• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2014 The BoringSSL Authors
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 // This implementation of poly1305 is by Andrew Moon
16 // (https://github.com/floodyberry/poly1305-donna) and released as public
17 // domain. It implements SIMD vectorization based on the algorithm described in
18 // http://cr.yp.to/papers.html#neoncrypto. Unrolled to 2 powers, i.e. 64 byte
19 // block size
20 
21 #include <openssl/poly1305.h>
22 
23 #include <assert.h>
24 
25 #include "../internal.h"
26 
27 
28 #if defined(BORINGSSL_HAS_UINT128) && defined(OPENSSL_X86_64)
29 
30 #include <emmintrin.h>
31 
32 typedef __m128i xmmi;
33 
34 alignas(16) static const uint32_t poly1305_x64_sse2_message_mask[4] = {
35     (1 << 26) - 1, 0, (1 << 26) - 1, 0};
36 alignas(16) static const uint32_t poly1305_x64_sse2_5[4] = {5, 0, 5, 0};
37 alignas(16) static const uint32_t poly1305_x64_sse2_1shl128[4] = {(1 << 24), 0,
38                                                                   (1 << 24), 0};
39 
add128(uint128_t a,uint128_t b)40 static inline uint128_t add128(uint128_t a, uint128_t b) { return a + b; }
41 
add128_64(uint128_t a,uint64_t b)42 static inline uint128_t add128_64(uint128_t a, uint64_t b) { return a + b; }
43 
mul64x64_128(uint64_t a,uint64_t b)44 static inline uint128_t mul64x64_128(uint64_t a, uint64_t b) {
45   return (uint128_t)a * b;
46 }
47 
lo128(uint128_t a)48 static inline uint64_t lo128(uint128_t a) { return (uint64_t)a; }
49 
shr128(uint128_t v,const int shift)50 static inline uint64_t shr128(uint128_t v, const int shift) {
51   return (uint64_t)(v >> shift);
52 }
53 
shr128_pair(uint64_t hi,uint64_t lo,const int shift)54 static inline uint64_t shr128_pair(uint64_t hi, uint64_t lo, const int shift) {
55   return (uint64_t)((((uint128_t)hi << 64) | lo) >> shift);
56 }
57 
58 typedef struct poly1305_power_t {
59   union {
60     xmmi v;
61     uint64_t u[2];
62     uint32_t d[4];
63   } R20, R21, R22, R23, R24, S21, S22, S23, S24;
64 } poly1305_power;
65 
66 typedef struct poly1305_state_internal_t {
67   poly1305_power P[2]; /* 288 bytes, top 32 bit halves unused = 144
68                           bytes of free storage */
69   union {
70     xmmi H[5];  //  80 bytes
71     uint64_t HH[10];
72   };
73   // uint64_t r0,r1,r2;       [24 bytes]
74   // uint64_t pad0,pad1;      [16 bytes]
75   uint64_t started;        //   8 bytes
76   uint64_t leftover;       //   8 bytes
77   uint8_t buffer[64];      //  64 bytes
78 } poly1305_state_internal; /* 448 bytes total + 63 bytes for
79                               alignment = 511 bytes raw */
80 
81 static_assert(sizeof(struct poly1305_state_internal_t) + 63 <=
82                   sizeof(poly1305_state),
83               "poly1305_state isn't large enough to hold aligned "
84               "poly1305_state_internal_t");
85 
poly1305_aligned_state(poly1305_state * state)86 static inline poly1305_state_internal *poly1305_aligned_state(
87     poly1305_state *state) {
88   return (poly1305_state_internal *)(((uint64_t)state + 63) & ~63);
89 }
90 
poly1305_min(size_t a,size_t b)91 static inline size_t poly1305_min(size_t a, size_t b) {
92   return (a < b) ? a : b;
93 }
94 
CRYPTO_poly1305_init(poly1305_state * state,const uint8_t key[32])95 void CRYPTO_poly1305_init(poly1305_state *state, const uint8_t key[32]) {
96   poly1305_state_internal *st = poly1305_aligned_state(state);
97   poly1305_power *p;
98   uint64_t r0, r1, r2;
99   uint64_t t0, t1;
100 
101   // clamp key
102   t0 = CRYPTO_load_u64_le(key + 0);
103   t1 = CRYPTO_load_u64_le(key + 8);
104   r0 = t0 & 0xffc0fffffff;
105   t0 >>= 44;
106   t0 |= t1 << 20;
107   r1 = t0 & 0xfffffc0ffff;
108   t1 >>= 24;
