• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the OpenSSL license (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <openssl/ssl.h>
11 
12 #include <assert.h>
13 #include <limits.h>
14 
15 #include <algorithm>
16 
17 #include <openssl/ec.h>
18 #include <openssl/ec_key.h>
19 #include <openssl/err.h>
20 #include <openssl/evp.h>
21 #include <openssl/mem.h>
22 #include <openssl/span.h>
23 
24 #include "../crypto/internal.h"
25 #include "internal.h"
26 
27 
28 BSSL_NAMESPACE_BEGIN
29 
ssl_is_key_type_supported(int key_type)30 bool ssl_is_key_type_supported(int key_type) {
31   return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC ||
32          key_type == EVP_PKEY_ED25519;
33 }
34 
35 typedef struct {
36   uint16_t sigalg;
37   int pkey_type;
38   int curve;
39   const EVP_MD *(*digest_func)(void);
40   bool is_rsa_pss;
41   bool tls12_ok;
42   bool tls13_ok;
43   bool client_only;
44 } SSL_SIGNATURE_ALGORITHM;
45 
46 static const SSL_SIGNATURE_ALGORITHM kSignatureAlgorithms[] = {
47     // PKCS#1 v1.5 code points are only allowed in TLS 1.2.
48     {SSL_SIGN_RSA_PKCS1_MD5_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_md5_sha1,
49      /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/false,
50      /*client_only=*/false},
51     {SSL_SIGN_RSA_PKCS1_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_sha1,
52      /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/false,
53      /*client_only=*/false},
54     {SSL_SIGN_RSA_PKCS1_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256,
55      /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/false,
56      /*client_only=*/false},
57     {SSL_SIGN_RSA_PKCS1_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384,
58      /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/false,
59      /*client_only=*/false},
60     {SSL_SIGN_RSA_PKCS1_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512,
61      /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/false,
62      /*client_only=*/false},
63 
64     // Legacy PKCS#1 v1.5 code points are only allowed in TLS 1.3 and
65     // client-only. See draft-ietf-tls-tls13-pkcs1-00.
66     {SSL_SIGN_RSA_PKCS1_SHA256_LEGACY, EVP_PKEY_RSA, NID_undef, &EVP_sha256,
67      /*is_rsa_pss=*/false, /*tls12_ok=*/false, /*tls13_ok=*/true,
68      /*client_only=*/true},
69 
70     {SSL_SIGN_RSA_PSS_RSAE_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256,
71      /*is_rsa_pss=*/true, /*tls12_ok=*/true, /*tls13_ok=*/true,
72      /*client_only=*/false},
73     {SSL_SIGN_RSA_PSS_RSAE_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384,
74      /*is_rsa_pss=*/true, /*tls12_ok=*/true, /*tls13_ok=*/true,
75      /*client_only=*/false},
76     {SSL_SIGN_RSA_PSS_RSAE_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512,
77      /*is_rsa_pss=*/true, /*tls12_ok=*/true, /*tls13_ok=*/true,
78      /*client_only=*/false},
79 
80     {SSL_SIGN_ECDSA_SHA1, EVP_PKEY_EC, NID_undef, &EVP_sha1,
81      /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/false,
82      /*client_only=*/false},
83     {SSL_SIGN_ECDSA_SECP256R1_SHA256, EVP_PKEY_EC, NID_X9_62_prime256v1,
84      &EVP_sha256, /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/true,
85      /*client_only=*/false},
86     {SSL_SIGN_ECDSA_SECP384R1_SHA384, EVP_PKEY_EC, NID_secp384r1, &EVP_sha384,
87      /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/true,
88      /*client_only=*/false},
89     {SSL_SIGN_ECDSA_SECP521R1_SHA512, EVP_PKEY_EC, NID_secp521r1, &EVP_sha512,
90      /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/true,
91      /*client_only=*/false},
92 
93     {SSL_SIGN_ED25519, EVP_PKEY_ED25519, NID_undef, nullptr,
94      /*is_rsa_pss=*/false, /*tls12_ok=*/true, /*tls13_ok=*/true,
95      /*client_only=*/false},
96 };
97 
get_signature_algorithm(uint16_t sigalg)98 static const SSL_SIGNATURE_ALGORITHM *get_signature_algorithm(uint16_t sigalg) {
99   for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kSignatureAlgorithms); i++) {
100     if (kSignatureAlgorithms[i].sigalg == sigalg) {
101       return &kSignatureAlgorithms[i];
102     }
103   }
104   return NULL;
105 }
106 
ssl_pkey_supports_algorithm(const SSL * ssl,EVP_PKEY * pkey,uint16_t sigalg,bool is_verify)107 bool ssl_pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey,
108                                  uint16_t sigalg, bool is_verify) {
109   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
110   if (alg == NULL || EVP_PKEY_id(pkey) != alg->pkey_type) {
111     return false;
112   }
113 
114   // Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that
115   // emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the
116   // hash in TLS. Reasonable RSA key sizes are large enough for the largest
117   // defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too small for
118   // SHA-512. 1024-bit RSA is sometimes used for test credentials, so check the
119   // size so that we can fall back to another algorithm in that case.
