1 // Copyright 2012 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifdef UNSAFE_BUFFERS_BUILD
6 // TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
7 #pragma allow_unsafe_buffers
8 #endif
9
10 #include "base/synchronization/waitable_event.h"
11
12 #include <stddef.h>
13
14 #include <limits>
15 #include <optional>
16 #include <vector>
17
18 #include "base/check_op.h"
19 #include "base/memory/stack_allocated.h"
20 #include "base/ranges/algorithm.h"
21 #include "base/synchronization/condition_variable.h"
22 #include "base/synchronization/lock.h"
23 #include "base/threading/scoped_blocking_call.h"
24 #include "base/threading/thread_restrictions.h"
25 #include "base/time/time.h"
26 #include "base/time/time_override.h"
27
28 // -----------------------------------------------------------------------------
29 // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
30 // support cross-process events (where one process can signal an event which
31 // others are waiting on). Because of this, we can avoid having one thread per
32 // listener in several cases.
33 //
34 // The WaitableEvent maintains a list of waiters, protected by a lock. Each
35 // waiter is either an async wait, in which case we have a Task and the
36 // MessageLoop to run it on, or a blocking wait, in which case we have the
37 // condition variable to signal.
38 //
39 // Waiting involves grabbing the lock and adding oneself to the wait list. Async
40 // waits can be canceled, which means grabbing the lock and removing oneself
41 // from the list.
42 //
43 // Waiting on multiple events is handled by adding a single, synchronous wait to
44 // the wait-list of many events. An event passes a pointer to itself when
45 // firing a waiter and so we can store that pointer to find out which event
46 // triggered.
47 // -----------------------------------------------------------------------------
48
49 namespace base {
50
51 // -----------------------------------------------------------------------------
52 // This is just an abstract base class for waking the two types of waiters
53 // -----------------------------------------------------------------------------
WaitableEvent(ResetPolicy reset_policy,InitialState initial_state)54 WaitableEvent::WaitableEvent(ResetPolicy reset_policy,
55 InitialState initial_state)
56 : kernel_(new WaitableEventKernel(reset_policy, initial_state)) {}
57
Reset()58 void WaitableEvent::Reset() {
59 base::AutoLock locked(kernel_->lock_);
60 kernel_->signaled_ = false;
61 }
62
SignalImpl()63 void WaitableEvent::SignalImpl() {
64 base::AutoLock locked(kernel_->lock_);
65
66 if (kernel_->signaled_)
67 return;
68
69 if (kernel_->manual_reset_) {
70 SignalAll();
71 kernel_->signaled_ = true;
72 } else {
73 // In the case of auto reset, if no waiters were woken, we remain
74 // signaled.
75 if (!SignalOne())
76 kernel_->signaled_ = true;
77 }
78 }
79
IsSignaled() const80 bool WaitableEvent::IsSignaled() const {
81 base::AutoLock locked(kernel_->lock_);
82
83 const bool result = kernel_->signaled_;
84 if (result && !kernel_->manual_reset_)
85 kernel_->signaled_ = false;
86 return result;
87 }
88
89 // -----------------------------------------------------------------------------
90 // Synchronous waits
91
92 // -----------------------------------------------------------------------------
93 // This is a synchronous waiter. The thread is waiting on the given condition
94 // variable and the fired flag in this object.
95 // -----------------------------------------------------------------------------
96 class SyncWaiter : public WaitableEvent::Waiter {
97 STACK_ALLOCATED();
98
99 public:
SyncWaiter()100 SyncWaiter()
101 : fired_(false), signaling_event_(nullptr), lock_(), cv_(&lock_) {}
102
Fire(WaitableEvent * signaling_event)103 bool Fire(WaitableEvent* signaling_event) override {
104 base::AutoLock locked(lock_);
105
106 if (fired_)
107 return false;
108
109 fired_ = true;
110 signaling_event_ = signaling_event;
111
112 cv_.Broadcast();
113
114 // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
115 // the blocking thread's stack. There is no |delete this;| in Fire. The
116 // SyncWaiter object is destroyed when it goes out of scope.