109   r2 = t1 & 0x00ffffffc0f;
110 
111   // store r in un-used space of st->P[1]
112   p = &st->P[1];
113   p->R20.d[1] = (uint32_t)(r0);
114   p->R20.d[3] = (uint32_t)(r0 >> 32);
115   p->R21.d[1] = (uint32_t)(r1);
116   p->R21.d[3] = (uint32_t)(r1 >> 32);
117   p->R22.d[1] = (uint32_t)(r2);
118   p->R22.d[3] = (uint32_t)(r2 >> 32);
119 
120   // store pad
121   p->R23.d[1] = CRYPTO_load_u32_le(key + 16);
122   p->R23.d[3] = CRYPTO_load_u32_le(key + 20);
123   p->R24.d[1] = CRYPTO_load_u32_le(key + 24);
124   p->R24.d[3] = CRYPTO_load_u32_le(key + 28);
125 
126   // H = 0
127   st->H[0] = _mm_setzero_si128();
128   st->H[1] = _mm_setzero_si128();
129   st->H[2] = _mm_setzero_si128();
130   st->H[3] = _mm_setzero_si128();
131   st->H[4] = _mm_setzero_si128();
132 
133   st->started = 0;
134   st->leftover = 0;
135 }
136 
poly1305_first_block(poly1305_state_internal * st,const uint8_t * m)137 static void poly1305_first_block(poly1305_state_internal *st,
138                                  const uint8_t *m) {
139   const xmmi MMASK =
140       _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask);
141   const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5);
142   const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128);
143   xmmi T5, T6;
144   poly1305_power *p;
145   uint128_t d[3];
146   uint64_t r0, r1, r2;
147   uint64_t r20, r21, r22, s22;
148   uint64_t pad0, pad1;
149   uint64_t c;
150   uint64_t i;
151 
152   // pull out stored info
153   p = &st->P[1];
154 
155   r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1];
156   r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1];
157   r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1];
158   pad0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1];
159   pad1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1];
160 
161   // compute powers r^2,r^4
162   r20 = r0;
163   r21 = r1;
164   r22 = r2;
165   for (i = 0; i < 2; i++) {
166     s22 = r22 * (5 << 2);
167 
168     d[0] = add128(mul64x64_128(r20, r20), mul64x64_128(r21 * 2, s22));
169     d[1] = add128(mul64x64_128(r22, s22), mul64x64_128(r20 * 2, r21));
170     d[2] = add128(mul64x64_128(r21, r21), mul64x64_128(r22 * 2, r20));
171 
172     r20 = lo128(d[0]) & 0xfffffffffff;
173     c = shr128(d[0], 44);
174     d[1] = add128_64(d[1], c);
175     r21 = lo128(d[1]) & 0xfffffffffff;
176     c = shr128(d[1], 44);
177     d[2] = add128_64(d[2], c);
178     r22 = lo128(d[2]) & 0x3ffffffffff;
179     c = shr128(d[2], 42);
180     r20 += c * 5;
181     c = (r20 >> 44);
182     r20 = r20 & 0xfffffffffff;
183     r21 += c;
184 
185     p->R20.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)(r20) & 0x3ffffff),
186                                  _MM_SHUFFLE(1, 0, 1, 0));
187     p->R21.v = _mm_shuffle_epi32(
188         _mm_cvtsi32_si128((uint32_t)((r20 >> 26) | (r21 << 18)) & 0x3ffffff),
189         _MM_SHUFFLE(1, 0, 1, 0));
190     p->R22.v =
191         _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r21 >> 8)) & 0x3ffffff),
192                           _MM_SHUFFLE(1, 0, 1, 0));
193     p->R23.v = _mm_shuffle_epi32(
194         _mm_cvtsi32_si128((uint32_t)((r21 >> 34) | (r22 << 10)) & 0x3ffffff),
195         _MM_SHUFFLE(1, 0, 1, 0));
196     p->R24.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r22 >> 16))),
197                                  _MM_SHUFFLE(1, 0, 1, 0));
198     p->S21.v = _mm_mul_epu32(p->R21.v, FIVE);
199     p->S22.v = _mm_mul_epu32(p->R22.v, FIVE);
200     p->S23.v = _mm_mul_epu32(p->R23.v, FIVE);
201     p->S24.v = _mm_mul_epu32(p->R24.v, FIVE);
202     p--;
203   }
204 
205   // put saved info back
206   p = &st->P[1];
207   p->R20.d[1] = (uint32_t)(r0);
208   p->R20.d[3] = (uint32_t)(r0 >> 32);