120   if (alg->is_rsa_pss &&
121       (size_t)EVP_PKEY_size(pkey) < 2 * EVP_MD_size(alg->digest_func()) + 2) {
122     return false;
123   }
124 
125   if (ssl_protocol_version(ssl) < TLS1_2_VERSION) {
126     // TLS 1.0 and 1.1 do not negotiate algorithms and always sign one of two
127     // hardcoded algorithms.
128     return sigalg == SSL_SIGN_RSA_PKCS1_MD5_SHA1 ||
129            sigalg == SSL_SIGN_ECDSA_SHA1;
130   }
131 
132   // |SSL_SIGN_RSA_PKCS1_MD5_SHA1| is not a real SignatureScheme for TLS 1.2 and
133   // higher. It is an internal value we use to represent TLS 1.0/1.1's MD5/SHA1
134   // concatenation.
135   if (sigalg == SSL_SIGN_RSA_PKCS1_MD5_SHA1) {
136     return false;
137   }
138 
139   if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
140     if (!alg->tls13_ok) {
141       return false;
142     }
143 
144     bool is_client_sign = ssl->server == is_verify;
145     if (alg->client_only && !is_client_sign) {
146       return false;
147     }
148 
149     // EC keys have a curve requirement.
150     if (alg->pkey_type == EVP_PKEY_EC &&
151         (alg->curve == NID_undef ||
152          EC_GROUP_get_curve_name(
153              EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey))) != alg->curve)) {
154       return false;
155     }
156   } else if (!alg->tls12_ok) {
157     return false;
158   }
159 
160   return true;
161 }
162 
setup_ctx(SSL * ssl,EVP_MD_CTX * ctx,EVP_PKEY * pkey,uint16_t sigalg,bool is_verify)163 static bool setup_ctx(SSL *ssl, EVP_MD_CTX *ctx, EVP_PKEY *pkey,
164                       uint16_t sigalg, bool is_verify) {
165   if (!ssl_pkey_supports_algorithm(ssl, pkey, sigalg, is_verify)) {
166     OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
167     return false;
168   }
169 
170   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
171   const EVP_MD *digest = alg->digest_func != NULL ? alg->digest_func() : NULL;
172   EVP_PKEY_CTX *pctx;
173   if (is_verify) {
174     if (!EVP_DigestVerifyInit(ctx, &pctx, digest, NULL, pkey)) {
175       return false;
176     }
177   } else if (!EVP_DigestSignInit(ctx, &pctx, digest, NULL, pkey)) {
178     return false;
179   }
180 
181   if (alg->is_rsa_pss) {
182     if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) ||
183         !EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */)) {
184       return false;
185     }
186   }
187 
188   return true;
189 }
190 
ssl_private_key_sign(SSL_HANDSHAKE * hs,uint8_t * out,size_t * out_len,size_t max_out,uint16_t sigalg,Span<const uint8_t> in)191 enum ssl_private_key_result_t ssl_private_key_sign(
192     SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
193     uint16_t sigalg, Span<const uint8_t> in) {
194   SSL *const ssl = hs->ssl;
195   const SSL_CREDENTIAL *const cred = hs->credential.get();
196   SSL_HANDSHAKE_HINTS *const hints = hs->hints.get();
197   Array<uint8_t> spki;
198   if (hints) {
199     ScopedCBB spki_cbb;
200     if (!CBB_init(spki_cbb.get(), 64) ||
201         !EVP_marshal_public_key(spki_cbb.get(), cred->pubkey.get()) ||
202         !CBBFinishArray(spki_cbb.get(), &spki)) {
203       ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
204       return ssl_private_key_failure;
205     }
206   }
207 
208   // Replay the signature from handshake hints if available.
209   if (hints && !hs->hints_requested &&         //
210       sigalg == hints->signature_algorithm &&  //
211       in == hints->signature_input &&          //
212       Span(spki) == hints->signature_spki &&   //
213       !hints->signature.empty() &&             //
214       hints->signature.size() <= max_out) {
215     // Signature algorithm and input both match. Reuse the signature from hints.
