• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifdef UNSAFE_BUFFERS_BUILD
6 // TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
7 #pragma allow_unsafe_buffers
8 #endif
9 
10 #include "net/disk_cache/blockfile/sparse_control.h"
11 
12 #include <stdint.h>
13 
14 #include "base/format_macros.h"
15 #include "base/functional/bind.h"
16 #include "base/location.h"
17 #include "base/logging.h"
18 #include "base/numerics/checked_math.h"
19 #include "base/strings/string_util.h"
20 #include "base/strings/stringprintf.h"
21 #include "base/task/single_thread_task_runner.h"
22 #include "base/time/time.h"
23 #include "net/base/interval.h"
24 #include "net/base/io_buffer.h"
25 #include "net/base/net_errors.h"
26 #include "net/disk_cache/blockfile/backend_impl.h"
27 #include "net/disk_cache/blockfile/entry_impl.h"
28 #include "net/disk_cache/blockfile/file.h"
29 #include "net/disk_cache/net_log_parameters.h"
30 #include "net/log/net_log.h"
31 #include "net/log/net_log_event_type.h"
32 #include "net/log/net_log_with_source.h"
33 
34 using base::Time;
35 
36 namespace {
37 
38 // Stream of the sparse data index.
39 const int kSparseIndex = 2;
40 
41 // Stream of the sparse data.
42 const int kSparseData = 1;
43 
44 // We can have up to 64k children.
45 const int kMaxMapSize = 8 * 1024;
46 
47 // The maximum number of bytes that a child can store.
48 const int kMaxEntrySize = 0x100000;
49 
50 // How much we can address. 8 KiB bitmap (kMaxMapSize above) gives us offsets
51 // up to 64 GiB.
52 const int64_t kMaxEndOffset = 8ll * kMaxMapSize * kMaxEntrySize;
53 
54 // The size of each data block (tracked by the child allocation bitmap).
55 const int kBlockSize = 1024;
56 
57 // Returns the name of a child entry given the base_name and signature of the
58 // parent and the child_id.
59 // If the entry is called entry_name, child entries will be named something
60 // like Range_entry_name:XXX:YYY where XXX is the entry signature and YYY is the
61 // number of the particular child.
GenerateChildName(const std::string & base_name,int64_t signature,int64_t child_id)62 std::string GenerateChildName(const std::string& base_name,
63                               int64_t signature,
64                               int64_t child_id) {
65   return base::StringPrintf("Range_%s:%" PRIx64 ":%" PRIx64, base_name.c_str(),
66                             signature, child_id);
67 }
68 
69 // This class deletes the children of a sparse entry.
70 class ChildrenDeleter
71     : public base::RefCounted<ChildrenDeleter>,
72       public disk_cache::FileIOCallback {
73  public:
ChildrenDeleter(disk_cache::BackendImpl * backend,const std::string & name)74   ChildrenDeleter(disk_cache::BackendImpl* backend, const std::string& name)
75       : backend_(backend->GetWeakPtr()), name_(name) {}
76 
77   ChildrenDeleter(const ChildrenDeleter&) = delete;
78   ChildrenDeleter& operator=(const ChildrenDeleter&) = delete;
79 
80   void OnFileIOComplete(int bytes_copied) override;
81 
82   // Two ways of deleting the children: if we have the children map, use Start()
83   // directly, otherwise pass the data address to ReadData().
84   void Start(std::unique_ptr<char[]> buffer, int len);
85   void ReadData(disk_cache::Addr address, int len);
86 
87  private:
88   friend class base::RefCounted<ChildrenDeleter>;
89   ~ChildrenDeleter() override = default;
90 
91   void DeleteChildren();
92 
93   base::WeakPtr<disk_cache::BackendImpl> backend_;
94   std::string name_;
95   disk_cache::Bitmap children_map_;
96   int64_t signature_ = 0;
97   std::unique_ptr<char[]> buffer_;
98 };
99 
100 // This is the callback of the file operation.
OnFileIOComplete(int bytes_copied)101 void ChildrenDeleter::OnFileIOComplete(int bytes_copied) {
102   Start(std::move(buffer_), bytes_copied);
103 }
104 
Start(std::unique_ptr<char[]> buffer,int len)105 void ChildrenDeleter::Start(std::unique_ptr<char[]> buffer, int len) {
106   buffer_ = std::move(buffer);
107   if (len < static_cast<int>(sizeof(disk_cache::SparseData)))
108     return Release();
109 
110   // Just copy the information from |buffer|, delete |buffer| and start deleting
111   // the child entries.