209   p->R21.d[1] = (uint32_t)(r1);
210   p->R21.d[3] = (uint32_t)(r1 >> 32);
211   p->R22.d[1] = (uint32_t)(r2);
212   p->R22.d[3] = (uint32_t)(r2 >> 32);
213   p->R23.d[1] = (uint32_t)(pad0);
214   p->R23.d[3] = (uint32_t)(pad0 >> 32);
215   p->R24.d[1] = (uint32_t)(pad1);
216   p->R24.d[3] = (uint32_t)(pad1 >> 32);
217 
218   // H = [Mx,My]
219   T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)),
220                           _mm_loadl_epi64((const xmmi *)(m + 16)));
221   T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)),
222                           _mm_loadl_epi64((const xmmi *)(m + 24)));
223   st->H[0] = _mm_and_si128(MMASK, T5);
224   st->H[1] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
225   T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
226   st->H[2] = _mm_and_si128(MMASK, T5);
227   st->H[3] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
228   st->H[4] = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
229 }
230 
poly1305_blocks(poly1305_state_internal * st,const uint8_t * m,size_t bytes)231 static void poly1305_blocks(poly1305_state_internal *st, const uint8_t *m,
232                             size_t bytes) {
233   const xmmi MMASK =
234       _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask);
235   const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5);
236   const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128);
237 
238   poly1305_power *p;
239   xmmi H0, H1, H2, H3, H4;
240   xmmi T0, T1, T2, T3, T4, T5, T6;
241   xmmi M0, M1, M2, M3, M4;
242   xmmi C1, C2;
243 
244   H0 = st->H[0];
245   H1 = st->H[1];
246   H2 = st->H[2];
247   H3 = st->H[3];
248   H4 = st->H[4];
249 
250   while (bytes >= 64) {
251     // H *= [r^4,r^4]
252     p = &st->P[0];
253     T0 = _mm_mul_epu32(H0, p->R20.v);
254     T1 = _mm_mul_epu32(H0, p->R21.v);
255     T2 = _mm_mul_epu32(H0, p->R22.v);
256     T3 = _mm_mul_epu32(H0, p->R23.v);
257     T4 = _mm_mul_epu32(H0, p->R24.v);
258     T5 = _mm_mul_epu32(H1, p->S24.v);
259     T6 = _mm_mul_epu32(H1, p->R20.v);
260     T0 = _mm_add_epi64(T0, T5);
261     T1 = _mm_add_epi64(T1, T6);
262     T5 = _mm_mul_epu32(H2, p->S23.v);
263     T6 = _mm_mul_epu32(H2, p->S24.v);
264     T0 = _mm_add_epi64(T0, T5);
265     T1 = _mm_add_epi64(T1, T6);
266     T5 = _mm_mul_epu32(H3, p->S22.v);
267     T6 = _mm_mul_epu32(H3, p->S23.v);
268     T0 = _mm_add_epi64(T0, T5);
269     T1 = _mm_add_epi64(T1, T6);
270     T5 = _mm_mul_epu32(H4, p->S21.v);
271     T6 = _mm_mul_epu32(H4, p->S22.v);
272     T0 = _mm_add_epi64(T0, T5);
273     T1 = _mm_add_epi64(T1, T6);
274     T5 = _mm_mul_epu32(H1, p->R21.v);
275     T6 = _mm_mul_epu32(H1, p->R22.v);
276     T2 = _mm_add_epi64(T2, T5);
277     T3 = _mm_add_epi64(T3, T6);
278     T5 = _mm_mul_epu32(H2, p->R20.v);
279     T6 = _mm_mul_epu32(H2, p->R21.v);
280     T2 = _mm_add_epi64(T2, T5);
281     T3 = _mm_add_epi64(T3, T6);
282     T5 = _mm_mul_epu32(H3, p->S24.v);
283     T6 = _mm_mul_epu32(H3, p->R20.v);
284     T2 = _mm_add_epi64(T2, T5);
285     T3 = _mm_add_epi64(T3, T6);
286     T5 = _mm_mul_epu32(H4, p->S23.v);
287     T6 = _mm_mul_epu32(H4, p->S24.v);
288     T2 = _mm_add_epi64(T2, T5);
289     T3 = _mm_add_epi64(T3, T6);
290     T5 = _mm_mul_epu32(H1, p->R23.v);
291     T4 = _mm_add_epi64(T4, T5);
292     T5 = _mm_mul_epu32(H2, p->R22.v);
293     T4 = _mm_add_epi64(T4, T5);
294     T5 = _mm_mul_epu32(H3, p->R21.v);
295     T4 = _mm_add_epi64(T4, T5);
296     T5 = _mm_mul_epu32(H4, p->R20.v);
297     T4 = _mm_add_epi64(T4, T5);
298 
299     // H += [Mx,My]*[r^2,r^2]
300     T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)),
301                             _mm_loadl_epi64((const xmmi *)(m + 16)));