216     *out_len = hints->signature.size();
217     OPENSSL_memcpy(out, hints->signature.data(), hints->signature.size());
218     return ssl_private_key_success;
219   }
220 
221   const SSL_PRIVATE_KEY_METHOD *key_method = cred->key_method;
222   EVP_PKEY *privkey = cred->privkey.get();
223   assert(!hs->can_release_private_key);
224 
225   if (key_method != NULL) {
226     enum ssl_private_key_result_t ret;
227     if (hs->pending_private_key_op) {
228       ret = key_method->complete(ssl, out, out_len, max_out);
229     } else {
230       ret = key_method->sign(ssl, out, out_len, max_out, sigalg, in.data(),
231                              in.size());
232     }
233     if (ret == ssl_private_key_failure) {
234       OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
235     }
236     hs->pending_private_key_op = ret == ssl_private_key_retry;
237     if (ret != ssl_private_key_success) {
238       return ret;
239     }
240   } else {
241     *out_len = max_out;
242     ScopedEVP_MD_CTX ctx;
243     if (!setup_ctx(ssl, ctx.get(), privkey, sigalg, false /* sign */) ||
244         !EVP_DigestSign(ctx.get(), out, out_len, in.data(), in.size())) {
245       return ssl_private_key_failure;
246     }
247   }
248 
249   // Save the hint if applicable.
250   if (hints && hs->hints_requested) {
251     hints->signature_algorithm = sigalg;
252     hints->signature_spki = std::move(spki);
253     if (!hints->signature_input.CopyFrom(in) ||
254         !hints->signature.CopyFrom(Span(out, *out_len))) {
255       return ssl_private_key_failure;
256     }
257   }
258   return ssl_private_key_success;
259 }
260 
ssl_public_key_verify(SSL * ssl,Span<const uint8_t> signature,uint16_t sigalg,EVP_PKEY * pkey,Span<const uint8_t> in)261 bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
262                            uint16_t sigalg, EVP_PKEY *pkey,
263                            Span<const uint8_t> in) {
264   ScopedEVP_MD_CTX ctx;
265   if (!setup_ctx(ssl, ctx.get(), pkey, sigalg, true /* verify */)) {
266     return false;
267   }
268   bool ok = EVP_DigestVerify(ctx.get(), signature.data(), signature.size(),
269                              in.data(), in.size());
270 #if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
271   ok = true;
272   ERR_clear_error();
273 #endif
274   return ok;
275 }
276 
ssl_private_key_decrypt(SSL_HANDSHAKE * hs,uint8_t * out,size_t * out_len,size_t max_out,Span<const uint8_t> in)277 enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
278                                                       uint8_t *out,
279                                                       size_t *out_len,
280                                                       size_t max_out,
281                                                       Span<const uint8_t> in) {
282   SSL *const ssl = hs->ssl;
283   const SSL_CREDENTIAL *const cred = hs->credential.get();
284   assert(!hs->can_release_private_key);
285   if (cred->key_method != NULL) {
286     enum ssl_private_key_result_t ret;
287     if (hs->pending_private_key_op) {
288       ret = cred->key_method->complete(ssl, out, out_len, max_out);
289     } else {
290       ret = cred->key_method->decrypt(ssl, out, out_len, max_out, in.data(),
291                                       in.size());
292     }
293     if (ret == ssl_private_key_failure) {
294       OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
295     }
296     hs->pending_private_key_op = ret == ssl_private_key_retry;
297     return ret;
298   }
299 
300   RSA *rsa = EVP_PKEY_get0_RSA(cred->privkey.get());
301   if (rsa == NULL) {
302     // Decrypt operations are only supported for RSA keys.
303     OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
304     return ssl_private_key_failure;
305   }
306 
307   // Decrypt with no padding. PKCS#1 padding will be removed as part of the
308   // timing-sensitive code by the caller.
