1 /*
2 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <openssl/stack.h>
11
12 #include <assert.h>
13 #include <limits.h>
14
15 #include <openssl/err.h>
16 #include <openssl/mem.h>
17
18 #include "../internal.h"
19
20
21 struct stack_st {
22 // num contains the number of valid pointers in |data|.
23 size_t num;
24 void **data;
25 // sorted is non-zero if the values pointed to by |data| are in ascending
26 // order, based on |comp|.
27 int sorted;
28 // num_alloc contains the number of pointers allocated in the buffer pointed
29 // to by |data|, which may be larger than |num|.
30 size_t num_alloc;
31 // comp is an optional comparison function.
32 OPENSSL_sk_cmp_func comp;
33 };
34
35 // kMinSize is the number of pointers that will be initially allocated in a new
36 // stack.
37 static const size_t kMinSize = 4;
38
OPENSSL_sk_new(OPENSSL_sk_cmp_func comp)39 OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_cmp_func comp) {
40 OPENSSL_STACK *ret =
41 reinterpret_cast<OPENSSL_STACK *>(OPENSSL_zalloc(sizeof(OPENSSL_STACK)));
42 if (ret == NULL) {
43 return NULL;
44 }
45
46 ret->data =
47 reinterpret_cast<void **>(OPENSSL_calloc(kMinSize, sizeof(void *)));
48 if (ret->data == NULL) {
49 goto err;
50 }
51
52 ret->comp = comp;
53 ret->num_alloc = kMinSize;
54
55 return ret;
56
57 err:
58 OPENSSL_free(ret);
59 return NULL;
60 }
61
OPENSSL_sk_new_null(void)62 OPENSSL_STACK *OPENSSL_sk_new_null(void) { return OPENSSL_sk_new(NULL); }
63
OPENSSL_sk_num(const OPENSSL_STACK * sk)64 size_t OPENSSL_sk_num(const OPENSSL_STACK *sk) {
65 if (sk == NULL) {
66 return 0;
67 }
68 return sk->num;
69 }
70
OPENSSL_sk_zero(OPENSSL_STACK * sk)71 void OPENSSL_sk_zero(OPENSSL_STACK *sk) {
72 if (sk == NULL || sk->num == 0) {
73 return;
74 }
75 OPENSSL_memset(sk->data, 0, sizeof(void *) * sk->num);
76 sk->num = 0;
77 sk->sorted = 0;
78 }
79
OPENSSL_sk_value(const OPENSSL_STACK * sk,size_t i)80 void *OPENSSL_sk_value(const OPENSSL_STACK *sk, size_t i) {
81 if (!sk || i >= sk->num) {
82 return NULL;
83 }
84 return sk->data[i];
85 }
86
OPENSSL_sk_set(OPENSSL_STACK * sk,size_t i,void * value)87 void *OPENSSL_sk_set(OPENSSL_STACK *sk, size_t i, void *value) {
88 if (!sk || i >= sk->num) {
89 return NULL;
90 }
91 return sk->data[i] = value;
92 }
93
OPENSSL_sk_free(OPENSSL_STACK * sk)94 void OPENSSL_sk_free(OPENSSL_STACK *sk) {
95 if (sk == NULL) {
96 return;
97 }
98 OPENSSL_free(sk->data);
99 OPENSSL_free(sk);
100 }
101
OPENSSL_sk_pop_free_ex(OPENSSL_STACK * sk,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)102 void OPENSSL_sk_pop_free_ex(OPENSSL_STACK *sk,
103 OPENSSL_sk_call_free_func call_free_func,
104 OPENSSL_sk_free_func free_func) {
105 if (sk == NULL) {
106 return;
107 }
108
109 for (size_t i = 0; i < sk->num; i++) {
110 if (sk->data[i] != NULL) {
111 call_free_func(free_func, sk->data[i]);
112 }
113 }
114 OPENSSL_sk_free(sk);
115 }
116
117 // Historically, |sk_pop_free| called the function as |OPENSSL_sk_free_func|
118 // directly. This is undefined in C. Some callers called |sk_pop_free| directly,
119 // so we must maintain a compatibility version for now.
call_free_func_legacy(OPENSSL_sk_free_func func,void * ptr)120 static void call_free_func_legacy(OPENSSL_sk_free_func func, void *ptr) {
121 func(ptr);
122 }
123
sk_pop_free(OPENSSL_STACK * sk,OPENSSL_sk_free_func free_func)124 void sk_pop_free(OPENSSL_STACK *sk, OPENSSL_sk_free_func free_func) {
125 OPENSSL_sk_pop_free_ex(sk, call_free_func_legacy, free_func);
126 }
127
OPENSSL_sk_insert(OPENSSL_STACK * sk,void * p,size_t where)128 size_t OPENSSL_sk_insert(OPENSSL_STACK *sk, void *p, size_t where) {
129 if (sk == NULL) {
130 return 0;
131 }
132
133 if (sk->num >= INT_MAX) {
134 OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
135 return 0;
136 }
137
138 if (sk->num_alloc <= sk->num + 1) {
139 // Attempt to double the size of the array.
