• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the OpenSSL license (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <openssl/mem.h>
11 
12 #include <assert.h>
13 #include <errno.h>
14 #include <limits.h>
15 #include <stdarg.h>
16 #include <stdio.h>
17 #include <stdlib.h>
18 
19 #include <openssl/err.h>
20 
21 #if defined(OPENSSL_WINDOWS)
22 OPENSSL_MSVC_PRAGMA(warning(push, 3))
23 #include <windows.h>
24 OPENSSL_MSVC_PRAGMA(warning(pop))
25 #endif
26 
27 #if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
28 #include <errno.h>
29 #include <signal.h>
30 #include <unistd.h>
31 #endif
32 
33 #include "internal.h"
34 
35 
36 #define OPENSSL_MALLOC_PREFIX 8
37 static_assert(OPENSSL_MALLOC_PREFIX >= sizeof(size_t), "size_t too large");
38 
39 #if defined(OPENSSL_ASAN)
40 extern "C" {
41 void __asan_poison_memory_region(const volatile void *addr, size_t size);
42 void __asan_unpoison_memory_region(const volatile void *addr, size_t size);
43 }
44 #else
__asan_poison_memory_region(const void * addr,size_t size)45 static void __asan_poison_memory_region(const void *addr, size_t size) {}
__asan_unpoison_memory_region(const void * addr,size_t size)46 static void __asan_unpoison_memory_region(const void *addr, size_t size) {}
47 #endif
48 
49 // Windows doesn't really support weak symbols as of May 2019, and Clang on
50 // Windows will emit strong symbols instead. See
51 // https://bugs.llvm.org/show_bug.cgi?id=37598
52 //
53 // EDK2 targets UEFI but builds as ELF and then translates the binary to
54 // COFF(!). Thus it builds with __ELF__ defined but cannot actually cope with
55 // weak symbols.
56 #if !defined(__EDK2_BORINGSSL__) && defined(__ELF__) && defined(__GNUC__)
57 #define WEAK_SYMBOL_FUNC(rettype, name, args) \
58   extern "C" {                                \
59   rettype name args __attribute__((weak));    \
60   }
61 #else
62 #define WEAK_SYMBOL_FUNC(rettype, name, args) \
63   static rettype(*const name) args = NULL;
64 #endif
65 
66 #if defined(BORINGSSL_DETECT_SDALLOCX)
67 // sdallocx is a sized |free| function. By passing the size (which we happen to
68 // always know in BoringSSL), the malloc implementation can save work. We cannot
69 // depend on |sdallocx| being available, however, so it's a weak symbol.
70 //
71 // This mechanism is kept opt-in because it assumes that, when |sdallocx| is
72 // defined, it is part of the same allocator as |malloc|. This is usually true
73 // but may break if |malloc| does not implement |sdallocx|, but some other
74 // allocator with |sdallocx| is imported which does.
75 WEAK_SYMBOL_FUNC(void, sdallocx, (void *ptr, size_t size, int flags))
76 #else
77 static void (*const sdallocx)(void *ptr, size_t size, int flags) = NULL;
78 #endif
79 
80 // The following three functions can be defined to override default heap
81 // allocation and freeing. If defined, it is the responsibility of
82 // |OPENSSL_memory_free| to zero out the memory before returning it to the
83 // system. |OPENSSL_memory_free| will not be passed NULL pointers.
84 //
85 // WARNING: These functions are called on every allocation and free in
86 // BoringSSL across the entire process. They may be called by any code in the
87 // process which calls BoringSSL, including in process initializers and thread
88 // destructors. When called, BoringSSL may hold pthreads locks. Any other code
89 // in the process which, directly or indirectly, calls BoringSSL may be on the
90 // call stack and may itself be using arbitrary synchronization primitives.
91 //
92 // As a result, these functions may not have the usual programming environment
93 // available to most C or C++ code. In particular, they may not call into
94 // BoringSSL, or any library which depends on BoringSSL. Any synchronization
95 // primitives used must tolerate every other synchronization primitive linked
96 // into the process, including pthreads locks. Failing to meet these constraints
97 // may result in deadlocks, crashes, or memory corruption.