309   if (!RSA_decrypt(rsa, out_len, out, max_out, in.data(), in.size(),
310                    RSA_NO_PADDING)) {
311     return ssl_private_key_failure;
312   }
313   return ssl_private_key_success;
314 }
315 
316 BSSL_NAMESPACE_END
317 
318 using namespace bssl;
319 
SSL_use_RSAPrivateKey(SSL * ssl,RSA * rsa)320 int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) {
321   if (rsa == NULL || ssl->config == NULL) {
322     OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
323     return 0;
324   }
325 
326   UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
327   if (!pkey ||  //
328       !EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
329     OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
330     return 0;
331   }
332 
333   return SSL_use_PrivateKey(ssl, pkey.get());
334 }
335 
SSL_use_RSAPrivateKey_ASN1(SSL * ssl,const uint8_t * der,size_t der_len)336 int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
337   UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
338   if (!rsa) {
339     OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
340     return 0;
341   }
342 
343   return SSL_use_RSAPrivateKey(ssl, rsa.get());
344 }
345 
SSL_use_PrivateKey(SSL * ssl,EVP_PKEY * pkey)346 int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) {
347   if (pkey == NULL || ssl->config == NULL) {
348     OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
349     return 0;
350   }
351 
352   return SSL_CREDENTIAL_set1_private_key(
353       ssl->config->cert->legacy_credential.get(), pkey);
354 }
355 
SSL_use_PrivateKey_ASN1(int type,SSL * ssl,const uint8_t * der,size_t der_len)356 int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der,
357                             size_t der_len) {
358   if (der_len > LONG_MAX) {
359     OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
360     return 0;
361   }
362 
363   const uint8_t *p = der;
364   UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
365   if (!pkey || p != der + der_len) {
366     OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
367     return 0;
368   }
369 
370   return SSL_use_PrivateKey(ssl, pkey.get());
371 }
372 
SSL_CTX_use_RSAPrivateKey(SSL_CTX * ctx,RSA * rsa)373 int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) {
374   if (rsa == NULL) {
375     OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
376     return 0;
377   }
378 
379   UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
380   if (!pkey || !EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
381     OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
382     return 0;
383   }
384 
385   return SSL_CTX_use_PrivateKey(ctx, pkey.get());
386 }
387 
SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX * ctx,const uint8_t * der,size_t der_len)388 int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der,
389                                    size_t der_len) {
390   UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
391   if (!rsa) {
392     OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
393     return 0;
394   }
395 
396   return SSL_CTX_use_RSAPrivateKey(ctx, rsa.get());
397 }
398 
SSL_CTX_use_PrivateKey(SSL_CTX * ctx,EVP_PKEY * pkey)399 int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) {
400   if (pkey == NULL) {
401     OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
402     return 0;
403   }
404 
405   return SSL_CREDENTIAL_set1_private_key(ctx->cert->legacy_credential.get(),
406                                          pkey);
407 }
408 
SSL_CTX_use_PrivateKey_ASN1(int type,SSL_CTX * ctx,const uint8_t * der,size_t der_len)409 int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der,
410                                 size_t der_len) {
411   if (der_len > LONG_MAX) {
412     OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
413     return 0;
414   }
415 
416   const uint8_t *p = der;
417   UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
418   if (!pkey || p != der + der_len) {
419     OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
420     return 0;
421   }
422 
423   return SSL_CTX_use_PrivateKey(ctx, pkey.get());
424 }
425 
SSL_set_private_key_method(SSL * ssl,const SSL_PRIVATE_KEY_METHOD * key_method)426 void SSL_set_private_key_method(SSL *ssl,
427                                 const SSL_PRIVATE_KEY_METHOD *key_method) {
428   if (!ssl->config) {
429     return;
430   }
431   BSSL_CHECK(SSL_CREDENTIAL_set_private_key_method(
432       ssl->config->cert->legacy_credential.get(), key_method));
433 }
434 
SSL_CTX_set_private_key_method(SSL_CTX * ctx,const SSL_PRIVATE_KEY_METHOD * key_method)435 void SSL_CTX_set_private_key_method(SSL_CTX *ctx,
436                                     const SSL_PRIVATE_KEY_METHOD *key_method) {
437   BSSL_CHECK(SSL_CREDENTIAL_set_private_key_method(
438       ctx->cert->legacy_credential.get(), key_method));
439 }
440 
441 static constexpr size_t kMaxSignatureAlgorithmNameLen = 24;
442 
443 struct SignatureAlgorithmName {
444   uint16_t signature_algorithm;
445   const char name[kMaxSignatureAlgorithmNameLen];
446 };
447 
448 // This was "constexpr" rather than "const", but that triggered a bug in MSVC
449 // where it didn't pad the strings to the correct length.