117
118 return true;
119 }
120
signaling_event() const121 WaitableEvent* signaling_event() const {
122 return signaling_event_;
123 }
124
125 // ---------------------------------------------------------------------------
126 // These waiters are always stack allocated and don't delete themselves. Thus
127 // there's no problem and the ABA tag is the same as the object pointer.
128 // ---------------------------------------------------------------------------
Compare(void * tag)129 bool Compare(void* tag) override { return this == tag; }
130
131 // ---------------------------------------------------------------------------
132 // Called with lock held.
133 // ---------------------------------------------------------------------------
fired() const134 bool fired() const {
135 return fired_;
136 }
137
138 // ---------------------------------------------------------------------------
139 // During a TimedWait, we need a way to make sure that an auto-reset
140 // WaitableEvent doesn't think that this event has been signaled between
141 // unlocking it and removing it from the wait-list. Called with lock held.
142 // ---------------------------------------------------------------------------
Disable()143 void Disable() {
144 fired_ = true;
145 }
146
lock()147 base::Lock* lock() {
148 return &lock_;
149 }
150
cv()151 base::ConditionVariable* cv() {
152 return &cv_;
153 }
154
155 private:
156 bool fired_;
157 WaitableEvent* signaling_event_ = nullptr; // The WaitableEvent which woke us
158 base::Lock lock_;
159 base::ConditionVariable cv_;
160 };
161
TimedWaitImpl(TimeDelta wait_delta)162 bool WaitableEvent::TimedWaitImpl(TimeDelta wait_delta) {
163 kernel_->lock_.Acquire();
164 if (kernel_->signaled_) {
165 if (!kernel_->manual_reset_) {
166 // In this case we were signaled when we had no waiters. Now that
167 // someone has waited upon us, we can automatically reset.
168 kernel_->signaled_ = false;
169 }
170
171 kernel_->lock_.Release();
172 return true;
173 }
174
175 SyncWaiter sw;
176 if (only_used_while_idle_) {
177 sw.cv()->declare_only_used_while_idle();
178 }
179 sw.lock()->Acquire();
180
181 Enqueue(&sw);
182 kernel_->lock_.Release();
183 // We are violating locking order here by holding the SyncWaiter lock but not
184 // the WaitableEvent lock. However, this is safe because we don't lock |lock_|
185 // again before unlocking it.
186
187 // TimeTicks takes care of overflow but we special case is_max() nonetheless
188 // to avoid invoking TimeTicksNowIgnoringOverride() unnecessarily (same for
189 // the increment step of the for loop if the condition variable returns
190 // early). Ref: https://crbug.com/910524#c7
191 const TimeTicks end_time =
192 wait_delta.is_max() ? TimeTicks::Max()
193 : subtle::TimeTicksNowIgnoringOverride() + wait_delta;
194 for (TimeDelta remaining = wait_delta; remaining.is_positive() && !sw.fired();
195 remaining = end_time.is_max()
196 ? TimeDelta::Max()
197 : end_time - subtle::TimeTicksNowIgnoringOverride()) {
198 if (end_time.is_max())
199 sw.cv()->Wait();
200 else
201 sw.cv()->TimedWait(remaining);
202 }
203
204 // Get the SyncWaiter signaled state before releasing the lock.
205 const bool return_value = sw.fired();
206
207 // We can't acquire |lock_| before releasing the SyncWaiter lock (because of
208 // locking order), however, in between the two a signal could be fired and
209 // |sw| would accept it, however we will still return false, so the signal
210 // would be lost on an auto-reset WaitableEvent. Thus we call Disable which
211 // makes sw::Fire return false.
212 sw.Disable();
213 sw.lock()->Release();
214
215 // This is a bug that has been enshrined in the interface of WaitableEvent
216 // now: |Dequeue| is called even when |sw.fired()| is true, even though it'll
217 // always return false in that case. However, taking the lock ensures that
218 // |Signal| has completed before we return and means that a WaitableEvent can
219 // synchronise its own destruction.
