• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <stddef.h>
2 #include <stdint.h>
3 #include <stdlib.h>
4 #include <string.h>
5 
6 #include <cpuinfo.h>
7 #include <cpuinfo/internal-api.h>
8 #include <cpuinfo/log.h>
9 #include <linux/api.h>
10 #include <x86/api.h>
11 #include <x86/linux/api.h>
12 
bit_mask(uint32_t bits)13 static inline uint32_t bit_mask(uint32_t bits) {
14 	return (UINT32_C(1) << bits) - UINT32_C(1);
15 }
16 
bitmask_all(uint32_t bitfield,uint32_t mask)17 static inline bool bitmask_all(uint32_t bitfield, uint32_t mask) {
18 	return (bitfield & mask) == mask;
19 }
20 
min(uint32_t a,uint32_t b)21 static inline uint32_t min(uint32_t a, uint32_t b) {
22 	return a < b ? a : b;
23 }
24 
cmp(uint32_t a,uint32_t b)25 static inline int cmp(uint32_t a, uint32_t b) {
26 	return (a > b) - (a < b);
27 }
28 
cmp_x86_linux_processor(const void * ptr_a,const void * ptr_b)29 static int cmp_x86_linux_processor(const void* ptr_a, const void* ptr_b) {
30 	const struct cpuinfo_x86_linux_processor* processor_a = (const struct cpuinfo_x86_linux_processor*)ptr_a;
31 	const struct cpuinfo_x86_linux_processor* processor_b = (const struct cpuinfo_x86_linux_processor*)ptr_b;
32 
33 	/* Move usable processors towards the start of the array */
34 	const bool usable_a = bitmask_all(processor_a->flags, CPUINFO_LINUX_FLAG_VALID);
35 	const bool usable_b = bitmask_all(processor_b->flags, CPUINFO_LINUX_FLAG_VALID);
36 	if (usable_a != usable_b) {
37 		return (int)usable_b - (int)usable_a;
38 	}
39 
40 	/* Compare based on APIC ID (i.e. processor 0 < processor 1) */
41 	const uint32_t id_a = processor_a->apic_id;
42 	const uint32_t id_b = processor_b->apic_id;
43 	return cmp(id_a, id_b);
44 }
45 
cpuinfo_x86_count_objects(uint32_t linux_processors_count,const struct cpuinfo_x86_linux_processor linux_processors[restrict static linux_processors_count],const struct cpuinfo_x86_processor processor[restrict static1],uint32_t valid_processor_mask,uint32_t llc_apic_bits,uint32_t cores_count_ptr[restrict static1],uint32_t clusters_count_ptr[restrict static1],uint32_t packages_count_ptr[restrict static1],uint32_t l1i_count_ptr[restrict static1],uint32_t l1d_count_ptr[restrict static1],uint32_t l2_count_ptr[restrict static1],uint32_t l3_count_ptr[restrict static1],uint32_t l4_count_ptr[restrict static1])46 static void cpuinfo_x86_count_objects(
47 	uint32_t linux_processors_count,
48 	const struct cpuinfo_x86_linux_processor linux_processors[restrict static linux_processors_count],
49 	const struct cpuinfo_x86_processor processor[restrict static 1],
50 	uint32_t valid_processor_mask,
51 	uint32_t llc_apic_bits,
52 	uint32_t cores_count_ptr[restrict static 1],
53 	uint32_t clusters_count_ptr[restrict static 1],
54 	uint32_t packages_count_ptr[restrict static 1],
55 	uint32_t l1i_count_ptr[restrict static 1],
56 	uint32_t l1d_count_ptr[restrict static 1],
57 	uint32_t l2_count_ptr[restrict static 1],
58 	uint32_t l3_count_ptr[restrict static 1],
59 	uint32_t l4_count_ptr[restrict static 1]) {
60 	const uint32_t core_apic_mask =
61 		~(bit_mask(processor->topology.thread_bits_length) << processor->topology.thread_bits_offset);
62 	const uint32_t package_apic_mask = core_apic_mask &
63 		~(bit_mask(processor->topology.core_bits_length) << processor->topology.core_bits_offset);
64 	const uint32_t llc_apic_mask = ~bit_mask(llc_apic_bits);
65 	const uint32_t cluster_apic_mask = package_apic_mask | llc_apic_mask;