140 size_t new_alloc = sk->num_alloc << 1;
141 size_t alloc_size = new_alloc * sizeof(void *);
142 void **data;
143
144 // If the doubling overflowed, try to increment.
145 if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
146 new_alloc = sk->num_alloc + 1;
147 alloc_size = new_alloc * sizeof(void *);
148 }
149
150 // If the increment also overflowed, fail.
151 if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
152 return 0;
153 }
154
155 data = reinterpret_cast<void **>(OPENSSL_realloc(sk->data, alloc_size));
156 if (data == NULL) {
157 return 0;
158 }
159
160 sk->data = data;
161 sk->num_alloc = new_alloc;
162 }
163
164 if (where >= sk->num) {
165 sk->data[sk->num] = p;
166 } else {
167 OPENSSL_memmove(&sk->data[where + 1], &sk->data[where],
168 sizeof(void *) * (sk->num - where));
169 sk->data[where] = p;
170 }
171
172 sk->num++;
173 sk->sorted = 0;
174
175 return sk->num;
176 }
177
OPENSSL_sk_delete(OPENSSL_STACK * sk,size_t where)178 void *OPENSSL_sk_delete(OPENSSL_STACK *sk, size_t where) {
179 void *ret;
180
181 if (!sk || where >= sk->num) {
182 return NULL;
183 }
184
185 ret = sk->data[where];
186
187 if (where != sk->num - 1) {
188 OPENSSL_memmove(&sk->data[where], &sk->data[where + 1],
189 sizeof(void *) * (sk->num - where - 1));
190 }
191
192 sk->num--;
193 return ret;
194 }
195
OPENSSL_sk_delete_ptr(OPENSSL_STACK * sk,const void * p)196 void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *sk, const void *p) {
197 if (sk == NULL) {
198 return NULL;
199 }
200
201 for (size_t i = 0; i < sk->num; i++) {
202 if (sk->data[i] == p) {
203 return OPENSSL_sk_delete(sk, i);
204 }
205 }
206
207 return NULL;
208 }
209
OPENSSL_sk_delete_if(OPENSSL_STACK * sk,OPENSSL_sk_call_delete_if_func call_func,OPENSSL_sk_delete_if_func func,void * data)210 void OPENSSL_sk_delete_if(OPENSSL_STACK *sk,
211 OPENSSL_sk_call_delete_if_func call_func,
212 OPENSSL_sk_delete_if_func func, void *data) {
213 if (sk == NULL) {
214 return;
215 }
216
217 size_t new_num = 0;
218 for (size_t i = 0; i < sk->num; i++) {
219 if (!call_func(func, sk->data[i], data)) {
220 sk->data[new_num] = sk->data[i];
221 new_num++;
222 }
223 }
224 sk->num = new_num;
225 }
226
OPENSSL_sk_find(const OPENSSL_STACK * sk,size_t * out_index,const void * p,OPENSSL_sk_call_cmp_func call_cmp_func)227 int OPENSSL_sk_find(const OPENSSL_STACK *sk, size_t *out_index, const void *p,
228 OPENSSL_sk_call_cmp_func call_cmp_func) {
229 if (sk == NULL) {
230 return 0;
231 }
232
233 if (sk->comp == NULL) {
234 // Use pointer equality when no comparison function has been set.
235 for (size_t i = 0; i < sk->num; i++) {
236 if (sk->data[i] == p) {
237 if (out_index) {
238 *out_index = i;
239 }
240 return 1;
241 }
242 }
243 return 0;
244 }
245
246 if (p == NULL) {
247 return 0;
248 }
249
250 if (!OPENSSL_sk_is_sorted(sk)) {
251 for (size_t i = 0; i < sk->num; i++) {
252 if (call_cmp_func(sk->comp, p, sk->data[i]) == 0) {
253 if (out_index) {
254 *out_index = i;
255 }
256 return 1;
257 }
258 }
259 return 0;
260 }
261
262 // The stack is sorted, so binary search to find the element.
263 //
264 // |lo| and |hi| maintain a half-open interval of where the answer may be. All
265 // indices such that |lo <= idx < hi| are candidates.
266 size_t lo = 0, hi = sk->num;
267 while (lo < hi) {
268 // Bias |mid| towards |lo|. See the |r == 0| case below.
