;
260  ec_GFp_mont_felem_mul(group, &s1j, &s1, &j);
261  ec_felem_sub(group, &y_out, &y_out, &s1j);
262  ec_felem_sub(group, &y_out, &y_out, &s1j);
263
264  ec_felem_select(group, &x_out, z1nz, &x_out, &b->X);
265  ec_felem_select(group, &out->X, z2nz, &x_out, &a->X);
266  ec_felem_select(group, &y_out, z1nz, &y_out, &b->Y);
267  ec_felem_select(group, &out->Y, z2nz, &y_out, &a->Y);
268  ec_felem_select(group, &z_out, z1nz, &z_out, &b->Z);
269  ec_felem_select(group, &out->Z, z2nz, &z_out, &a->Z);
270}
271
272void ec_GFp_mont_dbl(const EC_GROUP *group, EC_JACOBIAN *r,
273                     const EC_JACOBIAN *a) {
274  if (group->a_is_minus3) {
275    // The method is taken from:
276    //   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
277    //
278    // Coq transcription and correctness proof:
279    // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93>
280    // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201>
281    EC_FELEM delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta;
282    // delta = z^2
283    ec_GFp_mont_felem_sqr(group, &delta, &a->Z);
284    // gamma = y^2
285    ec_GFp_mont_felem_sqr(group, &gamma, &a->Y);
286    // beta = x*gamma
287    ec_GFp_mont_felem_mul(group, &beta, &a->X, &gamma);
288
289    // alpha = 3*(x-delta)*(x+delta)
290    ec_felem_sub(group, &ftmp, &a->X, &delta);
291    ec_felem_add(group, &ftmp2, &a->X, &delta);
292
293    ec_felem_add(group, &tmptmp, &ftmp2, &ftmp2);
294    ec_felem_add(group, &ftmp2, &ftmp2, &tmptmp);
295    ec_GFp_mont_felem_mul(group, &alpha, &ftmp, &ftmp2);
296
297    // x' = alpha^2 - 8*beta
298    ec_GFp_mont_felem_sqr(group, &r->X, &alpha);
299    ec_felem_add(group, &fourbeta, &beta, &beta);
300    ec_felem_add(group, &fourbeta, &fourbeta, &fourbeta);
301    ec_felem_add(group, &tmptmp, &fourbeta, &fourbeta);
302    ec_felem_sub(group, &r->X, &r->X, &tmptmp);
303
304    // z' = (y + z)^2 - gamma - delta
305    ec_felem_add(group, &delta, &gamma, &delta);
306    ec_felem_add(group, &ftmp, &a->Y, &a->Z);
307    ec_GFp_mont_felem_sqr(group, &r->Z, &ftmp);
308    ec_felem_sub(group, &r->Z, &r->Z, &delta);
309
310    // y' = alpha*(4*beta - x') - 8*gamma^2
311    ec_felem_sub(group, &r->Y, &fourbeta, &r->X);
312    ec_felem_add(group, &gamma, &gamma, &gamma);
313    ec_GFp_mont_felem_sqr(group, &gamma, &gamma);
314    ec_GFp_mont_felem_mul(group, &r->Y, &alpha, &r->Y);
315    ec_felem_add(group, &gamma, &gamma, &gamma);
316    ec_felem_sub(group, &r->Y, &r->Y, &gamma);
317  } else {
318    // The method is taken from:
319    //   http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl
320    //
321    // Coq transcription and correctness proof:
322    // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L102>
323    // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L534>
324    EC_FELEM xx, yy, yyyy, zz;
325    ec_GFp_mont_felem_sqr(group, &xx, &a->X);
326    ec_GFp_mont_felem_sqr(group, &yy, &a->Y);
327    ec_GFp_mont_felem_sqr(group, &yyyy, &yy);
328    ec_GFp_mont_felem_sqr(group, &zz, &a->Z);
329
330    // s = 2*((x_in + yy)^2 - xx - yyyy)
331    EC_FELEM s;
332    ec_felem_add(group, &s, &a->X, &yy);
333    ec_GFp_mont_felem_sqr(group, &s, &s);
334    ec_felem_sub(group, &s, &s, &xx);
335    ec_felem_sub(group, &s, &s, &yyyy);
336    ec_felem_add(group, &s, &s, &s);
337
338    // m = 3*xx + a*zz^2
339    EC_FELEM m;
340    ec_GFp_mont_felem_sqr(group, &m, &zz);
341    ec_GFp_mont_felem_mul(group, &m, &group->a, &m);
342    ec_felem_add(group, &m, &m, &xx);
343    ec_felem_add(group, &m, &m, &xx);
344    ec_felem_add(group, &m, &m, &xx);
345
346    // x_out = m^2 - 2*s
347    ec_GFp_mont_felem_sqr(group, &r->X, &m);