98 WEAK_SYMBOL_FUNC(void *, OPENSSL_memory_alloc, (size_t size))
99 WEAK_SYMBOL_FUNC(void, OPENSSL_memory_free, (void *ptr))
100 WEAK_SYMBOL_FUNC(size_t, OPENSSL_memory_get_size, (void *ptr))
101 
102 #if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
103 static CRYPTO_MUTEX malloc_failure_lock = CRYPTO_MUTEX_INIT;
104 static uint64_t current_malloc_count = 0;
105 static uint64_t malloc_number_to_fail = 0;
106 static int malloc_failure_enabled = 0, break_on_malloc_fail = 0,
107            any_malloc_failed = 0, disable_malloc_failures = 0;
108 
malloc_exit_handler(void)109 static void malloc_exit_handler(void) {
110   CRYPTO_MUTEX_lock_read(&malloc_failure_lock);
111   if (any_malloc_failed) {
112     // Signal to the test driver that some allocation failed, so it knows to
113     // increment the counter and continue.
114     _exit(88);
115   }
116   CRYPTO_MUTEX_unlock_read(&malloc_failure_lock);
117 }
118 
init_malloc_failure(void)119 static void init_malloc_failure(void) {
120   const char *env = getenv("MALLOC_NUMBER_TO_FAIL");
121   if (env != NULL && env[0] != 0) {
122     char *endptr;
123     malloc_number_to_fail = strtoull(env, &endptr, 10);
124     if (*endptr == 0) {
125       malloc_failure_enabled = 1;
126       atexit(malloc_exit_handler);
127     }
128   }
129   break_on_malloc_fail = getenv("MALLOC_BREAK_ON_FAIL") != NULL;
130 }
131 
132 // should_fail_allocation returns one if the current allocation should fail and
133 // zero otherwise.
should_fail_allocation()134 static int should_fail_allocation() {
135   static CRYPTO_once_t once = CRYPTO_ONCE_INIT;
136   CRYPTO_once(&once, init_malloc_failure);
137   if (!malloc_failure_enabled || disable_malloc_failures) {
138     return 0;
139   }
140 
141   // We lock just so multi-threaded tests are still correct, but we won't test
142   // every malloc exhaustively.
143   CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
144   int should_fail = current_malloc_count == malloc_number_to_fail;
145   current_malloc_count++;
146   any_malloc_failed = any_malloc_failed || should_fail;
147   CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
148 
149   if (should_fail && break_on_malloc_fail) {
150     raise(SIGTRAP);
151   }
152   if (should_fail) {
153     errno = ENOMEM;
154   }
155   return should_fail;
156 }
157 
OPENSSL_reset_malloc_counter_for_testing(void)158 void OPENSSL_reset_malloc_counter_for_testing(void) {
159   CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
160   current_malloc_count = 0;
161   CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
162 }
163 
OPENSSL_disable_malloc_failures_for_testing(void)164 void OPENSSL_disable_malloc_failures_for_testing(void) {
165   CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
166   BSSL_CHECK(!disable_malloc_failures);
167   disable_malloc_failures = 1;
168   CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
169 }
170 
OPENSSL_enable_malloc_failures_for_testing(void)171 void OPENSSL_enable_malloc_failures_for_testing(void) {
172   CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
173   BSSL_CHECK(disable_malloc_failures);
174   disable_malloc_failures = 0;
175   CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
176 }
177 
178 #else
179 static int should_fail_allocation(void) { return 0; }
180 #endif
181 
OPENSSL_malloc(size_t size)182 void *OPENSSL_malloc(size_t size) {
183   void *ptr = nullptr;
184   if (should_fail_allocation()) {
185     goto err;
186   }
187 
188   if (OPENSSL_memory_alloc != NULL) {
189     assert(OPENSSL_memory_free != NULL);
190     assert(OPENSSL_memory_get_size != NULL);
191     void *ptr2 = OPENSSL_memory_alloc(size);
192     if (ptr2 == NULL && size != 0) {
193       goto err;
194     }
195     return ptr2;
196   }
197 
198   if (size + OPENSSL_MALLOC_PREFIX < size) {
199     goto err;
200   }
201 
202   ptr = malloc(size + OPENSSL_MALLOC_PREFIX);
203   if (ptr == NULL) {
204     goto err;
205   }
206 
207   *(size_t *)ptr = size;
208 
209   __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
210   return ((uint8_t *)ptr) + OPENSSL_MALLOC_PREFIX;
211 
212 err:
213   // This only works because ERR does not call OPENSSL_malloc.