112   disk_cache::SparseData* data =
113       reinterpret_cast<disk_cache::SparseData*>(buffer_.get());
114   signature_ = data->header.signature;
115 
116   int num_bits = (len - sizeof(disk_cache::SparseHeader)) * 8;
117   children_map_.Resize(num_bits, false);
118   children_map_.SetMap(data->bitmap, num_bits / 32);
119   buffer_.reset();
120 
121   DeleteChildren();
122 }
123 
ReadData(disk_cache::Addr address,int len)124 void ChildrenDeleter::ReadData(disk_cache::Addr address, int len) {
125   DCHECK(address.is_block_file());
126   if (!backend_.get())
127     return Release();
128 
129   disk_cache::File* file(backend_->File(address));
130   if (!file)
131     return Release();
132 
133   size_t file_offset = address.start_block() * address.BlockSize() +
134                        disk_cache::kBlockHeaderSize;
135 
136   buffer_ = std::make_unique<char[]>(len);
137   bool completed;
138   if (!file->Read(buffer_.get(), len, file_offset, this, &completed))
139     return Release();
140 
141   if (completed)
142     OnFileIOComplete(len);
143 
144   // And wait until OnFileIOComplete gets called.
145 }
146 
DeleteChildren()147 void ChildrenDeleter::DeleteChildren() {
148   int child_id = 0;
149   if (!children_map_.FindNextSetBit(&child_id) || !backend_.get()) {
150     // We are done. Just delete this object.
151     return Release();
152   }
153   std::string child_name = GenerateChildName(name_, signature_, child_id);
154   backend_->SyncDoomEntry(child_name);
155   children_map_.Set(child_id, false);
156 
157   // Post a task to delete the next child.
158   base::SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
159       FROM_HERE, base::BindOnce(&ChildrenDeleter::DeleteChildren, this));
160 }
161 
162 // Returns the NetLog event type corresponding to a SparseOperation.
GetSparseEventType(disk_cache::SparseControl::SparseOperation operation)163 net::NetLogEventType GetSparseEventType(
164     disk_cache::SparseControl::SparseOperation operation) {
165   switch (operation) {
166     case disk_cache::SparseControl::kReadOperation:
167       return net::NetLogEventType::SPARSE_READ;
168     case disk_cache::SparseControl::kWriteOperation:
169       return net::NetLogEventType::SPARSE_WRITE;
170     case disk_cache::SparseControl::kGetRangeOperation:
171       return net::NetLogEventType::SPARSE_GET_RANGE;
172     default:
173       NOTREACHED();
174   }
175 }
176 
177 // Logs the end event for |operation| on a child entry.  Range operations log
178 // no events for each child they search through.
LogChildOperationEnd(const net::NetLogWithSource & net_log,disk_cache::SparseControl::SparseOperation operation,int result)179 void LogChildOperationEnd(const net::NetLogWithSource& net_log,
180                           disk_cache::SparseControl::SparseOperation operation,
181                           int result) {
182   if (net_log.IsCapturing()) {
183     net::NetLogEventType event_type;
184     switch (operation) {
185       case disk_cache::SparseControl::kReadOperation:
186         event_type = net::NetLogEventType::SPARSE_READ_CHILD_DATA;
187         break;
188       case disk_cache::SparseControl::kWriteOperation:
189         event_type = net::NetLogEventType::SPARSE_WRITE_CHILD_DATA;
190         break;
191       case disk_cache::SparseControl::kGetRangeOperation:
192         return;
193       default:
194         NOTREACHED();
195     }
196     net_log.EndEventWithNetErrorCode(event_type, result);
197   }
198 }
199 
200 }  // namespace.
201 
202 namespace disk_cache {
203 
SparseControl(EntryImpl * entry)204 SparseControl::SparseControl(EntryImpl* entry)
205     : entry_(entry),
206       child_map_(child_data_.bitmap, kNumSparseBits, kNumSparseBits / 32) {
207   memset(&sparse_header_, 0, sizeof(sparse_header_));
208   memset(&child_data_, 0, sizeof(child_data_));
209 }
210 
~SparseControl()211 SparseControl::~SparseControl() {
212   if (child_)
213     CloseChild();
214   if (init_)
215     WriteSparseData();
216 }
217 
Init()218 int SparseControl::Init() {
219   DCHECK(!init_);
220 
221   // We should not have sparse data for the exposed entry.
222   if (entry_->GetDataSize(kSparseData))
223     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
224 
225   // Now see if there is something where we store our data.