302     T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)),
303                             _mm_loadl_epi64((const xmmi *)(m + 24)));
304     M0 = _mm_and_si128(MMASK, T5);
305     M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
306     T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
307     M2 = _mm_and_si128(MMASK, T5);
308     M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
309     M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
310 
311     p = &st->P[1];
312     T5 = _mm_mul_epu32(M0, p->R20.v);
313     T6 = _mm_mul_epu32(M0, p->R21.v);
314     T0 = _mm_add_epi64(T0, T5);
315     T1 = _mm_add_epi64(T1, T6);
316     T5 = _mm_mul_epu32(M1, p->S24.v);
317     T6 = _mm_mul_epu32(M1, p->R20.v);
318     T0 = _mm_add_epi64(T0, T5);
319     T1 = _mm_add_epi64(T1, T6);
320     T5 = _mm_mul_epu32(M2, p->S23.v);
321     T6 = _mm_mul_epu32(M2, p->S24.v);
322     T0 = _mm_add_epi64(T0, T5);
323     T1 = _mm_add_epi64(T1, T6);
324     T5 = _mm_mul_epu32(M3, p->S22.v);
325     T6 = _mm_mul_epu32(M3, p->S23.v);
326     T0 = _mm_add_epi64(T0, T5);
327     T1 = _mm_add_epi64(T1, T6);
328     T5 = _mm_mul_epu32(M4, p->S21.v);
329     T6 = _mm_mul_epu32(M4, p->S22.v);
330     T0 = _mm_add_epi64(T0, T5);
331     T1 = _mm_add_epi64(T1, T6);
332     T5 = _mm_mul_epu32(M0, p->R22.v);
333     T6 = _mm_mul_epu32(M0, p->R23.v);
334     T2 = _mm_add_epi64(T2, T5);
335     T3 = _mm_add_epi64(T3, T6);
336     T5 = _mm_mul_epu32(M1, p->R21.v);
337     T6 = _mm_mul_epu32(M1, p->R22.v);
338     T2 = _mm_add_epi64(T2, T5);
339     T3 = _mm_add_epi64(T3, T6);
340     T5 = _mm_mul_epu32(M2, p->R20.v);
341     T6 = _mm_mul_epu32(M2, p->R21.v);
342     T2 = _mm_add_epi64(T2, T5);
343     T3 = _mm_add_epi64(T3, T6);
344     T5 = _mm_mul_epu32(M3, p->S24.v);
345     T6 = _mm_mul_epu32(M3, p->R20.v);
346     T2 = _mm_add_epi64(T2, T5);
347     T3 = _mm_add_epi64(T3, T6);
348     T5 = _mm_mul_epu32(M4, p->S23.v);
349     T6 = _mm_mul_epu32(M4, p->S24.v);
350     T2 = _mm_add_epi64(T2, T5);
351     T3 = _mm_add_epi64(T3, T6);
352     T5 = _mm_mul_epu32(M0, p->R24.v);
353     T4 = _mm_add_epi64(T4, T5);
354     T5 = _mm_mul_epu32(M1, p->R23.v);
355     T4 = _mm_add_epi64(T4, T5);
356     T5 = _mm_mul_epu32(M2, p->R22.v);
357     T4 = _mm_add_epi64(T4, T5);
358     T5 = _mm_mul_epu32(M3, p->R21.v);
359     T4 = _mm_add_epi64(T4, T5);
360     T5 = _mm_mul_epu32(M4, p->R20.v);
361     T4 = _mm_add_epi64(T4, T5);
362 
363     // H += [Mx,My]
364     T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 32)),
365                             _mm_loadl_epi64((const xmmi *)(m + 48)));
366     T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 40)),
367                             _mm_loadl_epi64((const xmmi *)(m + 56)));
368     M0 = _mm_and_si128(MMASK, T5);
369     M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
370     T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
371     M2 = _mm_and_si128(MMASK, T5);
372     M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
373     M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
374 
375     T0 = _mm_add_epi64(T0, M0);
376     T1 = _mm_add_epi64(T1, M1);
377     T2 = _mm_add_epi64(T2, M2);
378     T3 = _mm_add_epi64(T3, M3);
379     T4 = _mm_add_epi64(T4, M4);
380 
381     // reduce
382     C1 = _mm_srli_epi64(T0, 26);
383     C2 = _mm_srli_epi64(T3, 26);
384     T0 = _mm_and_si128(T0, MMASK);
385     T3 = _mm_and_si128(T3, MMASK);
386     T1 = _mm_add_epi64(T1, C1);
387     T4 = _mm_add_epi64(T4, C2);
388     C1 = _mm_srli_epi64(T1, 26);
389     C2 = _mm_srli_epi64(T4, 26);
390     T1 = _mm_and_si128(T1, MMASK);
391     T4 = _mm_and_si128(T4, MMASK);
392     T2 = _mm_add_epi64(T2, C1);