450 static const SignatureAlgorithmName kSignatureAlgorithmNames[] = {
451     {SSL_SIGN_RSA_PKCS1_MD5_SHA1, "rsa_pkcs1_md5_sha1"},
452     {SSL_SIGN_RSA_PKCS1_SHA1, "rsa_pkcs1_sha1"},
453     {SSL_SIGN_RSA_PKCS1_SHA256, "rsa_pkcs1_sha256"},
454     {SSL_SIGN_RSA_PKCS1_SHA256_LEGACY, "rsa_pkcs1_sha256_legacy"},
455     {SSL_SIGN_RSA_PKCS1_SHA384, "rsa_pkcs1_sha384"},
456     {SSL_SIGN_RSA_PKCS1_SHA512, "rsa_pkcs1_sha512"},
457     {SSL_SIGN_ECDSA_SHA1, "ecdsa_sha1"},
458     {SSL_SIGN_ECDSA_SECP256R1_SHA256, "ecdsa_secp256r1_sha256"},
459     {SSL_SIGN_ECDSA_SECP384R1_SHA384, "ecdsa_secp384r1_sha384"},
460     {SSL_SIGN_ECDSA_SECP521R1_SHA512, "ecdsa_secp521r1_sha512"},
461     {SSL_SIGN_RSA_PSS_RSAE_SHA256, "rsa_pss_rsae_sha256"},
462     {SSL_SIGN_RSA_PSS_RSAE_SHA384, "rsa_pss_rsae_sha384"},
463     {SSL_SIGN_RSA_PSS_RSAE_SHA512, "rsa_pss_rsae_sha512"},
464     {SSL_SIGN_ED25519, "ed25519"},
465 };
466 
SSL_get_signature_algorithm_name(uint16_t sigalg,int include_curve)467 const char *SSL_get_signature_algorithm_name(uint16_t sigalg,
468                                              int include_curve) {
469   if (!include_curve) {
470     switch (sigalg) {
471       case SSL_SIGN_ECDSA_SECP256R1_SHA256:
472         return "ecdsa_sha256";
473       case SSL_SIGN_ECDSA_SECP384R1_SHA384:
474         return "ecdsa_sha384";
475       case SSL_SIGN_ECDSA_SECP521R1_SHA512:
476         return "ecdsa_sha512";
477         // If adding more here, also update
478         // |SSL_get_all_signature_algorithm_names|.
479     }
480   }
481 
482   for (const auto &candidate : kSignatureAlgorithmNames) {
483     if (candidate.signature_algorithm == sigalg) {
484       return candidate.name;
485     }
486   }
487 
488   return NULL;
489 }
490 
SSL_get_all_signature_algorithm_names(const char ** out,size_t max_out)491 size_t SSL_get_all_signature_algorithm_names(const char **out, size_t max_out) {
492   const char *kPredefinedNames[] = {"ecdsa_sha256", "ecdsa_sha384",
493                                     "ecdsa_sha512"};
494   return GetAllNames(out, max_out, kPredefinedNames,
495                      &SignatureAlgorithmName::name,
496                      Span(kSignatureAlgorithmNames));
497 }
498 
SSL_get_signature_algorithm_key_type(uint16_t sigalg)499 int SSL_get_signature_algorithm_key_type(uint16_t sigalg) {
500   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
501   return alg != nullptr ? alg->pkey_type : EVP_PKEY_NONE;
502 }
503 
SSL_get_signature_algorithm_digest(uint16_t sigalg)504 const EVP_MD *SSL_get_signature_algorithm_digest(uint16_t sigalg) {
505   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
506   if (alg == nullptr || alg->digest_func == nullptr) {
507     return nullptr;
508   }
509   return alg->digest_func();
510 }
511 
SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg)512 int SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg) {
513   const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
514   return alg != nullptr && alg->is_rsa_pss;
515 }
516 
compare_uint16_t(const void * p1,const void * p2)517 static int compare_uint16_t(const void *p1, const void *p2) {
518   uint16_t u1 = *((const uint16_t *)p1);
519   uint16_t u2 = *((const uint16_t *)p2);
520   if (u1 < u2) {
521     return -1;
522   } else if (u1 > u2) {
523     return 1;
524   } else {
525     return 0;
526   }
527 }
528 
sigalgs_unique(Span<const uint16_t> in_sigalgs)529 static bool sigalgs_unique(Span<const uint16_t> in_sigalgs) {
530   if (in_sigalgs.size() < 2) {
531     return true;
532   }
533 
534   Array<uint16_t> sigalgs;
535   if (!sigalgs.CopyFrom(in_sigalgs)) {
536     return false;
537   }
538 
539   qsort(sigalgs.data(), sigalgs.size(), sizeof(uint16_t), compare_uint16_t);
540 
541   for (size_t i = 1; i < sigalgs.size(); i++) {
542     if (sigalgs[i - 1] == sigalgs[i]) {
543       OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_SIGNATURE_ALGORITHM);
544       return false;
545     }
546   }
547 
548   return true;
549 }
550 
set_sigalg_prefs(Array<uint16_t> * out,Span<const uint16_t> prefs)551 static bool set_sigalg_prefs(Array<uint16_t> *out, Span<const uint16_t> prefs) {
552   if (!sigalgs_unique(prefs)) {
553     return false;
554   }
555 
556   // Check for invalid algorithms, and filter out |SSL_SIGN_RSA_PKCS1_MD5_SHA1|.