220 kernel_->lock_.Acquire();
221 kernel_->Dequeue(&sw, &sw);
222 kernel_->lock_.Release();
223
224 return return_value;
225 }
226
227 // -----------------------------------------------------------------------------
228 // Synchronous waiting on multiple objects.
229
230 static bool // StrictWeakOrdering
cmp_fst_addr(const std::pair<WaitableEvent *,unsigned> & a,const std::pair<WaitableEvent *,unsigned> & b)231 cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
232 const std::pair<WaitableEvent*, unsigned> &b) {
233 return a.first < b.first;
234 }
235
236 // static
237 // NO_THREAD_SAFETY_ANALYSIS: Complex control flow.
WaitManyImpl(WaitableEvent ** raw_waitables,size_t count)238 size_t WaitableEvent::WaitManyImpl(WaitableEvent** raw_waitables,
239 size_t count) NO_THREAD_SAFETY_ANALYSIS {
240 // We need to acquire the locks in a globally consistent order. Thus we sort
241 // the array of waitables by address. We actually sort a pairs so that we can
242 // map back to the original index values later.
243 std::vector<std::pair<WaitableEvent*, size_t> > waitables;
244 waitables.reserve(count);
245 for (size_t i = 0; i < count; ++i)
246 waitables.push_back(std::make_pair(raw_waitables[i], i));
247
248 DCHECK_EQ(count, waitables.size());
249
250 ranges::sort(waitables, cmp_fst_addr);
251
252 // The set of waitables must be distinct. Since we have just sorted by
253 // address, we can check this cheaply by comparing pairs of consecutive
254 // elements.
255 for (size_t i = 0; i < waitables.size() - 1; ++i) {
256 DCHECK(waitables[i].first != waitables[i+1].first);
257 }
258
259 SyncWaiter sw;
260
261 const size_t r = EnqueueMany(&waitables[0], count, &sw);
262 if (r < count) {
263 // One of the events is already signaled. The SyncWaiter has not been
264 // enqueued anywhere.
265 return waitables[r].second;
266 }
267
268 // At this point, we hold the locks on all the WaitableEvents and we have
269 // enqueued our waiter in them all.
270 sw.lock()->Acquire();
271 // Release the WaitableEvent locks in the reverse order
272 for (size_t i = 0; i < count; ++i) {
273 waitables[count - (1 + i)].first->kernel_->lock_.Release();
274 }
275
276 for (;;) {
277 if (sw.fired())
278 break;
279
280 sw.cv()->Wait();
281 }
282 sw.lock()->Release();
283
284 // The address of the WaitableEvent which fired is stored in the SyncWaiter.
285 WaitableEvent *const signaled_event = sw.signaling_event();
286 // This will store the index of the raw_waitables which fired.
287 size_t signaled_index = 0;
288
289 // Take the locks of each WaitableEvent in turn (except the signaled one) and
290 // remove our SyncWaiter from the wait-list
291 for (size_t i = 0; i < count; ++i) {
292 if (raw_waitables[i] != signaled_event) {
293 raw_waitables[i]->kernel_->lock_.Acquire();
294 // There's no possible ABA issue with the address of the SyncWaiter here
295 // because it lives on the stack. Thus the tag value is just the pointer
296 // value again.
297 raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
298 raw_waitables[i]->kernel_->lock_.Release();
299 } else {
300 // By taking this lock here we ensure that |Signal| has completed by the
301 // time we return, because |Signal| holds this lock. This matches the
302 // behaviour of |Wait| and |TimedWait|.
303 raw_waitables[i]->kernel_->lock_.Acquire();
304 raw_waitables[i]->kernel_->lock_.Release();
305 signaled_index = i;
306 }
307 }
308
309 return signaled_index;
310 }
311
312 // -----------------------------------------------------------------------------
313 // If return value == count:
314 // The locks of the WaitableEvents have been taken in order and the Waiter has
315 // been enqueued in the wait-list of each. None of the WaitableEvents are
316 // currently signaled
317 // else:
318 // None of the WaitableEvent locks are held. The Waiter has not been enqueued
319 // in any of them and the return value is the index of the WaitableEvent which
320 // was signaled with the lowest input index from the original WaitMany call.