393     T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE));
394     C1 = _mm_srli_epi64(T2, 26);
395     C2 = _mm_srli_epi64(T0, 26);
396     T2 = _mm_and_si128(T2, MMASK);
397     T0 = _mm_and_si128(T0, MMASK);
398     T3 = _mm_add_epi64(T3, C1);
399     T1 = _mm_add_epi64(T1, C2);
400     C1 = _mm_srli_epi64(T3, 26);
401     T3 = _mm_and_si128(T3, MMASK);
402     T4 = _mm_add_epi64(T4, C1);
403 
404     // H = (H*[r^4,r^4] + [Mx,My]*[r^2,r^2] + [Mx,My])
405     H0 = T0;
406     H1 = T1;
407     H2 = T2;
408     H3 = T3;
409     H4 = T4;
410 
411     m += 64;
412     bytes -= 64;
413   }
414 
415   st->H[0] = H0;
416   st->H[1] = H1;
417   st->H[2] = H2;
418   st->H[3] = H3;
419   st->H[4] = H4;
420 }
421 
poly1305_combine(poly1305_state_internal * st,const uint8_t * m,size_t bytes)422 static size_t poly1305_combine(poly1305_state_internal *st, const uint8_t *m,
423                                size_t bytes) {
424   const xmmi MMASK =
425       _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask);
426   const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128);
427   const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5);
428 
429   poly1305_power *p;
430   xmmi H0, H1, H2, H3, H4;
431   xmmi M0, M1, M2, M3, M4;
432   xmmi T0, T1, T2, T3, T4, T5, T6;
433   xmmi C1, C2;
434 
435   uint64_t r0, r1, r2;
436   uint64_t t0, t1, t2, t3, t4;
437   uint64_t c;
438   size_t consumed = 0;
439 
440   H0 = st->H[0];
441   H1 = st->H[1];
442   H2 = st->H[2];
443   H3 = st->H[3];
444   H4 = st->H[4];
445 
446   // p = [r^2,r^2]
447   p = &st->P[1];
448 
449   if (bytes >= 32) {
450     // H *= [r^2,r^2]
451     T0 = _mm_mul_epu32(H0, p->R20.v);
452     T1 = _mm_mul_epu32(H0, p->R21.v);
453     T2 = _mm_mul_epu32(H0, p->R22.v);
454     T3 = _mm_mul_epu32(H0, p->R23.v);
455     T4 = _mm_mul_epu32(H0, p->R24.v);
456     T5 = _mm_mul_epu32(H1, p->S24.v);
457     T6 = _mm_mul_epu32(H1, p->R20.v);
458     T0 = _mm_add_epi64(T0, T5);
459     T1 = _mm_add_epi64(T1, T6);
460     T5 = _mm_mul_epu32(H2, p->S23.v);
461     T6 = _mm_mul_epu32(H2, p->S24.v);
462     T0 = _mm_add_epi64(T0, T5);
463     T1 = _mm_add_epi64(T1, T6);
464     T5 = _mm_mul_epu32(H3, p->S22.v);
465     T6 = _mm_mul_epu32(H3, p->S23.v);
466     T0 = _mm_add_epi64(T0, T5);
467     T1 = _mm_add_epi64(T1, T6);
468     T5 = _mm_mul_epu32(H4, p->S21.v);
469     T6 = _mm_mul_epu32(H4, p->S22.v);
470     T0 = _mm_add_epi64(T0, T5);
471     T1 = _mm_add_epi64(T1, T6);
472     T5 = _mm_mul_epu32(H1, p->R21.v);
473     T6 = _mm_mul_epu32(H1, p->R22.v);
474     T2 = _mm_add_epi64(T2, T5);
475     T3 = _mm_add_epi64(T3, T6);
476     T5 = _mm_mul_epu32(H2, p->R20.v);
477     T6 = _mm_mul_epu32(H2, p->R21.v);
478     T2 = _mm_add_epi64(T2, T5);
479     T3 = _mm_add_epi64(T3, T6);
480     T5 = _mm_mul_epu32(H3, p->S24.v);
481     T6 = _mm_mul_epu32(H3, p->R20.v);
482     T2 = _mm_add_epi64(T2, T5);
483     T3 = _mm_add_epi64(T3, T6);
484     T5 = _mm_mul_epu32(H4, p->S23.v);
485     T6 = _mm_mul_epu32(H4, p->S24.v);
486     T2 = _mm_add_epi64(T2, T5);
487     T3 = _mm_add_epi64(T3, T6);
488     T5 = _mm_mul_epu32(H1, p->R23.v);
489     T4 = _mm_add_epi64(T4, T5);
490     T5 = _mm_mul_epu32(H2, p->R22.v);
491     T4 = _mm_add_epi64(T4, T5);
492     T5 = _mm_mul_epu32(H3, p->R21.v);
493     T4 = _mm_add_epi64(T4, T5);
494     T5 = _mm_mul_epu32(H4, p->R20.v);
495     T4 = _mm_add_epi64(T4, T5);
496 
497     // H += [Mx,My]
498     T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)),
499                             _mm_loadl_epi64((const xmmi *)(m + 16)));
500     T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)),
501                             _mm_loadl_epi64((const xmmi *)(m + 24)));
502     M0 = _mm_and_si128(MMASK, T5);