214   OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
215   return NULL;
216 }
217 
OPENSSL_zalloc(size_t size)218 void *OPENSSL_zalloc(size_t size) {
219   void *ret = OPENSSL_malloc(size);
220   if (ret != NULL) {
221     OPENSSL_memset(ret, 0, size);
222   }
223   return ret;
224 }
225 
OPENSSL_calloc(size_t num,size_t size)226 void *OPENSSL_calloc(size_t num, size_t size) {
227   if (size != 0 && num > SIZE_MAX / size) {
228     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
229     return NULL;
230   }
231 
232   return OPENSSL_zalloc(num * size);
233 }
234 
OPENSSL_free(void * orig_ptr)235 void OPENSSL_free(void *orig_ptr) {
236   if (orig_ptr == NULL) {
237     return;
238   }
239 
240   if (OPENSSL_memory_free != NULL) {
241     OPENSSL_memory_free(orig_ptr);
242     return;
243   }
244 
245   void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
246   __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
247 
248   size_t size = *(size_t *)ptr;
249   OPENSSL_cleanse(ptr, size + OPENSSL_MALLOC_PREFIX);
250 
251 // ASan knows to intercept malloc and free, but not sdallocx.
252 #if defined(OPENSSL_ASAN)
253   (void)sdallocx;
254   free(ptr);
255 #else
256   if (sdallocx) {
257     sdallocx(ptr, size + OPENSSL_MALLOC_PREFIX, 0 /* flags */);
258   } else {
259     free(ptr);
260   }
261 #endif
262 }
263 
OPENSSL_realloc(void * orig_ptr,size_t new_size)264 void *OPENSSL_realloc(void *orig_ptr, size_t new_size) {
265   if (orig_ptr == NULL) {
266     return OPENSSL_malloc(new_size);
267   }
268 
269   size_t old_size;
270   if (OPENSSL_memory_get_size != NULL) {
271     old_size = OPENSSL_memory_get_size(orig_ptr);
272   } else {
273     void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
274     __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
275     old_size = *(size_t *)ptr;
276     __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
277   }
278 
279   void *ret = OPENSSL_malloc(new_size);
280   if (ret == NULL) {
281     return NULL;
282   }
283 
284   size_t to_copy = new_size;
285   if (old_size < to_copy) {
286     to_copy = old_size;
287   }
288 
289   memcpy(ret, orig_ptr, to_copy);
290   OPENSSL_free(orig_ptr);
291 
292   return ret;
293 }
294 
OPENSSL_cleanse(void * ptr,size_t len)295 void OPENSSL_cleanse(void *ptr, size_t len) {
296 #if defined(OPENSSL_WINDOWS)
297   SecureZeroMemory(ptr, len);
298 #else
299   OPENSSL_memset(ptr, 0, len);
300 
301 #if !defined(OPENSSL_NO_ASM)
302   /* As best as we can tell, this is sufficient to break any optimisations that
303      might try to eliminate "superfluous" memsets. If there's an easy way to
304      detect memset_s, it would be better to use that. */
305   __asm__ __volatile__("" : : "r"(ptr) : "memory");
306 #endif
307 #endif  // !OPENSSL_NO_ASM
308 }
309 
OPENSSL_clear_free(void * ptr,size_t unused)310 void OPENSSL_clear_free(void *ptr, size_t unused) { OPENSSL_free(ptr); }
311 
CRYPTO_secure_malloc_init(size_t size,size_t min_size)312 int CRYPTO_secure_malloc_init(size_t size, size_t min_size) { return 0; }
313 
CRYPTO_secure_malloc_initialized(void)314 int CRYPTO_secure_malloc_initialized(void) { return 0; }
315 
CRYPTO_secure_used(void)316 size_t CRYPTO_secure_used(void) { return 0; }
317 
OPENSSL_secure_malloc(size_t size)318 void *OPENSSL_secure_malloc(size_t size) { return OPENSSL_malloc(size); }
319 
OPENSSL_secure_clear_free(void * ptr,size_t len)320 void OPENSSL_secure_clear_free(void *ptr, size_t len) {
321   OPENSSL_clear_free(ptr, len);
322 }
323 
CRYPTO_memcmp(const void * in_a,const void * in_b,size_t len)324 int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) {
325   const uint8_t *a = reinterpret_cast<const uint8_t *>(in_a);
326   const uint8_t *b = reinterpret_cast<const uint8_t *>(in_b);
327   uint8_t x = 0;
328 
329   for (size_t i = 0; i < len; i++) {
330     x |= a[i] ^ b[i];
331   }
332 
333   return x;
334 }
335 
OPENSSL_hash32(const void * ptr,size_t len)336 uint32_t OPENSSL_hash32(const void *ptr, size_t len) {
337   // These are the FNV-1a parameters for 32 bits.