66 
67 	uint32_t cores_count = 0, clusters_count = 0, packages_count = 0;
68 	uint32_t l1i_count = 0, l1d_count = 0, l2_count = 0, l3_count = 0, l4_count = 0;
69 	uint32_t last_core_id = UINT32_MAX, last_cluster_id = UINT32_MAX, last_package_id = UINT32_MAX;
70 	uint32_t last_l1i_id = UINT32_MAX, last_l1d_id = UINT32_MAX;
71 	uint32_t last_l2_id = UINT32_MAX, last_l3_id = UINT32_MAX, last_l4_id = UINT32_MAX;
72 	for (uint32_t i = 0; i < linux_processors_count; i++) {
73 		if (bitmask_all(linux_processors[i].flags, valid_processor_mask)) {
74 			const uint32_t apic_id = linux_processors[i].apic_id;
75 			cpuinfo_log_debug(
76 				"APID ID %" PRIu32 ": system processor %" PRIu32,
77 				apic_id,
78 				linux_processors[i].linux_id);
79 
80 			/* All bits of APIC ID except thread ID mask */
81 			const uint32_t core_id = apic_id & core_apic_mask;
82 			if (core_id != last_core_id) {
83 				last_core_id = core_id;
84 				cores_count++;
85 			}
86 			/* All bits of APIC ID except thread ID and core ID
87 			 * masks */
88 			const uint32_t package_id = apic_id & package_apic_mask;
89 			if (package_id != last_package_id) {
90 				last_package_id = package_id;
91 				packages_count++;
92 			}
93 			/* Bits of APIC ID which are part of either LLC or
94 			 * package ID mask */
95 			const uint32_t cluster_id = apic_id & cluster_apic_mask;
96 			if (cluster_id != last_cluster_id) {
97 				last_cluster_id = cluster_id;
98 				clusters_count++;
99 			}
100 			if (processor->cache.l1i.size != 0) {
101 				const uint32_t l1i_id = apic_id & ~bit_mask(processor->cache.l1i.apic_bits);
102 				if (l1i_id != last_l1i_id) {
103 					last_l1i_id = l1i_id;
104 					l1i_count++;
105 				}
106 			}
107 			if (processor->cache.l1d.size != 0) {
108 				const uint32_t l1d_id = apic_id & ~bit_mask(processor->cache.l1d.apic_bits);
109 				if (l1d_id != last_l1d_id) {
110 					last_l1d_id = l1d_id;
111 					l1d_count++;
112 				}
113 			}
114 			if (processor->cache.l2.size != 0) {
115 				const uint32_t l2_id = apic_id & ~bit_mask(processor->cache.l2.apic_bits);
116 				if (l2_id != last_l2_id) {
117 					last_l2_id = l2_id;
118 					l2_count++;
119 				}
120 			}
121 			if (processor->cache.l3.size != 0) {
122 				const uint32_t l3_id = apic_id & ~bit_mask(processor->cache.l3.apic_bits);
123 				if (l3_id != last_l3_id) {
124 					last_l3_id = l3_id;
125 					l3_count++;
126 				}
127 			}
128 			if (processor->cache.l4.size != 0) {
129 				const uint32_t l4_id = apic_id & ~bit_mask(processor->cache.l4.apic_bits);
130 				if (l4_id != last_l4_id) {
131 					last_l4_id = l4_id;
132 					l4_count++;
133 				}
134 			}
135 		}
136 	}
137 	*cores_count_ptr = cores_count;
138 	*clusters_count_ptr = clusters_count;
139 	*packages_count_ptr = packages_count;
140 	*l1i_count_ptr = l1i_count;
141 	*l1d_count_ptr = l1d_count;
142 	*l2_count_ptr = l2_count;
143 	*l3_count_ptr = l3_count;
144 	*l4_count_ptr = l4_count;
145 }
146 
cpuinfo_x86_linux_init(void)147 void cpuinfo_x86_linux_init(void) {
148 	struct cpuinfo_x86_linux_processor* x86_linux_processors = NULL;
149 	struct cpuinfo_processor* processors = NULL;
150 	struct cpuinfo_core* cores = NULL;
151 	struct cpuinfo_cluster* clusters = NULL;
152 	struct cpuinfo_package* packages = NULL;
153 	const struct cpuinfo_processor** linux_cpu_to_processor_map = NULL;
154 	const struct cpuinfo_core** linux_cpu_to_core_map = NULL;
155 	struct cpuinfo_cache* l1i = NULL;