503     M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
504     T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
505     M2 = _mm_and_si128(MMASK, T5);
506     M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
507     M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
508 
509     T0 = _mm_add_epi64(T0, M0);
510     T1 = _mm_add_epi64(T1, M1);
511     T2 = _mm_add_epi64(T2, M2);
512     T3 = _mm_add_epi64(T3, M3);
513     T4 = _mm_add_epi64(T4, M4);
514 
515     // reduce
516     C1 = _mm_srli_epi64(T0, 26);
517     C2 = _mm_srli_epi64(T3, 26);
518     T0 = _mm_and_si128(T0, MMASK);
519     T3 = _mm_and_si128(T3, MMASK);
520     T1 = _mm_add_epi64(T1, C1);
521     T4 = _mm_add_epi64(T4, C2);
522     C1 = _mm_srli_epi64(T1, 26);
523     C2 = _mm_srli_epi64(T4, 26);
524     T1 = _mm_and_si128(T1, MMASK);
525     T4 = _mm_and_si128(T4, MMASK);
526     T2 = _mm_add_epi64(T2, C1);
527     T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE));
528     C1 = _mm_srli_epi64(T2, 26);
529     C2 = _mm_srli_epi64(T0, 26);
530     T2 = _mm_and_si128(T2, MMASK);
531     T0 = _mm_and_si128(T0, MMASK);
532     T3 = _mm_add_epi64(T3, C1);
533     T1 = _mm_add_epi64(T1, C2);
534     C1 = _mm_srli_epi64(T3, 26);
535     T3 = _mm_and_si128(T3, MMASK);
536     T4 = _mm_add_epi64(T4, C1);
537 
538     // H = (H*[r^2,r^2] + [Mx,My])
539     H0 = T0;
540     H1 = T1;
541     H2 = T2;
542     H3 = T3;
543     H4 = T4;
544 
545     consumed = 32;
546   }
547 
548   // finalize, H *= [r^2,r]
549   r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1];
550   r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1];
551   r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1];
552 
553   p->R20.d[2] = (uint32_t)(r0) & 0x3ffffff;
554   p->R21.d[2] = (uint32_t)((r0 >> 26) | (r1 << 18)) & 0x3ffffff;
555   p->R22.d[2] = (uint32_t)((r1 >> 8)) & 0x3ffffff;
556   p->R23.d[2] = (uint32_t)((r1 >> 34) | (r2 << 10)) & 0x3ffffff;
557   p->R24.d[2] = (uint32_t)((r2 >> 16));
558   p->S21.d[2] = p->R21.d[2] * 5;
559   p->S22.d[2] = p->R22.d[2] * 5;
560   p->S23.d[2] = p->R23.d[2] * 5;
561   p->S24.d[2] = p->R24.d[2] * 5;
562 
563   // H *= [r^2,r]
564   T0 = _mm_mul_epu32(H0, p->R20.v);
565   T1 = _mm_mul_epu32(H0, p->R21.v);
566   T2 = _mm_mul_epu32(H0, p->R22.v);
567   T3 = _mm_mul_epu32(H0, p->R23.v);
568   T4 = _mm_mul_epu32(H0, p->R24.v);
569   T5 = _mm_mul_epu32(H1, p->S24.v);
570   T6 = _mm_mul_epu32(H1, p->R20.v);
571   T0 = _mm_add_epi64(T0, T5);
572   T1 = _mm_add_epi64(T1, T6);
573   T5 = _mm_mul_epu32(H2, p->S23.v);
574   T6 = _mm_mul_epu32(H2, p->S24.v);
575   T0 = _mm_add_epi64(T0, T5);
576   T1 = _mm_add_epi64(T1, T6);
577   T5 = _mm_mul_epu32(H3, p->S22.v);
578   T6 = _mm_mul_epu32(H3, p->S23.v);
579   T0 = _mm_add_epi64(T0, T5);
580   T1 = _mm_add_epi64(T1, T6);
581   T5 = _mm_mul_epu32(H4, p->S21.v);
582   T6 = _mm_mul_epu32(H4, p->S22.v);
583   T0 = _mm_add_epi64(T0, T5);
584   T1 = _mm_add_epi64(T1, T6);
585   T5 = _mm_mul_epu32(H1, p->R21.v);
586   T6 = _mm_mul_epu32(H1, p->R22.v);
587   T2 = _mm_add_epi64(T2, T5);
588   T3 = _mm_add_epi64(T3, T6);
589   T5 = _mm_mul_epu32(H2, p->R20.v);
590   T6 = _mm_mul_epu32(H2, p->R21.v);
591   T2 = _mm_add_epi64(T2, T5);
592   T3 = _mm_add_epi64(T3, T6);
593   T5 = _mm_mul_epu32(H3, p->S24.v);
594   T6 = _mm_mul_epu32(H3, p->R20.v);
595   T2 = _mm_add_epi64(T2, T5);
596   T3 = _mm_add_epi64(T3, T6);
597   T5 = _mm_mul_epu32(H4, p->S23.v);
598   T6 = _mm_mul_epu32(H4, p->S24.v);
599   T2 = _mm_add_epi64(T2, T5);
600   T3 = _mm_add_epi64(T3, T6);
601   T5 = _mm_mul_epu32(H1, p->R23.v);
602   T4 = _mm_add_epi64(T4, T5);
603   T5 = _mm_mul_epu32(H2, p->R22.v);
604   T4 = _mm_add_epi64(T4, T5);
605   T5 = _mm_mul_epu32(H3, p->R21.v);