321 // -----------------------------------------------------------------------------
322 // static
323 // NO_THREAD_SAFETY_ANALYSIS: Complex control flow.
EnqueueMany(std::pair<WaitableEvent *,size_t> * waitables,size_t count,Waiter * waiter)324 size_t WaitableEvent::EnqueueMany(std::pair<WaitableEvent*, size_t>* waitables,
325 size_t count,
326 Waiter* waiter) NO_THREAD_SAFETY_ANALYSIS {
327 size_t winner = count;
328 size_t winner_index = count;
329 for (size_t i = 0; i < count; ++i) {
330 auto& kernel = waitables[i].first->kernel_;
331 kernel->lock_.Acquire();
332 if (kernel->signaled_ && waitables[i].second < winner) {
333 winner = waitables[i].second;
334 winner_index = i;
335 }
336 }
337
338 // No events signaled. All locks acquired. Enqueue the Waiter on all of them
339 // and return.
340 if (winner == count) {
341 for (size_t i = 0; i < count; ++i)
342 waitables[i].first->Enqueue(waiter);
343 return count;
344 }
345
346 // Unlock in reverse order and possibly clear the chosen winner's signal
347 // before returning its index.
348 for (auto* w = waitables + count - 1; w >= waitables; --w) {
349 auto& kernel = w->first->kernel_;
350 if (w->second == winner) {
351 if (!kernel->manual_reset_)
352 kernel->signaled_ = false;
353 }
354 kernel->lock_.Release();
355 }
356
357 return winner_index;
358 }
359
360 // -----------------------------------------------------------------------------
361
362
363 // -----------------------------------------------------------------------------
364 // Private functions...
365
WaitableEventKernel(ResetPolicy reset_policy,InitialState initial_state)366 WaitableEvent::WaitableEventKernel::WaitableEventKernel(
367 ResetPolicy reset_policy,
368 InitialState initial_state)
369 : manual_reset_(reset_policy == ResetPolicy::MANUAL),
370 signaled_(initial_state == InitialState::SIGNALED) {}
371
372 WaitableEvent::WaitableEventKernel::~WaitableEventKernel() = default;
373
374 // -----------------------------------------------------------------------------
375 // Wake all waiting waiters. Called with lock held.
376 // -----------------------------------------------------------------------------
SignalAll()377 bool WaitableEvent::SignalAll() {
378 bool signaled_at_least_one = false;
379
380 for (Waiter* i : kernel_->waiters_) {
381 if (i->Fire(this))
382 signaled_at_least_one = true;
383 }
384
385 kernel_->waiters_.clear();
386 return signaled_at_least_one;
387 }
388
389 // ---------------------------------------------------------------------------
390 // Try to wake a single waiter. Return true if one was woken. Called with lock
391 // held.
392 // ---------------------------------------------------------------------------
SignalOne()393 bool WaitableEvent::SignalOne() {
394 for (;;) {
395 if (kernel_->waiters_.empty())
396 return false;
397
398 const bool r = (*kernel_->waiters_.begin())->Fire(this);
399 kernel_->waiters_.pop_front();
400 if (r)
401 return true;
402 }
403 }
404
405 // -----------------------------------------------------------------------------
406 // Add a waiter to the list of those waiting. Called with lock held.
407 // -----------------------------------------------------------------------------
Enqueue(Waiter * waiter)408 void WaitableEvent::Enqueue(Waiter* waiter) {
409 kernel_->waiters_.push_back(waiter);
410 }
411
412 // -----------------------------------------------------------------------------
413 // Remove a waiter from the list of those waiting. Return true if the waiter was
414 // actually removed. Called with lock held.
415 // -----------------------------------------------------------------------------
Dequeue(Waiter * waiter,void * tag)416 bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
417 for (auto i = waiters_.begin(); i != waiters_.end(); ++i) {
418 if (*i == waiter && (*i)->Compare(tag)) {
419 waiters_.erase(i);
420 return true;
421 }
422 }
423
424 return false;
425 }
426
427 // -----------------------------------------------------------------------------
428
429 } // namespace base
430