226   int rv = net::OK;
227   int data_len = entry_->GetDataSize(kSparseIndex);
228   if (!data_len) {
229     rv = CreateSparseEntry();
230   } else {
231     rv = OpenSparseEntry(data_len);
232   }
233 
234   if (rv == net::OK)
235     init_ = true;
236   return rv;
237 }
238 
CouldBeSparse() const239 bool SparseControl::CouldBeSparse() const {
240   DCHECK(!init_);
241 
242   if (entry_->GetDataSize(kSparseData))
243     return false;
244 
245   // We don't verify the data, just see if it could be there.
246   return (entry_->GetDataSize(kSparseIndex) != 0);
247 }
248 
StartIO(SparseOperation op,int64_t offset,net::IOBuffer * buf,int buf_len,CompletionOnceCallback callback)249 int SparseControl::StartIO(SparseOperation op,
250                            int64_t offset,
251                            net::IOBuffer* buf,
252                            int buf_len,
253                            CompletionOnceCallback callback) {
254   DCHECK(init_);
255   // We don't support simultaneous IO for sparse data.
256   if (operation_ != kNoOperation)
257     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
258 
259   if (offset < 0 || buf_len < 0)
260     return net::ERR_INVALID_ARGUMENT;
261 
262   int64_t end_offset = 0;  // non-inclusive.
263   if (!base::CheckAdd(offset, buf_len).AssignIfValid(&end_offset)) {
264     // Writes aren't permitted to try to cross the end of address space;
265     // read/GetAvailableRange clip.
266     if (op == kWriteOperation)
267       return net::ERR_INVALID_ARGUMENT;
268     else
269       end_offset = std::numeric_limits<int64_t>::max();
270   }
271 
272   if (offset >= kMaxEndOffset) {
273     // Interval is within valid offset space, but completely outside backend
274     // supported range. Permit GetAvailableRange to say "nothing here", actual
275     // I/O fails.
276     if (op == kGetRangeOperation)
277       return 0;
278     else
279       return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
280   }
281 
282   if (end_offset > kMaxEndOffset) {
283     // Interval is partially what the backend can handle. Fail writes, clip
284     // reads.
285     if (op == kWriteOperation)
286       return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
287     else
288       end_offset = kMaxEndOffset;
289   }
290 
291   DCHECK_GE(end_offset, offset);
292   buf_len = end_offset - offset;
293 
294   DCHECK(!user_buf_.get());
295   DCHECK(user_callback_.is_null());
296 
297   if (!buf && (op == kReadOperation || op == kWriteOperation))
298     return 0;
299 
300   // Copy the operation parameters.
301   operation_ = op;
302   offset_ = offset;
303   user_buf_ = buf ? base::MakeRefCounted<net::DrainableIOBuffer>(buf, buf_len)
304                   : nullptr;
305   buf_len_ = buf_len;
306   user_callback_ = std::move(callback);
307 
308   result_ = 0;
309   pending_ = false;
310   finished_ = false;
311   abort_ = false;
312 
313   if (entry_->net_log().IsCapturing()) {
314     NetLogSparseOperation(entry_->net_log(), GetSparseEventType(operation_),
315                           net::NetLogEventPhase::BEGIN, offset_, buf_len_);
316   }
317   DoChildrenIO();
318 
319   if (!pending_) {
320     // Everything was done synchronously.
321     operation_ = kNoOperation;
322     user_buf_ = nullptr;
323     user_callback_.Reset();
324     return result_;
325   }
326 
327   return net::ERR_IO_PENDING;
328 }
329 
GetAvailableRange(int64_t offset,int len)330 RangeResult SparseControl::GetAvailableRange(int64_t offset, int len) {
331   DCHECK(init_);
332   // We don't support simultaneous IO for sparse data.
333   if (operation_ != kNoOperation)
334     return RangeResult(net::ERR_CACHE_OPERATION_NOT_SUPPORTED);
335 
336   range_found_ = false;
337   int result = StartIO(kGetRangeOperation, offset, nullptr, len,
338                        CompletionOnceCallback());
339   if (range_found_)
340     return RangeResult(offset_, result);
341 
342   // This is a failure. We want to return a valid start value if it's just an
343   // empty range, though.
344   if (result < 0)
345     return RangeResult(static_cast<net::Error>(result));
346   return RangeResult(offset, 0);
347 }
348 
CancelIO()349 void SparseControl::CancelIO() {
350   if (operation_ == kNoOperation)
351     return;
352   abort_ = true;
353 }
354 
ReadyToUse(CompletionOnceCallback callback)355 int SparseControl::ReadyToUse(CompletionOnceCallback callback) {
356   if (!abort_)
357     return net::OK;
358 
359   // We'll grab another reference to keep this object alive because we just have
360   // one extra reference due to the pending IO operation itself, but we'll
361   // release that one before invoking user_callback_.