606   T4 = _mm_add_epi64(T4, T5);
607   T5 = _mm_mul_epu32(H4, p->R20.v);
608   T4 = _mm_add_epi64(T4, T5);
609 
610   C1 = _mm_srli_epi64(T0, 26);
611   C2 = _mm_srli_epi64(T3, 26);
612   T0 = _mm_and_si128(T0, MMASK);
613   T3 = _mm_and_si128(T3, MMASK);
614   T1 = _mm_add_epi64(T1, C1);
615   T4 = _mm_add_epi64(T4, C2);
616   C1 = _mm_srli_epi64(T1, 26);
617   C2 = _mm_srli_epi64(T4, 26);
618   T1 = _mm_and_si128(T1, MMASK);
619   T4 = _mm_and_si128(T4, MMASK);
620   T2 = _mm_add_epi64(T2, C1);
621   T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE));
622   C1 = _mm_srli_epi64(T2, 26);
623   C2 = _mm_srli_epi64(T0, 26);
624   T2 = _mm_and_si128(T2, MMASK);
625   T0 = _mm_and_si128(T0, MMASK);
626   T3 = _mm_add_epi64(T3, C1);
627   T1 = _mm_add_epi64(T1, C2);
628   C1 = _mm_srli_epi64(T3, 26);
629   T3 = _mm_and_si128(T3, MMASK);
630   T4 = _mm_add_epi64(T4, C1);
631 
632   // H = H[0]+H[1]
633   H0 = _mm_add_epi64(T0, _mm_srli_si128(T0, 8));
634   H1 = _mm_add_epi64(T1, _mm_srli_si128(T1, 8));
635   H2 = _mm_add_epi64(T2, _mm_srli_si128(T2, 8));
636   H3 = _mm_add_epi64(T3, _mm_srli_si128(T3, 8));
637   H4 = _mm_add_epi64(T4, _mm_srli_si128(T4, 8));
638 
639   t0 = _mm_cvtsi128_si32(H0);
640   c = (t0 >> 26);
641   t0 &= 0x3ffffff;
642   t1 = _mm_cvtsi128_si32(H1) + c;
643   c = (t1 >> 26);
644   t1 &= 0x3ffffff;
645   t2 = _mm_cvtsi128_si32(H2) + c;
646   c = (t2 >> 26);
647   t2 &= 0x3ffffff;
648   t3 = _mm_cvtsi128_si32(H3) + c;
649   c = (t3 >> 26);
650   t3 &= 0x3ffffff;
651   t4 = _mm_cvtsi128_si32(H4) + c;
652   c = (t4 >> 26);
653   t4 &= 0x3ffffff;
654   t0 = t0 + (c * 5);
655   c = (t0 >> 26);
656   t0 &= 0x3ffffff;
657   t1 = t1 + c;
658 
659   st->HH[0] = ((t0) | (t1 << 26)) & UINT64_C(0xfffffffffff);
660   st->HH[1] = ((t1 >> 18) | (t2 << 8) | (t3 << 34)) & UINT64_C(0xfffffffffff);
661   st->HH[2] = ((t3 >> 10) | (t4 << 16)) & UINT64_C(0x3ffffffffff);
662 
663   return consumed;
664 }
665 
CRYPTO_poly1305_update(poly1305_state * state,const uint8_t * m,size_t bytes)666 void CRYPTO_poly1305_update(poly1305_state *state, const uint8_t *m,
667                             size_t bytes) {
668   poly1305_state_internal *st = poly1305_aligned_state(state);
669   size_t want;
670 
671   // Work around a C language bug. See https://crbug.com/1019588.
672   if (bytes == 0) {
673     return;
674   }
675 
676   // need at least 32 initial bytes to start the accelerated branch
677   if (!st->started) {
678     if ((st->leftover == 0) && (bytes > 32)) {
679       poly1305_first_block(st, m);
680       m += 32;
681       bytes -= 32;
682     } else {
683       want = poly1305_min(32 - st->leftover, bytes);
684       OPENSSL_memcpy(st->buffer + st->leftover, m, want);
685       bytes -= want;
686       m += want;
687       st->leftover += want;
688       if ((st->leftover < 32) || (bytes == 0)) {
689         return;
690       }
691       poly1305_first_block(st, st->buffer);
692       st->leftover = 0;
693     }
694     st->started = 1;
695   }
696 
697   // handle leftover
698   if (st->leftover) {
699     want = poly1305_min(64 - st->leftover, bytes);
700     OPENSSL_memcpy(st->buffer + st->leftover, m, want);
701     bytes -= want;
702     m += want;
703     st->leftover += want;
704     if (st->leftover < 64) {
705       return;
706     }
707     poly1305_blocks(st, st->buffer, 64);
708     st->leftover = 0;
709   }
710 
711   // process 64 byte blocks
712   if (bytes >= 64) {
713     want = (bytes & ~63);
714     poly1305_blocks(st, m, want);
715     m += want;
716     bytes -= want;
717   }
718 
719   if (bytes) {
720     OPENSSL_memcpy(st->buffer + st->leftover, m, bytes);
721     st->leftover += bytes;
722   }
723 }
724 