156 	struct cpuinfo_cache* l1d = NULL;
157 	struct cpuinfo_cache* l2 = NULL;
158 	struct cpuinfo_cache* l3 = NULL;
159 	struct cpuinfo_cache* l4 = NULL;
160 
161 	const uint32_t max_processors_count = cpuinfo_linux_get_max_processors_count();
162 	cpuinfo_log_debug("system maximum processors count: %" PRIu32, max_processors_count);
163 
164 	const uint32_t max_possible_processors_count =
165 		1 + cpuinfo_linux_get_max_possible_processor(max_processors_count);
166 	cpuinfo_log_debug("maximum possible processors count: %" PRIu32, max_possible_processors_count);
167 	const uint32_t max_present_processors_count = 1 + cpuinfo_linux_get_max_present_processor(max_processors_count);
168 	cpuinfo_log_debug("maximum present processors count: %" PRIu32, max_present_processors_count);
169 
170 	uint32_t valid_processor_mask = 0;
171 	uint32_t x86_linux_processors_count = max_processors_count;
172 	if (max_present_processors_count != 0) {
173 		x86_linux_processors_count = min(x86_linux_processors_count, max_present_processors_count);
174 		valid_processor_mask = CPUINFO_LINUX_FLAG_PRESENT;
175 	} else {
176 		valid_processor_mask = CPUINFO_LINUX_FLAG_PROC_CPUINFO;
177 	}
178 	if (max_possible_processors_count != 0) {
179 		x86_linux_processors_count = min(x86_linux_processors_count, max_possible_processors_count);
180 		valid_processor_mask |= CPUINFO_LINUX_FLAG_POSSIBLE;
181 	}
182 
183 	x86_linux_processors = calloc(x86_linux_processors_count, sizeof(struct cpuinfo_x86_linux_processor));
184 	if (x86_linux_processors == NULL) {
185 		cpuinfo_log_error(
186 			"failed to allocate %zu bytes for descriptions of %" PRIu32 " x86 logical processors",
187 			x86_linux_processors_count * sizeof(struct cpuinfo_x86_linux_processor),
188 			x86_linux_processors_count);
189 		return;
190 	}
191 
192 	if (max_possible_processors_count != 0) {
193 		cpuinfo_linux_detect_possible_processors(
194 			x86_linux_processors_count,
195 			&x86_linux_processors->flags,
196 			sizeof(struct cpuinfo_x86_linux_processor),
197 			CPUINFO_LINUX_FLAG_POSSIBLE);
198 	}
199 
200 	if (max_present_processors_count != 0) {
201 		cpuinfo_linux_detect_present_processors(
202 			x86_linux_processors_count,
203 			&x86_linux_processors->flags,
204 			sizeof(struct cpuinfo_x86_linux_processor),
205 			CPUINFO_LINUX_FLAG_PRESENT);
206 	}
207 
208 	if (!cpuinfo_x86_linux_parse_proc_cpuinfo(x86_linux_processors_count, x86_linux_processors)) {
209 		cpuinfo_log_error("failed to parse processor information from /proc/cpuinfo");
210 		return;
211 	}
212 
213 	for (uint32_t i = 0; i < x86_linux_processors_count; i++) {
214 		if (bitmask_all(x86_linux_processors[i].flags, valid_processor_mask)) {
215 			x86_linux_processors[i].flags |= CPUINFO_LINUX_FLAG_VALID;
216 		}
217 	}
218 
219 	struct cpuinfo_x86_processor x86_processor;
220 	memset(&x86_processor, 0, sizeof(x86_processor));
221 	cpuinfo_x86_init_processor(&x86_processor);
222 	char brand_string[48];
223 	cpuinfo_x86_normalize_brand_string(x86_processor.brand_string, brand_string);
224 
225 	uint32_t processors_count = 0;
226 	for (uint32_t i = 0; i < x86_linux_processors_count; i++) {
227 		if (bitmask_all(x86_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
228 			x86_linux_processors[i].linux_id = i;
229 			processors_count++;
230 		}
231 	}
232 
233 	qsort(x86_linux_processors,
234 	      x86_linux_processors_count,
235 	      sizeof(struct cpuinfo_x86_linux_processor),