269 size_t mid = lo + (hi - lo - 1) / 2;
270 assert(lo <= mid && mid < hi);
271 int r = call_cmp_func(sk->comp, p, sk->data[mid]);
272 if (r > 0) {
273 lo = mid + 1; // |mid| is too low.
274 } else if (r < 0) {
275 hi = mid; // |mid| is too high.
276 } else {
277 // |mid| matches. However, this function returns the earliest match, so we
278 // can only return if the range has size one.
279 if (hi - lo == 1) {
280 if (out_index != NULL) {
281 *out_index = mid;
282 }
283 return 1;
284 }
285 // The sample is biased towards |lo|. |mid| can only be |hi - 1| if
286 // |hi - lo| was one, so this makes forward progress.
287 assert(mid + 1 < hi);
288 hi = mid + 1;
289 }
290 }
291
292 assert(lo == hi);
293 return 0; // Not found.
294 }
295
OPENSSL_sk_shift(OPENSSL_STACK * sk)296 void *OPENSSL_sk_shift(OPENSSL_STACK *sk) {
297 if (sk == NULL) {
298 return NULL;
299 }
300 if (sk->num == 0) {
301 return NULL;
302 }
303 return OPENSSL_sk_delete(sk, 0);
304 }
305
OPENSSL_sk_push(OPENSSL_STACK * sk,void * p)306 size_t OPENSSL_sk_push(OPENSSL_STACK *sk, void *p) {
307 return OPENSSL_sk_insert(sk, p, sk->num);
308 }
309
OPENSSL_sk_pop(OPENSSL_STACK * sk)310 void *OPENSSL_sk_pop(OPENSSL_STACK *sk) {
311 if (sk == NULL) {
312 return NULL;
313 }
314 if (sk->num == 0) {
315 return NULL;
316 }
317 return OPENSSL_sk_delete(sk, sk->num - 1);
318 }
319
OPENSSL_sk_dup(const OPENSSL_STACK * sk)320 OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) {
321 if (sk == NULL) {
322 return NULL;
323 }
324
325 OPENSSL_STACK *ret =
326 reinterpret_cast<OPENSSL_STACK *>(OPENSSL_zalloc(sizeof(OPENSSL_STACK)));
327 if (ret == NULL) {
328 return NULL;
329 }
330
331 ret->data = reinterpret_cast<void **>(
332 OPENSSL_memdup(sk->data, sizeof(void *) * sk->num_alloc));
333 if (ret->data == NULL) {
334 goto err;
335 }
336
337 ret->num = sk->num;
338 ret->sorted = sk->sorted;
339 ret->num_alloc = sk->num_alloc;
340 ret->comp = sk->comp;
341 return ret;
342
343 err:
344 OPENSSL_sk_free(ret);
345 return NULL;
346 }
347
parent_idx(size_t idx)348 static size_t parent_idx(size_t idx) {
349 assert(idx > 0);
350 return (idx - 1) / 2;
351 }
352
left_idx(size_t idx)353 static size_t left_idx(size_t idx) {
354 // The largest possible index is |PTRDIFF_MAX|, not |SIZE_MAX|. If
355 // |ptrdiff_t|, a signed type, is the same size as |size_t|, this cannot
356 // overflow.
357 assert(idx <= PTRDIFF_MAX);
358 static_assert(PTRDIFF_MAX <= (SIZE_MAX - 1) / 2, "2 * idx + 1 may oveflow");
359 return 2 * idx + 1;
360 }
361
362 // down_heap fixes the subtree rooted at |i|. |i|'s children must each satisfy
363 // the heap property. Only the first |num| elements of |sk| are considered.
down_heap(OPENSSL_STACK * sk,OPENSSL_sk_call_cmp_func call_cmp_func,size_t i,size_t num)364 static void down_heap(OPENSSL_STACK *sk, OPENSSL_sk_call_cmp_func call_cmp_func,
365 size_t i, size_t num) {
366 assert(i < num && num <= sk->num);
367 for (;;) {
368 size_t left = left_idx(i);
369 if (left >= num) {
370 break; // No left child.
371 }
372
373 // Swap |i| with the largest of its children.
374 size_t next = i;
375 if (call_cmp_func(sk->comp, sk->data[next], sk->data[left]) < 0) {
376 next = left;
377 }
378 size_t right = left + 1; // Cannot overflow because |left < num|.
379 if (right < num &&
380 call_cmp_func(sk->comp, sk->data[next], sk->data[right]) < 0) {
381 next = right;
382 }
383
384 if (i == next) {
385 break; // |i| is already larger than its children.