362   entry_->AddRef();  // Balanced in DoAbortCallbacks.
363   abort_callbacks_.push_back(std::move(callback));
364   return net::ERR_IO_PENDING;
365 }
366 
367 // Static
DeleteChildren(EntryImpl * entry)368 void SparseControl::DeleteChildren(EntryImpl* entry) {
369   DCHECK(entry->GetEntryFlags() & PARENT_ENTRY);
370   int data_len = entry->GetDataSize(kSparseIndex);
371   if (data_len < static_cast<int>(sizeof(SparseData)) ||
372       entry->GetDataSize(kSparseData))
373     return;
374 
375   int map_len = data_len - sizeof(SparseHeader);
376   if (map_len > kMaxMapSize || map_len % 4)
377     return;
378 
379   std::unique_ptr<char[]> buffer;
380   Addr address;
381   entry->GetData(kSparseIndex, &buffer, &address);
382   if (!buffer && !address.is_initialized())
383     return;
384 
385   entry->net_log().AddEvent(net::NetLogEventType::SPARSE_DELETE_CHILDREN);
386 
387   DCHECK(entry->backend_.get());
388   ChildrenDeleter* deleter = new ChildrenDeleter(entry->backend_.get(),
389                                                  entry->GetKey());
390   // The object will self destruct when finished.
391   deleter->AddRef();
392 
393   if (buffer) {
394     base::SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
395         FROM_HERE, base::BindOnce(&ChildrenDeleter::Start, deleter,
396                                   std::move(buffer), data_len));
397   } else {
398     base::SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
399         FROM_HERE,
400         base::BindOnce(&ChildrenDeleter::ReadData, deleter, address, data_len));
401   }
402 }
403 
404 // We are going to start using this entry to store sparse data, so we have to
405 // initialize our control info.
CreateSparseEntry()406 int SparseControl::CreateSparseEntry() {
407   if (CHILD_ENTRY & entry_->GetEntryFlags())
408     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
409 
410   memset(&sparse_header_, 0, sizeof(sparse_header_));
411   sparse_header_.signature = Time::Now().ToInternalValue();
412   sparse_header_.magic = kIndexMagic;
413   sparse_header_.parent_key_len = entry_->GetKey().size();
414   children_map_.Resize(kNumSparseBits, true);
415 
416   // Save the header. The bitmap is saved in the destructor.
417   scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::WrappedIOBuffer>(
418       base::as_chars(base::span_from_ref(sparse_header_)));
419 
420   int rv = entry_->WriteData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_),
421                              CompletionOnceCallback(), false);
422   if (rv != sizeof(sparse_header_)) {
423     DLOG(ERROR) << "Unable to save sparse_header_";
424     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
425   }
426 
427   entry_->SetEntryFlags(PARENT_ENTRY);
428   return net::OK;
429 }
430 
431 // We are opening an entry from disk. Make sure that our control data is there.
OpenSparseEntry(int data_len)432 int SparseControl::OpenSparseEntry(int data_len) {
433   if (data_len < static_cast<int>(sizeof(SparseData)))
434     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
435 
436   if (entry_->GetDataSize(kSparseData))
437     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
438 
439   if (!(PARENT_ENTRY & entry_->GetEntryFlags()))
440     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
441 
442   // Don't go over board with the bitmap.
443   int map_len = data_len - sizeof(sparse_header_);
444   if (map_len > kMaxMapSize || map_len % 4)
445     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
446 
447   scoped_refptr<net::IOBuffer> buf = base::MakeRefCounted<net::WrappedIOBuffer>(
448       base::as_chars(base::span_from_ref(sparse_header_)));
449 
450   // Read header.
451   int rv = entry_->ReadData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_),
452                             CompletionOnceCallback());
453   if (rv != static_cast<int>(sizeof(sparse_header_)))
454     return net::ERR_CACHE_READ_FAILURE;
455 
456   // The real validation should be performed by the caller. This is just to
457   // double check.
458   if (sparse_header_.magic != kIndexMagic ||
459       sparse_header_.parent_key_len !=
460           static_cast<int>(entry_->GetKey().size()))
461     return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
462 
463   // Read the actual bitmap.
464   buf = base::MakeRefCounted<net::IOBufferWithSize>(map_len);
465   rv = entry_->ReadData(kSparseIndex, sizeof(sparse_header_), buf.get(),
466                         map_len, CompletionOnceCallback());
467   if (rv != map_len)
468     return net::ERR_CACHE_READ_FAILURE;
469 
470   // Grow the bitmap to the current size and copy the bits.