557   Array<uint16_t> filtered;
558   if (!filtered.InitForOverwrite(prefs.size())) {
559     return false;
560   }
561   size_t added = 0;
562   for (uint16_t pref : prefs) {
563     if (pref == SSL_SIGN_RSA_PKCS1_MD5_SHA1) {
564       // Though not intended to be used with this API, we treat
565       // |SSL_SIGN_RSA_PKCS1_MD5_SHA1| as a real signature algorithm in
566       // |SSL_PRIVATE_KEY_METHOD|. Not accepting it here makes for a confusing
567       // abstraction.
568       continue;
569     }
570     if (get_signature_algorithm(pref) == nullptr) {
571       OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
572       return false;
573     }
574     filtered[added] = pref;
575     added++;
576   }
577   filtered.Shrink(added);
578 
579   // This can happen if |prefs| contained only |SSL_SIGN_RSA_PKCS1_MD5_SHA1|.
580   // Leaving it empty would revert to the default, so treat this as an error
581   // condition.
582   if (!prefs.empty() && filtered.empty()) {
583     OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
584     return false;
585   }
586 
587   *out = std::move(filtered);
588   return true;
589 }
590 
SSL_CREDENTIAL_set1_signing_algorithm_prefs(SSL_CREDENTIAL * cred,const uint16_t * prefs,size_t num_prefs)591 int SSL_CREDENTIAL_set1_signing_algorithm_prefs(SSL_CREDENTIAL *cred,
592                                                 const uint16_t *prefs,
593                                                 size_t num_prefs) {
594   if (!cred->UsesPrivateKey()) {
595     OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
596     return 0;
597   }
598 
599   // Delegated credentials are constrained to a single algorithm, so there is no
600   // need to configure this.
601   if (cred->type == SSLCredentialType::kDelegated) {
602     OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
603     return 0;
604   }
605 
606   return set_sigalg_prefs(&cred->sigalgs, Span(prefs, num_prefs));
607 }
608 
SSL_CTX_set_signing_algorithm_prefs(SSL_CTX * ctx,const uint16_t * prefs,size_t num_prefs)609 int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
610                                         size_t num_prefs) {
611   return SSL_CREDENTIAL_set1_signing_algorithm_prefs(
612       ctx->cert->legacy_credential.get(), prefs, num_prefs);
613 }
614 
SSL_set_signing_algorithm_prefs(SSL * ssl,const uint16_t * prefs,size_t num_prefs)615 int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
616                                     size_t num_prefs) {
617   if (!ssl->config) {
618     return 0;
619   }
620   return SSL_CREDENTIAL_set1_signing_algorithm_prefs(
621       ssl->config->cert->legacy_credential.get(), prefs, num_prefs);
622 }
623 
624 static constexpr struct {
625   int pkey_type;
626   int hash_nid;
627   uint16_t signature_algorithm;
628 } kSignatureAlgorithmsMapping[] = {
629     {EVP_PKEY_RSA, NID_sha1, SSL_SIGN_RSA_PKCS1_SHA1},
630     {EVP_PKEY_RSA, NID_sha256, SSL_SIGN_RSA_PKCS1_SHA256},
631     {EVP_PKEY_RSA, NID_sha384, SSL_SIGN_RSA_PKCS1_SHA384},
632     {EVP_PKEY_RSA, NID_sha512, SSL_SIGN_RSA_PKCS1_SHA512},
633     {EVP_PKEY_RSA_PSS, NID_sha256, SSL_SIGN_RSA_PSS_RSAE_SHA256},
634     {EVP_PKEY_RSA_PSS, NID_sha384, SSL_SIGN_RSA_PSS_RSAE_SHA384},
635     {EVP_PKEY_RSA_PSS, NID_sha512, SSL_SIGN_RSA_PSS_RSAE_SHA512},
636     {EVP_PKEY_EC, NID_sha1, SSL_SIGN_ECDSA_SHA1},
637     {EVP_PKEY_EC, NID_sha256, SSL_SIGN_ECDSA_SECP256R1_SHA256},
638     {EVP_PKEY_EC, NID_sha384, SSL_SIGN_ECDSA_SECP384R1_SHA384},
639     {EVP_PKEY_EC, NID_sha512, SSL_SIGN_ECDSA_SECP521R1_SHA512},
640     {EVP_PKEY_ED25519, NID_undef, SSL_SIGN_ED25519},
641 };
642 
parse_sigalg_pairs(Array<uint16_t> * out,const int * values,size_t num_values)643 static bool parse_sigalg_pairs(Array<uint16_t> *out, const int *values,
644                                size_t num_values) {
645   if ((num_values & 1) == 1) {
646     return false;
647   }
648 
649   const size_t num_pairs = num_values / 2;
650   if (!out->InitForOverwrite(num_pairs)) {
651     return false;
652   }
653 
654   for (size_t i = 0; i < num_values; i += 2) {
655     const int hash_nid = values[i];
656     const int pkey_type = values[i + 1];
657 
658     bool found = false;
659     for (const auto &candidate : kSignatureAlgorithmsMapping) {