386 }
387
388 void *tmp = sk->data[i];
389 sk->data[i] = sk->data[next];
390 sk->data[next] = tmp;
391 i = next;
392 }
393 }
394
OPENSSL_sk_sort(OPENSSL_STACK * sk,OPENSSL_sk_call_cmp_func call_cmp_func)395 void OPENSSL_sk_sort(OPENSSL_STACK *sk,
396 OPENSSL_sk_call_cmp_func call_cmp_func) {
397 if (sk == NULL || sk->comp == NULL || sk->sorted) {
398 return;
399 }
400
401 if (sk->num >= 2) {
402 // |qsort| lacks a context parameter in the comparison function for us to
403 // pass in |call_cmp_func| and |sk->comp|. While we could cast |sk->comp| to
404 // the expected type, it is undefined behavior in C can trip sanitizers.
405 // |qsort_r| and |qsort_s| avoid this, but using them is impractical. See
406 // https://stackoverflow.com/a/39561369
407 //
408 // Use our own heap sort instead. This is not performance-sensitive, so we
409 // optimize for simplicity and size. First, build a max-heap in place.
410 for (size_t i = parent_idx(sk->num - 1); i < sk->num; i--) {
411 down_heap(sk, call_cmp_func, i, sk->num);
412 }
413
414 // Iteratively remove the maximum element to populate the result in reverse.
415 for (size_t i = sk->num - 1; i > 0; i--) {
416 void *tmp = sk->data[0];
417 sk->data[0] = sk->data[i];
418 sk->data[i] = tmp;
419 down_heap(sk, call_cmp_func, 0, i);
420 }
421 }
422 sk->sorted = 1;
423 }
424
OPENSSL_sk_is_sorted(const OPENSSL_STACK * sk)425 int OPENSSL_sk_is_sorted(const OPENSSL_STACK *sk) {
426 if (!sk) {
427 return 1;
428 }
429 // Zero- and one-element lists are always sorted.
430 return sk->sorted || (sk->comp != NULL && sk->num < 2);
431 }
432
OPENSSL_sk_set_cmp_func(OPENSSL_STACK * sk,OPENSSL_sk_cmp_func comp)433 OPENSSL_sk_cmp_func OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk,
434 OPENSSL_sk_cmp_func comp) {
435 OPENSSL_sk_cmp_func old = sk->comp;
436
437 if (sk->comp != comp) {
438 sk->sorted = 0;
439 }
440 sk->comp = comp;
441
442 return old;
443 }
444
OPENSSL_sk_deep_copy(const OPENSSL_STACK * sk,OPENSSL_sk_call_copy_func call_copy_func,OPENSSL_sk_copy_func copy_func,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)445 OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
446 OPENSSL_sk_call_copy_func call_copy_func,
447 OPENSSL_sk_copy_func copy_func,
448 OPENSSL_sk_call_free_func call_free_func,
449 OPENSSL_sk_free_func free_func) {
450 OPENSSL_STACK *ret = OPENSSL_sk_dup(sk);
451 if (ret == NULL) {
452 return NULL;
453 }
454
455 for (size_t i = 0; i < ret->num; i++) {
456 if (ret->data[i] == NULL) {
457 continue;
458 }
459 ret->data[i] = call_copy_func(copy_func, ret->data[i]);
460 if (ret->data[i] == NULL) {
461 for (size_t j = 0; j < i; j++) {
462 if (ret->data[j] != NULL) {
463 call_free_func(free_func, ret->data[j]);
464 }
465 }
466 OPENSSL_sk_free(ret);
467 return NULL;
468 }
469 }
470
471 return ret;
472 }
473
sk_new_null(void)474 OPENSSL_STACK *sk_new_null(void) { return OPENSSL_sk_new_null(); }
475
sk_num(const OPENSSL_STACK * sk)476 size_t sk_num(const OPENSSL_STACK *sk) { return OPENSSL_sk_num(sk); }
477
sk_value(const OPENSSL_STACK * sk,size_t i)478 void *sk_value(const OPENSSL_STACK *sk, size_t i) {
479 return OPENSSL_sk_value(sk, i);
480 }
481
sk_free(OPENSSL_STACK * sk)482 void sk_free(OPENSSL_STACK *sk) { OPENSSL_sk_free(sk); }
483
sk_push(OPENSSL_STACK * sk,void * p)484 size_t sk_push(OPENSSL_STACK *sk, void *p) { return OPENSSL_sk_push(sk, p); }
485
sk_pop(OPENSSL_STACK * sk)486 void *sk_pop(OPENSSL_STACK *sk) { return OPENSSL_sk_pop(sk); }
487
sk_pop_free_ex(OPENSSL_STACK * sk,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)488 void sk_pop_free_ex(OPENSSL_STACK *sk, OPENSSL_sk_call_free_func call_free_func,
489 OPENSSL_sk_free_func free_func) {
490 OPENSSL_sk_pop_free_ex(sk, call_free_func, free_func);
491 }
492