CRYPTO_poly1305_finish(poly1305_state * state,uint8_t mac[16])725 void CRYPTO_poly1305_finish(poly1305_state *state, uint8_t mac[16]) {
726   poly1305_state_internal *st = poly1305_aligned_state(state);
727   size_t leftover = st->leftover;
728   uint8_t *m = st->buffer;
729   uint128_t d[3];
730   uint64_t h0, h1, h2;
731   uint64_t t0, t1;
732   uint64_t g0, g1, g2, c, nc;
733   uint64_t r0, r1, r2, s1, s2;
734   poly1305_power *p;
735 
736   if (st->started) {
737     size_t consumed = poly1305_combine(st, m, leftover);
738     leftover -= consumed;
739     m += consumed;
740   }
741 
742   // st->HH will either be 0 or have the combined result
743   h0 = st->HH[0];
744   h1 = st->HH[1];
745   h2 = st->HH[2];
746 
747   p = &st->P[1];
748   r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1];
749   r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1];
750   r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1];
751   s1 = r1 * (5 << 2);
752   s2 = r2 * (5 << 2);
753 
754   if (leftover < 16) {
755     goto poly1305_donna_atmost15bytes;
756   }
757 
758 poly1305_donna_atleast16bytes:
759   t0 = CRYPTO_load_u64_le(m + 0);
760   t1 = CRYPTO_load_u64_le(m + 8);
761   h0 += t0 & 0xfffffffffff;
762   t0 = shr128_pair(t1, t0, 44);
763   h1 += t0 & 0xfffffffffff;
764   h2 += (t1 >> 24) | ((uint64_t)1 << 40);
765 
766 poly1305_donna_mul:
767   d[0] = add128(add128(mul64x64_128(h0, r0), mul64x64_128(h1, s2)),
768                 mul64x64_128(h2, s1));
769   d[1] = add128(add128(mul64x64_128(h0, r1), mul64x64_128(h1, r0)),
770                 mul64x64_128(h2, s2));
771   d[2] = add128(add128(mul64x64_128(h0, r2), mul64x64_128(h1, r1)),
772                 mul64x64_128(h2, r0));
773   h0 = lo128(d[0]) & 0xfffffffffff;
774   c = shr128(d[0], 44);
775   d[1] = add128_64(d[1], c);
776   h1 = lo128(d[1]) & 0xfffffffffff;
777   c = shr128(d[1], 44);
778   d[2] = add128_64(d[2], c);
779   h2 = lo128(d[2]) & 0x3ffffffffff;
780   c = shr128(d[2], 42);
781   h0 += c * 5;
782 
783   m += 16;
784   leftover -= 16;
785   if (leftover >= 16) {
786     goto poly1305_donna_atleast16bytes;
787   }
788 
789 // final bytes
790 poly1305_donna_atmost15bytes:
791   if (!leftover) {
792     goto poly1305_donna_finish;
793   }
794 
795   m[leftover++] = 1;
796   OPENSSL_memset(m + leftover, 0, 16 - leftover);
797   leftover = 16;
798 
799   t0 = CRYPTO_load_u64_le(m + 0);
800   t1 = CRYPTO_load_u64_le(m + 8);
801   h0 += t0 & 0xfffffffffff;
802   t0 = shr128_pair(t1, t0, 44);
803   h1 += t0 & 0xfffffffffff;
804   h2 += (t1 >> 24);
805 
806   goto poly1305_donna_mul;
807 
808 poly1305_donna_finish:
809   c = (h0 >> 44);
810   h0 &= 0xfffffffffff;
811   h1 += c;
812   c = (h1 >> 44);
813   h1 &= 0xfffffffffff;
814   h2 += c;
815   c = (h2 >> 42);
816   h2 &= 0x3ffffffffff;
817   h0 += c * 5;
818 
819   g0 = h0 + 5;
820   c = (g0 >> 44);
821   g0 &= 0xfffffffffff;
822   g1 = h1 + c;
823   c = (g1 >> 44);
824   g1 &= 0xfffffffffff;
825   g2 = h2 + c - ((uint64_t)1 << 42);
826 
827   c = (g2 >> 63) - 1;
828   nc = ~c;
829   h0 = (h0 & nc) | (g0 & c);
830   h1 = (h1 & nc) | (g1 & c);
831   h2 = (h2 & nc) | (g2 & c);
832 
833   // pad
834   t0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1];
835   t1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1];
836   h0 += (t0 & 0xfffffffffff);
837   c = (h0 >> 44);
838   h0 &= 0xfffffffffff;
839   t0 = shr128_pair(t1, t0, 44);
840   h1 += (t0 & 0xfffffffffff) + c;
841   c = (h1 >> 44);
842   h1 &= 0xfffffffffff;
843   t1 = (t1 >> 24);
844   h2 += (t1) + c;
845 
846   CRYPTO_store_u64_le(mac + 0, ((h0) | (h1 << 44)));
847   CRYPTO_store_u64_le(mac + 8, ((h1 >> 20) | (h2 << 24)));
848 }
849 
850 #endif  // BORINGSSL_HAS_UINT128 && OPENSSL_X86_64
851