338   static const uint32_t kPrime = 16777619u;
339   static const uint32_t kOffsetBasis = 2166136261u;
340 
341   const uint8_t *in = reinterpret_cast<const uint8_t *>(ptr);
342   uint32_t h = kOffsetBasis;
343 
344   for (size_t i = 0; i < len; i++) {
345     h ^= in[i];
346     h *= kPrime;
347   }
348 
349   return h;
350 }
351 
OPENSSL_strhash(const char * s)352 uint32_t OPENSSL_strhash(const char *s) { return OPENSSL_hash32(s, strlen(s)); }
353 
OPENSSL_strnlen(const char * s,size_t len)354 size_t OPENSSL_strnlen(const char *s, size_t len) {
355   for (size_t i = 0; i < len; i++) {
356     if (s[i] == 0) {
357       return i;
358     }
359   }
360 
361   return len;
362 }
363 
OPENSSL_strdup(const char * s)364 char *OPENSSL_strdup(const char *s) {
365   if (s == NULL) {
366     return NULL;
367   }
368   // Copy the NUL terminator.
369   return reinterpret_cast<char *>(OPENSSL_memdup(s, strlen(s) + 1));
370 }
371 
OPENSSL_isalpha(int c)372 int OPENSSL_isalpha(int c) {
373   return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
374 }
375 
OPENSSL_isdigit(int c)376 int OPENSSL_isdigit(int c) { return c >= '0' && c <= '9'; }
377 
OPENSSL_isxdigit(int c)378 int OPENSSL_isxdigit(int c) {
379   return OPENSSL_isdigit(c) || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F');
380 }
381 
OPENSSL_fromxdigit(uint8_t * out,int c)382 int OPENSSL_fromxdigit(uint8_t *out, int c) {
383   if (OPENSSL_isdigit(c)) {
384     *out = c - '0';
385     return 1;
386   }
387   if ('a' <= c && c <= 'f') {
388     *out = c - 'a' + 10;
389     return 1;
390   }
391   if ('A' <= c && c <= 'F') {
392     *out = c - 'A' + 10;
393     return 1;
394   }
395   return 0;
396 }
397 
OPENSSL_isalnum(int c)398 int OPENSSL_isalnum(int c) { return OPENSSL_isalpha(c) || OPENSSL_isdigit(c); }
399 
OPENSSL_tolower(int c)400 int OPENSSL_tolower(int c) {
401   if (c >= 'A' && c <= 'Z') {
402     return c + ('a' - 'A');
403   }
404   return c;
405 }
406 
OPENSSL_isspace(int c)407 int OPENSSL_isspace(int c) {
408   return c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r' ||
409          c == ' ';
410 }
411 
OPENSSL_strcasecmp(const char * a,const char * b)412 int OPENSSL_strcasecmp(const char *a, const char *b) {
413   for (size_t i = 0;; i++) {
414     const int aa = OPENSSL_tolower(a[i]);
415     const int bb = OPENSSL_tolower(b[i]);
416 
417     if (aa < bb) {
418       return -1;
419     } else if (aa > bb) {
420       return 1;
421     } else if (aa == 0) {
422       return 0;
423     }
424   }
425 }
426 
OPENSSL_strncasecmp(const char * a,const char * b,size_t n)427 int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) {
428   for (size_t i = 0; i < n; i++) {
429     const int aa = OPENSSL_tolower(a[i]);
430     const int bb = OPENSSL_tolower(b[i]);
431 
432     if (aa < bb) {
433       return -1;
434     } else if (aa > bb) {
435       return 1;
436     } else if (aa == 0) {
437       return 0;
438     }
439   }
440 
441   return 0;
442 }
443 
BIO_snprintf(char * buf,size_t n,const char * format,...)444 int BIO_snprintf(char *buf, size_t n, const char *format, ...) {
445   va_list args;
446   va_start(args, format);
447   int ret = BIO_vsnprintf(buf, n, format, args);
448   va_end(args);
449   return ret;
450 }
451 
BIO_vsnprintf(char * buf,size_t n,const char * format,va_list args)452 int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) {
453   return vsnprintf(buf, n, format, args);
454 }
455 
OPENSSL_vasprintf_internal(char ** str,const char * format,va_list args,int system_malloc)456 int OPENSSL_vasprintf_internal(char **str, const char *format, va_list args,
457                                int system_malloc) {
458   void *(*allocate)(size_t) = system_malloc ? malloc : OPENSSL_malloc;
459   void (*deallocate)(void *) = system_malloc ? free : OPENSSL_free;
460   void *(*reallocate)(void *, size_t) =
461       system_malloc ? realloc : OPENSSL_realloc;
462   char *candidate = NULL;
463   size_t candidate_len = 64;  // TODO(bbe) what's the best initial size?