236 	      cmp_x86_linux_processor);
237 
238 	processors = calloc(processors_count, sizeof(struct cpuinfo_processor));
239 	if (processors == NULL) {
240 		cpuinfo_log_error(
241 			"failed to allocate %zu bytes for descriptions of %" PRIu32 " logical processors",
242 			processors_count * sizeof(struct cpuinfo_processor),
243 			processors_count);
244 		goto cleanup;
245 	}
246 
247 	uint32_t llc_apic_bits = 0;
248 	if (x86_processor.cache.l4.size != 0) {
249 		llc_apic_bits = x86_processor.cache.l4.apic_bits;
250 	} else if (x86_processor.cache.l3.size != 0) {
251 		llc_apic_bits = x86_processor.cache.l3.apic_bits;
252 	} else if (x86_processor.cache.l2.size != 0) {
253 		llc_apic_bits = x86_processor.cache.l2.apic_bits;
254 	} else if (x86_processor.cache.l1d.size != 0) {
255 		llc_apic_bits = x86_processor.cache.l1d.apic_bits;
256 	}
257 	uint32_t packages_count = 0, clusters_count = 0, cores_count = 0;
258 	uint32_t l1i_count = 0, l1d_count = 0, l2_count = 0, l3_count = 0, l4_count = 0;
259 	cpuinfo_x86_count_objects(
260 		x86_linux_processors_count,
261 		x86_linux_processors,
262 		&x86_processor,
263 		valid_processor_mask,
264 		llc_apic_bits,
265 		&cores_count,
266 		&clusters_count,
267 		&packages_count,
268 		&l1i_count,
269 		&l1d_count,
270 		&l2_count,
271 		&l3_count,
272 		&l4_count);
273 
274 	cpuinfo_log_debug("detected %" PRIu32 " cores", cores_count);
275 	cpuinfo_log_debug("detected %" PRIu32 " clusters", clusters_count);
276 	cpuinfo_log_debug("detected %" PRIu32 " packages", packages_count);
277 	cpuinfo_log_debug("detected %" PRIu32 " L1I caches", l1i_count);
278 	cpuinfo_log_debug("detected %" PRIu32 " L1D caches", l1d_count);
279 	cpuinfo_log_debug("detected %" PRIu32 " L2 caches", l2_count);
280 	cpuinfo_log_debug("detected %" PRIu32 " L3 caches", l3_count);
281 	cpuinfo_log_debug("detected %" PRIu32 " L4 caches", l4_count);
282 
283 	linux_cpu_to_processor_map = calloc(x86_linux_processors_count, sizeof(struct cpuinfo_processor*));
284 	if (linux_cpu_to_processor_map == NULL) {
285 		cpuinfo_log_error(
286 			"failed to allocate %zu bytes for mapping entries of %" PRIu32 " logical processors",
287 			x86_linux_processors_count * sizeof(struct cpuinfo_processor*),
288 			x86_linux_processors_count);
289 		goto cleanup;
290 	}
291 
292 	linux_cpu_to_core_map = calloc(x86_linux_processors_count, sizeof(struct cpuinfo_core*));
293 	if (linux_cpu_to_core_map == NULL) {
294 		cpuinfo_log_error(
295 			"failed to allocate %zu bytes for mapping entries of %" PRIu32 " cores",
296 			x86_linux_processors_count * sizeof(struct cpuinfo_core*),
297 			x86_linux_processors_count);
298 		goto cleanup;
299 	}
300 
301 	cores = calloc(cores_count, sizeof(struct cpuinfo_core));
302 	if (cores == NULL) {
303 		cpuinfo_log_error(
304 			"failed to allocate %zu bytes for descriptions of %" PRIu32 " cores",
305 			cores_count * sizeof(struct cpuinfo_core),
306 			cores_count);
307 		goto cleanup;
308 	}
309 
310 	clusters = calloc(clusters_count, sizeof(struct cpuinfo_cluster));
311 	if (clusters == NULL) {
312 		cpuinfo_log_error(
313 			"failed to allocate %zu bytes for descriptions of %" PRIu32 " core clusters",
314 			clusters_count * sizeof(struct cpuinfo_cluster),
315 			clusters_count);
316 		goto cleanup;
317 	}
318 
319 	packages = calloc(packages_count, sizeof(struct cpuinfo_package));
320 	if (packages == NULL) {
321 		cpuinfo_log_error(