660       if (candidate.pkey_type == pkey_type && candidate.hash_nid == hash_nid) {
661         (*out)[i / 2] = candidate.signature_algorithm;
662         found = true;
663         break;
664       }
665     }
666 
667     if (!found) {
668       OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
669       ERR_add_error_dataf("unknown hash:%d pkey:%d", hash_nid, pkey_type);
670       return false;
671     }
672   }
673 
674   return true;
675 }
676 
SSL_CTX_set1_sigalgs(SSL_CTX * ctx,const int * values,size_t num_values)677 int SSL_CTX_set1_sigalgs(SSL_CTX *ctx, const int *values, size_t num_values) {
678   Array<uint16_t> sigalgs;
679   if (!parse_sigalg_pairs(&sigalgs, values, num_values)) {
680     return 0;
681   }
682 
683   if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(),
684                                            sigalgs.size()) ||
685       !SSL_CTX_set_verify_algorithm_prefs(ctx, sigalgs.data(),
686                                           sigalgs.size())) {
687     return 0;
688   }
689 
690   return 1;
691 }
692 
SSL_set1_sigalgs(SSL * ssl,const int * values,size_t num_values)693 int SSL_set1_sigalgs(SSL *ssl, const int *values, size_t num_values) {
694   if (!ssl->config) {
695     OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
696     return 0;
697   }
698 
699   Array<uint16_t> sigalgs;
700   if (!parse_sigalg_pairs(&sigalgs, values, num_values)) {
701     return 0;
702   }
703 
704   if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) ||
705       !SSL_set_verify_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size())) {
706     return 0;
707   }
708 
709   return 1;
710 }
711 
parse_sigalgs_list(Array<uint16_t> * out,const char * str)712 static bool parse_sigalgs_list(Array<uint16_t> *out, const char *str) {
713   // str looks like "RSA+SHA1:ECDSA+SHA256:ecdsa_secp256r1_sha256".
714 
715   // Count colons to give the number of output elements from any successful
716   // parse.
717   size_t num_elements = 1;
718   size_t len = 0;
719   for (const char *p = str; *p; p++) {
720     len++;
721     if (*p == ':') {
722       num_elements++;
723     }
724   }
725 
726   if (!out->InitForOverwrite(num_elements)) {
727     return false;
728   }
729   size_t out_i = 0;
730 
731   enum {
732     pkey_or_name,
733     hash_name,
734   } state = pkey_or_name;
735 
736   char buf[kMaxSignatureAlgorithmNameLen];
737   // buf_used is always < sizeof(buf). I.e. it's always safe to write
738   // buf[buf_used] = 0.
739   size_t buf_used = 0;
740 
741   int pkey_type = 0, hash_nid = 0;
742 
743   // Note that the loop runs to len+1, i.e. it'll process the terminating NUL.
744   for (size_t offset = 0; offset < len + 1; offset++) {
745     const unsigned char c = str[offset];
746 
747     switch (c) {
748       case '+':
749         if (state == hash_name) {
750           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
751           ERR_add_error_dataf("+ found in hash name at offset %zu", offset);
752           return false;
753         }
754         if (buf_used == 0) {
755           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
756           ERR_add_error_dataf("empty public key type at offset %zu", offset);
757           return false;
758         }
759         buf[buf_used] = 0;
760 
761         if (strcmp(buf, "RSA") == 0) {
762           pkey_type = EVP_PKEY_RSA;
763         } else if (strcmp(buf, "RSA-PSS") == 0 ||  //
764                    strcmp(buf, "PSS") == 0) {
765           pkey_type = EVP_PKEY_RSA_PSS;
766         } else if (strcmp(buf, "ECDSA") == 0) {
767           pkey_type = EVP_PKEY_EC;
768         } else {
769           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
770           ERR_add_error_dataf("unknown public key type '%s'", buf);
771           return false;
772         }
773 
774         state = hash_name;
775         buf_used = 0;
776         break;
777 
778       case ':':
779         [[fallthrough]];
780       case 0:
781         if (buf_used == 0) {
782           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
783           ERR_add_error_dataf("empty element at offset %zu", offset);
784           return false;
785         }
786 
787         buf[buf_used] = 0;
788 
789         if (state == pkey_or_name) {
790           // No '+' was seen thus this is a TLS 1.3-style name.