348    ec_felem_sub(group, &r->X, &r->X, &s);
349    ec_felem_sub(group, &r->X, &r->X, &s);
350
351    // z_out = (y_in + z_in)^2 - yy - zz
352    ec_felem_add(group, &r->Z, &a->Y, &a->Z);
353    ec_GFp_mont_felem_sqr(group, &r->Z, &r->Z);
354    ec_felem_sub(group, &r->Z, &r->Z, &yy);
355    ec_felem_sub(group, &r->Z, &r->Z, &zz);
356
357    // y_out = m*(s-x_out) - 8*yyyy
358    ec_felem_add(group, &yyyy, &yyyy, &yyyy);
359    ec_felem_add(group, &yyyy, &yyyy, &yyyy);
360    ec_felem_add(group, &yyyy, &yyyy, &yyyy);
361    ec_felem_sub(group, &r->Y, &s, &r->X);
362    ec_GFp_mont_felem_mul(group, &r->Y, &r->Y, &m);
363    ec_felem_sub(group, &r->Y, &r->Y, &yyyy);
364  }
365}
366
367static int ec_GFp_mont_cmp_x_coordinate(const EC_GROUP *group,
368                                        const EC_JACOBIAN *p,
369                                        const EC_SCALAR *r) {
370  if (!group->field_greater_than_order ||
371      group->field.N.width != group->order.N.width) {
372    // Do not bother optimizing this case. p > order in all commonly-used
373    // curves.
374    return ec_GFp_simple_cmp_x_coordinate(group, p, r);
375  }
376
377  if (ec_GFp_simple_is_at_infinity(group, p)) {
378    return 0;
379  }
380
381  // We wish to compare X/Z^2 with r. This is equivalent to comparing X with
382  // r*Z^2. Note that X and Z are represented in Montgomery form, while r is
383  // not.
384  EC_FELEM r_Z2, Z2_mont, X;
385  ec_GFp_mont_felem_mul(group, &Z2_mont, &p->Z, &p->Z);
386  // r < order < p, so this is valid.
387  OPENSSL_memcpy(r_Z2.words, r->words, group->field.N.width * sizeof(BN_ULONG));
388  ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont);
389  ec_GFp_mont_felem_from_montgomery(group, &X, &p->X);
390
391  if (ec_felem_equal(group, &r_Z2, &X)) {
392    return 1;
393  }
394
395  // During signing the x coefficient is reduced modulo the group order.
396  // Therefore there is a small possibility, less than 1/2^128, that group_order
397  // < p.x < P. in that case we need not only to compare against |r| but also to
398  // compare against r+group_order.
399  BN_ULONG carry = bn_add_words(r_Z2.words, r->words, group->order.N.d,
400                                group->field.N.width);
401  if (carry == 0 &&
402      bn_less_than_words(r_Z2.words, group->field.N.d, group->field.N.width)) {
403    // r + group_order < p, so compare (r + group_order) * Z^2 against X.
404    ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont);
405    if (ec_felem_equal(group, &r_Z2, &X)) {
406      return 1;
407    }
408  }
409
410  return 0;
411}
412
413DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_mont_method) {
414  out->point_get_affine_coordinates = ec_GFp_mont_point_get_affine_coordinates;
415  out->jacobian_to_affine_batch = ec_GFp_mont_jacobian_to_affine_batch;
416  out->add = ec_GFp_mont_add;
417  out->dbl = ec_GFp_mont_dbl;
418  out->mul = ec_GFp_mont_mul;
419  out->mul_base = ec_GFp_mont_mul_base;
420  out->mul_batch = ec_GFp_mont_mul_batch;
421  out->mul_public_batch = ec_GFp_mont_mul_public_batch;
422  out->init_precomp = ec_GFp_mont_init_precomp;
423  out->mul_precomp = ec_GFp_mont_mul_precomp;
424  out->felem_mul = ec_GFp_mont_felem_mul;
425  out->felem_sqr = ec_GFp_mont_felem_sqr;
426  out->felem_to_bytes = ec_GFp_mont_felem_to_bytes;
427  out->felem_from_bytes = ec_GFp_mont_felem_from_bytes;
428  out->felem_reduce = ec_GFp_mont_felem_reduce;
429  out->felem_exp = ec_GFp_mont_felem_exp;
430  out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery;
431  out->scalar_to_montgomery_inv_vartime =
432      ec_simple_scalar_to_montgomery_inv_vartime;
433  out->cmp_x_coordinate = ec_GFp_mont_cmp_x_coordinate;
434}
435