322 			"failed to allocate %zu bytes for descriptions of %" PRIu32 " physical packages",
323 			packages_count * sizeof(struct cpuinfo_package),
324 			packages_count);
325 		goto cleanup;
326 	}
327 
328 	if (l1i_count != 0) {
329 		l1i = calloc(l1i_count, sizeof(struct cpuinfo_cache));
330 		if (l1i == NULL) {
331 			cpuinfo_log_error(
332 				"failed to allocate %zu bytes for descriptions of %" PRIu32 " L1I caches",
333 				l1i_count * sizeof(struct cpuinfo_cache),
334 				l1i_count);
335 			goto cleanup;
336 		}
337 	}
338 	if (l1d_count != 0) {
339 		l1d = calloc(l1d_count, sizeof(struct cpuinfo_cache));
340 		if (l1d == NULL) {
341 			cpuinfo_log_error(
342 				"failed to allocate %zu bytes for descriptions of %" PRIu32 " L1D caches",
343 				l1d_count * sizeof(struct cpuinfo_cache),
344 				l1d_count);
345 			goto cleanup;
346 		}
347 	}
348 	if (l2_count != 0) {
349 		l2 = calloc(l2_count, sizeof(struct cpuinfo_cache));
350 		if (l2 == NULL) {
351 			cpuinfo_log_error(
352 				"failed to allocate %zu bytes for descriptions of %" PRIu32 " L2 caches",
353 				l2_count * sizeof(struct cpuinfo_cache),
354 				l2_count);
355 			goto cleanup;
356 		}
357 	}
358 	if (l3_count != 0) {
359 		l3 = calloc(l3_count, sizeof(struct cpuinfo_cache));
360 		if (l3 == NULL) {
361 			cpuinfo_log_error(
362 				"failed to allocate %zu bytes for descriptions of %" PRIu32 " L3 caches",
363 				l3_count * sizeof(struct cpuinfo_cache),
364 				l3_count);
365 			goto cleanup;
366 		}
367 	}
368 	if (l4_count != 0) {
369 		l4 = calloc(l4_count, sizeof(struct cpuinfo_cache));
370 		if (l4 == NULL) {
371 			cpuinfo_log_error(
372 				"failed to allocate %zu bytes for descriptions of %" PRIu32 " L4 caches",
373 				l4_count * sizeof(struct cpuinfo_cache),
374 				l4_count);
375 			goto cleanup;
376 		}
377 	}
378 
379 	const uint32_t core_apic_mask =
380 		~(bit_mask(x86_processor.topology.thread_bits_length) << x86_processor.topology.thread_bits_offset);
381 	const uint32_t package_apic_mask = core_apic_mask &
382 		~(bit_mask(x86_processor.topology.core_bits_length) << x86_processor.topology.core_bits_offset);
383 	const uint32_t llc_apic_mask = ~bit_mask(llc_apic_bits);
384 	const uint32_t cluster_apic_mask = package_apic_mask | llc_apic_mask;
385 
386 	uint32_t processor_index = UINT32_MAX, core_index = UINT32_MAX, cluster_index = UINT32_MAX,
387 		 package_index = UINT32_MAX;
388 	uint32_t l1i_index = UINT32_MAX, l1d_index = UINT32_MAX, l2_index = UINT32_MAX, l3_index = UINT32_MAX,
389 		 l4_index = UINT32_MAX;
390 	uint32_t cluster_id = 0, core_id = 0, smt_id = 0;
391 	uint32_t last_apic_core_id = UINT32_MAX, last_apic_cluster_id = UINT32_MAX, last_apic_package_id = UINT32_MAX;
392 	uint32_t last_l1i_id = UINT32_MAX, last_l1d_id = UINT32_MAX;
393 	uint32_t last_l2_id = UINT32_MAX, last_l3_id = UINT32_MAX, last_l4_id = UINT32_MAX;
394 	for (uint32_t i = 0; i < x86_linux_processors_count; i++) {
395 		if (bitmask_all(x86_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
396 			const uint32_t apic_id = x86_linux_processors[i].apic_id;
397 			processor_index++;
398 			smt_id++;
399 
400 			/* All bits of APIC ID except thread ID mask */
401 			const uint32_t apid_core_id = apic_id & core_apic_mask;
402 			if (apid_core_id != last_apic_core_id) {
403 				core_index++;
404 				core_id++;
405 				smt_id = 0;
406 			}
407 			/* Bits of APIC ID which are part of either LLC or
408 			 * package ID mask */