791           bool found = false;
792           for (const auto &candidate : kSignatureAlgorithmNames) {
793             if (strcmp(candidate.name, buf) == 0) {
794               assert(out_i < num_elements);
795               (*out)[out_i++] = candidate.signature_algorithm;
796               found = true;
797               break;
798             }
799           }
800 
801           if (!found) {
802             OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
803             ERR_add_error_dataf("unknown signature algorithm '%s'", buf);
804             return false;
805           }
806         } else {
807           if (strcmp(buf, "SHA1") == 0) {
808             hash_nid = NID_sha1;
809           } else if (strcmp(buf, "SHA256") == 0) {
810             hash_nid = NID_sha256;
811           } else if (strcmp(buf, "SHA384") == 0) {
812             hash_nid = NID_sha384;
813           } else if (strcmp(buf, "SHA512") == 0) {
814             hash_nid = NID_sha512;
815           } else {
816             OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
817             ERR_add_error_dataf("unknown hash function '%s'", buf);
818             return false;
819           }
820 
821           bool found = false;
822           for (const auto &candidate : kSignatureAlgorithmsMapping) {
823             if (candidate.pkey_type == pkey_type &&
824                 candidate.hash_nid == hash_nid) {
825               assert(out_i < num_elements);
826               (*out)[out_i++] = candidate.signature_algorithm;
827               found = true;
828               break;
829             }
830           }
831 
832           if (!found) {
833             OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
834             ERR_add_error_dataf("unknown pkey:%d hash:%s", pkey_type, buf);
835             return false;
836           }
837         }
838 
839         state = pkey_or_name;
840         buf_used = 0;
841         break;
842 
843       default:
844         if (buf_used == sizeof(buf) - 1) {
845           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
846           ERR_add_error_dataf("substring too long at offset %zu", offset);
847           return false;
848         }
849 
850         if (OPENSSL_isalnum(c) || c == '-' || c == '_') {
851           buf[buf_used++] = c;
852         } else {
853           OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
854           ERR_add_error_dataf("invalid character 0x%02x at offest %zu", c,
855                               offset);
856           return false;
857         }
858     }
859   }
860 
861   assert(out_i == out->size());
862   return true;
863 }
864 
SSL_CTX_set1_sigalgs_list(SSL_CTX * ctx,const char * str)865 int SSL_CTX_set1_sigalgs_list(SSL_CTX *ctx, const char *str) {
866   Array<uint16_t> sigalgs;
867   if (!parse_sigalgs_list(&sigalgs, str)) {
868     return 0;
869   }
870 
871   if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(),
872                                            sigalgs.size()) ||
873       !SSL_CTX_set_verify_algorithm_prefs(ctx, sigalgs.data(),
874                                           sigalgs.size())) {
875     return 0;
876   }
877 
878   return 1;
879 }
880 
SSL_set1_sigalgs_list(SSL * ssl,const char * str)881 int SSL_set1_sigalgs_list(SSL *ssl, const char *str) {
882   if (!ssl->config) {
883     OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
884     return 0;
885   }
886 
887   Array<uint16_t> sigalgs;
888   if (!parse_sigalgs_list(&sigalgs, str)) {
889     return 0;
890   }
891 
892   if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) ||
893       !SSL_set_verify_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size())) {
894     return 0;
895   }
896 
897   return 1;
898 }
899 
SSL_CTX_set_verify_algorithm_prefs(SSL_CTX * ctx,const uint16_t * prefs,size_t num_prefs)900 int SSL_CTX_set_verify_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
901                                        size_t num_prefs) {
902   return set_sigalg_prefs(&ctx->verify_sigalgs, Span(prefs, num_prefs));
903 }
904 
SSL_set_verify_algorithm_prefs(SSL * ssl,const uint16_t * prefs,size_t num_prefs)905 int SSL_set_verify_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
906                                    size_t num_prefs) {
907   if (!ssl->config) {
908     OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
909     return 0;
910   }
911 
912   return set_sigalg_prefs(&ssl->config->verify_sigalgs, Span(prefs, num_prefs));
913 }
914