464   int ret;
465 
466   if ((candidate = reinterpret_cast<char *>(allocate(candidate_len))) == NULL) {
467     goto err;
468   }
469   va_list args_copy;
470   va_copy(args_copy, args);
471   ret = vsnprintf(candidate, candidate_len, format, args_copy);
472   va_end(args_copy);
473   if (ret < 0) {
474     goto err;
475   }
476   if ((size_t)ret >= candidate_len) {
477     // Too big to fit in allocation.
478     char *tmp;
479 
480     candidate_len = (size_t)ret + 1;
481     if ((tmp = reinterpret_cast<char *>(
482              reallocate(candidate, candidate_len))) == NULL) {
483       goto err;
484     }
485     candidate = tmp;
486     ret = vsnprintf(candidate, candidate_len, format, args);
487   }
488   // At this point this should not happen unless vsnprintf is insane.
489   if (ret < 0 || (size_t)ret >= candidate_len) {
490     goto err;
491   }
492   *str = candidate;
493   return ret;
494 
495 err:
496   deallocate(candidate);
497   *str = NULL;
498   errno = ENOMEM;
499   return -1;
500 }
501 
OPENSSL_vasprintf(char ** str,const char * format,va_list args)502 int OPENSSL_vasprintf(char **str, const char *format, va_list args) {
503   return OPENSSL_vasprintf_internal(str, format, args, /*system_malloc=*/0);
504 }
505 
OPENSSL_asprintf(char ** str,const char * format,...)506 int OPENSSL_asprintf(char **str, const char *format, ...) {
507   va_list args;
508   va_start(args, format);
509   int ret = OPENSSL_vasprintf(str, format, args);
510   va_end(args);
511   return ret;
512 }
513 
OPENSSL_strndup(const char * str,size_t size)514 char *OPENSSL_strndup(const char *str, size_t size) {
515   size = OPENSSL_strnlen(str, size);
516 
517   size_t alloc_size = size + 1;
518   if (alloc_size < size) {
519     // overflow
520     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
521     return NULL;
522   }
523   char *ret = reinterpret_cast<char *>(OPENSSL_malloc(alloc_size));
524   if (ret == NULL) {
525     return NULL;
526   }
527 
528   OPENSSL_memcpy(ret, str, size);
529   ret[size] = '\0';
530   return ret;
531 }
532 
OPENSSL_strlcpy(char * dst,const char * src,size_t dst_size)533 size_t OPENSSL_strlcpy(char *dst, const char *src, size_t dst_size) {
534   size_t l = 0;
535 
536   for (; dst_size > 1 && *src; dst_size--) {
537     *dst++ = *src++;
538     l++;
539   }
540 
541   if (dst_size) {
542     *dst = 0;
543   }
544 
545   return l + strlen(src);
546 }
547 
OPENSSL_strlcat(char * dst,const char * src,size_t dst_size)548 size_t OPENSSL_strlcat(char *dst, const char *src, size_t dst_size) {
549   size_t l = 0;
550   for (; dst_size > 0 && *dst; dst_size--, dst++) {
551     l++;
552   }
553   return l + OPENSSL_strlcpy(dst, src, dst_size);
554 }
555 
OPENSSL_memdup(const void * data,size_t size)556 void *OPENSSL_memdup(const void *data, size_t size) {
557   if (size == 0) {
558     return NULL;
559   }
560 
561   void *ret = OPENSSL_malloc(size);
562   if (ret == NULL) {
563     return NULL;
564   }
565 
566   OPENSSL_memcpy(ret, data, size);
567   return ret;
568 }
569 
CRYPTO_malloc(size_t size,const char * file,int line)570 void *CRYPTO_malloc(size_t size, const char *file, int line) {
571   return OPENSSL_malloc(size);
572 }
573 
CRYPTO_realloc(void * ptr,size_t new_size,const char * file,int line)574 void *CRYPTO_realloc(void *ptr, size_t new_size, const char *file, int line) {
575   return OPENSSL_realloc(ptr, new_size);
576 }
577 
CRYPTO_free(void * ptr,const char * file,int line)578 void CRYPTO_free(void *ptr, const char *file, int line) { OPENSSL_free(ptr); }
579