409 			const uint32_t apic_cluster_id = apic_id & cluster_apic_mask;
410 			if (apic_cluster_id != last_apic_cluster_id) {
411 				cluster_index++;
412 				cluster_id++;
413 			}
414 			/* All bits of APIC ID except thread ID and core ID
415 			 * masks */
416 			const uint32_t apic_package_id = apic_id & package_apic_mask;
417 			if (apic_package_id != last_apic_package_id) {
418 				package_index++;
419 				core_id = 0;
420 				cluster_id = 0;
421 			}
422 
423 			/* Initialize logical processor object */
424 			processors[processor_index].smt_id = smt_id;
425 			processors[processor_index].core = cores + core_index;
426 			processors[processor_index].cluster = clusters + cluster_index;
427 			processors[processor_index].package = packages + package_index;
428 			processors[processor_index].linux_id = x86_linux_processors[i].linux_id;
429 			processors[processor_index].apic_id = x86_linux_processors[i].apic_id;
430 
431 			if (apid_core_id != last_apic_core_id) {
432 				/* new core */
433 				cores[core_index] = (struct cpuinfo_core){
434 					.processor_start = processor_index,
435 					.processor_count = 1,
436 					.core_id = core_id,
437 					.cluster = clusters + cluster_index,
438 					.package = packages + package_index,
439 					.vendor = x86_processor.vendor,
440 					.uarch = x86_processor.uarch,
441 					.cpuid = x86_processor.cpuid,
442 				};
443 				clusters[cluster_index].core_count += 1;
444 				packages[package_index].core_count += 1;
445 				last_apic_core_id = apid_core_id;
446 			} else {
447 				/* another logical processor on the same core */
448 				cores[core_index].processor_count++;
449 			}
450 
451 			if (apic_cluster_id != last_apic_cluster_id) {
452 				/* new cluster */
453 				clusters[cluster_index].processor_start = processor_index;
454 				clusters[cluster_index].processor_count = 1;
455 				clusters[cluster_index].core_start = core_index;
456 				clusters[cluster_index].cluster_id = cluster_id;
457 				clusters[cluster_index].package = packages + package_index;
458 				clusters[cluster_index].vendor = x86_processor.vendor;
459 				clusters[cluster_index].uarch = x86_processor.uarch;
460 				clusters[cluster_index].cpuid = x86_processor.cpuid;
461 				packages[package_index].cluster_count += 1;
462 				last_apic_cluster_id = apic_cluster_id;
463 			} else {
464 				/* another logical processor on the same cluster
465 				 */
466 				clusters[cluster_index].processor_count++;
467 			}
468 
469 			if (apic_package_id != last_apic_package_id) {
470 				/* new package */
471 				packages[package_index].processor_start = processor_index;
472 				packages[package_index].processor_count = 1;
473 				packages[package_index].core_start = core_index;
474 				packages[package_index].cluster_start = cluster_index;
475 				cpuinfo_x86_format_package_name(
476 					x86_processor.vendor, brand_string, packages[package_index].name);
477 				last_apic_package_id = apic_package_id;
478 			} else {
479 				/* another logical processor on the same package
480 				 */
481 				packages[package_index].processor_count++;
482 			}
483 
484 			linux_cpu_to_processor_map[x86_linux_processors[i].linux_id] = processors + processor_index;
485 			linux_cpu_to_core_map[x86_linux_processors[i].linux_id] = cores + core_index;
486 
487 			if (x86_processor.cache.l1i.size != 0) {
488 				const uint32_t l1i_id = apic_id & ~bit_mask(x86_processor.cache.l1i.apic_bits);
489 				processors[i].cache.l1i = &l1i[l1i_index];
490 				if (l1i_id != last_l1i_id) {
491 					/* new cache */
492 					last_l1i_id = l1i_id;
493 					l1i[++l1i_index] = (struct cpuinfo_cache){
494 						.size = x86_processor.cache.l1i.size,
495 						.associativity = x86_processor.cache.l1i.associativity,
496 						.sets = x86_processor.cache.l1i.sets,
497 						.partitions = x86_processor.cache.l1i.partitions,
498 						.line_size = x86_processor.cache.l1i.line_size,
499 						.flags = x86_processor.cache.l1i.flags,
500 						.processor_start = processor_index,
501 						.processor_count = 1,
502 					};
503 				} else {
504 					/* another processor sharing the same
505 					 * cache */
506 					l1i[l1i_index].processor_count += 1;
507 				}
508 				processors[i].cache.l1i = &l1i[l1i_index];
509 			} else {
510 				/* reset cache id */
511 				last_l1i_id = UINT32_MAX;
512 			}
513 			if (x86_processor.cache.l1d.size != 0) {
514 				const uint32_t l1d_id = apic_id & ~bit_mask(x86_processor.cache.l1d.apic_bits);
515 				processors[i].cache.l1d = &l1d[l1d_index];
516 				if (l1d_id != last_l1d_id) {
517 					/* new cache */
518 					last_l1d_id = l1d_id;
519 					l1d[++l1d_index] = (struct cpuinfo_cache){
520 						.size = x86_processor.cache.l1d.size,
521 						.associativity = x86_processor.cache.l1d.associativity,
522 						.sets = x86_processor.cache.l1d.sets,
523 						.partitions = x86_processor.cache.l1d.partitions,
524 						.line_size = x86_processor.cache.l1d.line_size,
525 						.flags = x86_processor.cache.l1d.flags,
526 						.processor_start = processor_index,
527 						.processor_count = 1,
528 					};
529 				} else {
530 					/* another processor sharing the same
531 					 * cache */
532 					l1d[l1d_index].processor_count += 1;
533 				}
534 				processors[i].cache.l1d = &l1d[l1d_index];
535 			} else {
536 				/* reset cache id */
537 				last_l1d_id = UINT32_MAX;
538 			}
539 			if (x86_processor.cache.l2.size != 0) {
540 				const uint32_t l2_id = apic_id & ~bit_mask(x86_processor.cache.l2.apic_bits);
541 				processors[i].cache.l2 = &l2[l2_index];
542 				if (l2_id != last_l2_id) {
543 					/* new cache */
544 					last_l2_id = l2_id;
545 					l2[++l2_index] = (struct cpuinfo_cache){
546 						.size = x86_processor.cache.l2.size,
547 						.associativity = x86_processor.cache.l2.associativity,
548 						.sets = x86_processor.cache.l2.sets,
549 						.partitions = x86_processor.cache.l2.partitions,
550 						.line_size = x86_processor.cache.l2.line_size,
551 						.flags = x86_processor.cache.l2.flags,
552 						.processor_start = processor_index,
553 						.processor_count = 1,
554 					};
555 				} else {
556 					/* another processor sharing the same
557 					 * cache */
558 					l2[l2_index].processor_count += 1;
559 				}
560 				processors[i].cache.l2 = &l2[l2_index];
561 			} else {
562 				/* reset cache id */
563 				last_l2_id = UINT32_MAX;
564 			}
565 			if (x86_processor.cache.l3.size != 0) {
566 				const uint32_t l3_id = apic_id & ~bit_mask(x86_processor.cache.l3.apic_bits);
567 				processors[i].cache.l3 = &l3[l3_index];
568 				if (l3_id != last_l3_id) {
569 					/* new cache */
570 					last_l3_id = l3_id;
571 					l3[++l3_index] = (struct cpuinfo_cache){
572 						.size = x86_processor.cache.l3.size,
573 						.associativity = x86_processor.cache.l3.associativity,
574 						.sets = x86_processor.cache.l3.sets,
575 						.partitions = x86_processor.cache.l3.partitions,
576 						.line_size = x86_processor.cache.l3.line_size,
577 						.flags = x86_processor.cache.l3.flags,
578 						.processor_start = processor_index,
579 						.processor_count = 1,
580 					};
581 				} else {
582 					/* another processor sharing the same
583 					 * cache */
584 					l3[l3_index].processor_count += 1;
585 				}
586 				processors[i].cache.l3 = &l3[l3_index];
587 			} else {
588 				/* reset cache id */
589 				last_l3_id = UINT32_MAX;
590 			}
591 			if (x86_processor.cache.l4.size != 0) {
592 				const uint32_t l4_id = apic_id & ~bit_mask(x86_processor.cache.l4.apic_bits);
593 				processors[i].cache.l4 = &l4[l4_index];
594 				if (l4_id != last_l4_id) {
595 					/* new cache */
596 					last_l4_id = l4_id;
597 					l4[++l4_index] = (struct cpuinfo_cache){
598 						.size = x86_processor.cache.l4.size,
599 						.associativity = x86_processor.cache.l4.associativity,
600 						.sets = x86_processor.cache.l4.sets,
601 						.partitions = x86_processor.cache.l4.partitions,
602 						.line_size = x86_processor.cache.l4.line_size,
603 						.flags = x86_processor.cache.l4.flags,
604 						.processor_start = processor_index,
605 						.processor_count = 1,
606 					};
607 				} else {
608 					/* another processor sharing the same
609 					 * cache */
610 					l4[l4_index].processor_count += 1;
611 				}
612 				processors[i].cache.l4 = &l4[l4_index];
613 			} else {
614 				/* reset cache id */
615 				last_l4_id = UINT32_MAX;
616 			}
617 		}
618 	}
619 
620 	/* Commit changes */
621 	cpuinfo_processors = processors;
622 	cpuinfo_cores = cores;
623 	cpuinfo_clusters = clusters;
624 	cpuinfo_packages = packages;
625 	cpuinfo_cache[cpuinfo_cache_level_1i] = l1i;
626 	cpuinfo_cache[cpuinfo_cache_level_1d] = l1d;
627 	cpuinfo_cache[cpuinfo_cache_level_2] = l2;
628 	cpuinfo_cache[cpuinfo_cache_level_3] = l3;
629 	cpuinfo_cache[cpuinfo_cache_level_4] = l4;
630 
631 	cpuinfo_processors_count = processors_count;
632 	cpuinfo_cores_count = cores_count;
633 	cpuinfo_clusters_count = clusters_count;
634 	cpuinfo_packages_count = packages_count;
635 	cpuinfo_cache_count[cpuinfo_cache_level_1i] = l1i_count;
636 	cpuinfo_cache_count[cpuinfo_cache_level_1d] = l1d_count;
637 	cpuinfo_cache_count[cpuinfo_cache_level_2] = l2_count;
638 	cpuinfo_cache_count[cpuinfo_cache_level_3] = l3_count;
639 	cpuinfo_cache_count[cpuinfo_cache_level_4] = l4_count;
640 	cpuinfo_max_cache_size = cpuinfo_compute_max_cache_size(&processors[0]);
641 
642 	cpuinfo_global_uarch = (struct cpuinfo_uarch_info){
643 		.uarch = x86_processor.uarch,
644 		.cpuid = x86_processor.cpuid,
645 		.processor_count = processors_count,
646 		.core_count = cores_count,
647 	};
648 
649 	cpuinfo_linux_cpu_max = x86_linux_processors_count;
650 	cpuinfo_linux_cpu_to_processor_map = linux_cpu_to_processor_map;
651 	cpuinfo_linux_cpu_to_core_map = linux_cpu_to_core_map;
652 
653 	__sync_synchronize();
654 
655 	cpuinfo_is_initialized = true;
656 
657 	processors = NULL;
658 	cores = NULL;
659 	clusters = NULL;
660 	packages = NULL;
661 	l1i = l1d = l2 = l3 = l4 = NULL;
662 	linux_cpu_to_processor_map = NULL;
663 	linux_cpu_to_core_map = NULL;
664 
665 cleanup:
666 	free(x86_linux_processors);
667 	free(processors);
668 	free(cores);
669 	free(clusters);
670 	free(packages);
671 	free(l1i);
672 	free(l1d);
673 	free(l2);
674 	free(l3);
675 	free(l4);
676 	free(linux_cpu_to_processor_map);
677 	free(linux_cpu_to_core_map);
678 }
679