471   children_map_.Resize(map_len * 8, false);
472   children_map_.SetMap(reinterpret_cast<uint32_t*>(buf->data()), map_len);
473   return net::OK;
474 }
475 
OpenChild()476 bool SparseControl::OpenChild() {
477   DCHECK_GE(result_, 0);
478 
479   std::string key = GenerateChildKey();
480   if (child_) {
481     // Keep using the same child or open another one?.
482     if (key == child_->GetKey())
483       return true;
484     CloseChild();
485   }
486 
487   // See if we are tracking this child.
488   if (!ChildPresent())
489     return ContinueWithoutChild(key);
490 
491   if (!entry_->backend_.get())
492     return false;
493 
494   child_ = entry_->backend_->OpenEntryImpl(key);
495   if (!child_)
496     return ContinueWithoutChild(key);
497 
498   if (!(CHILD_ENTRY & child_->GetEntryFlags()) ||
499       child_->GetDataSize(kSparseIndex) < static_cast<int>(sizeof(child_data_)))
500     return KillChildAndContinue(key, false);
501 
502   auto buf = base::MakeRefCounted<net::WrappedIOBuffer>(
503       base::as_chars(base::span_from_ref(child_data_)));
504 
505   // Read signature.
506   int rv = child_->ReadData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
507                             CompletionOnceCallback());
508   if (rv != sizeof(child_data_))
509     return KillChildAndContinue(key, true);  // This is a fatal failure.
510 
511   if (child_data_.header.signature != sparse_header_.signature ||
512       child_data_.header.magic != kIndexMagic)
513     return KillChildAndContinue(key, false);
514 
515   if (child_data_.header.last_block_len < 0 ||
516       child_data_.header.last_block_len >= kBlockSize) {
517     // Make sure these values are always within range.
518     child_data_.header.last_block_len = 0;
519     child_data_.header.last_block = -1;
520   }
521 
522   return true;
523 }
524 
CloseChild()525 void SparseControl::CloseChild() {
526   auto buf = base::MakeRefCounted<net::WrappedIOBuffer>(
527       base::as_chars(base::span_from_ref(child_data_)));
528 
529   // Save the allocation bitmap before closing the child entry.
530   int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
531                              CompletionOnceCallback(), false);
532   if (rv != sizeof(child_data_))
533     DLOG(ERROR) << "Failed to save child data";
534   child_ = nullptr;
535 }
536 
GenerateChildKey()537 std::string SparseControl::GenerateChildKey() {
538   return GenerateChildName(entry_->GetKey(), sparse_header_.signature,
539                            offset_ >> 20);
540 }
541 
542 // We are deleting the child because something went wrong.
KillChildAndContinue(const std::string & key,bool fatal)543 bool SparseControl::KillChildAndContinue(const std::string& key, bool fatal) {
544   SetChildBit(false);
545   child_->DoomImpl();
546   child_ = nullptr;
547   if (fatal) {
548     result_ = net::ERR_CACHE_READ_FAILURE;
549     return false;
550   }
551   return ContinueWithoutChild(key);
552 }
553 
554 // We were not able to open this child; see what we can do.
ContinueWithoutChild(const std::string & key)555 bool SparseControl::ContinueWithoutChild(const std::string& key) {
556   if (kReadOperation == operation_)
557     return false;
558   if (kGetRangeOperation == operation_)
559     return true;
560 
561   if (!entry_->backend_.get())
562     return false;
563 
564   child_ = entry_->backend_->CreateEntryImpl(key);
565   if (!child_) {
566     child_ = nullptr;
567     result_ = net::ERR_CACHE_READ_FAILURE;
568     return false;
569   }
570   // Write signature.
571   InitChildData();
572   return true;
573 }
574 
ChildPresent()575 bool SparseControl::ChildPresent() {
576   int child_bit = static_cast<int>(offset_ >> 20);
577   if (children_map_.Size() <= child_bit)
578     return false;
579 
580   return children_map_.Get(child_bit);
581 }
582 
SetChildBit(bool value)583 void SparseControl::SetChildBit(bool value) {
584   int child_bit = static_cast<int>(offset_ >> 20);
585 
586   // We may have to increase the bitmap of child entries.
587   if (children_map_.Size() <= child_bit)
588     children_map_.Resize(Bitmap::RequiredArraySize(child_bit + 1) * 32, true);
589 
590   children_map_.Set(child_bit, value);
591 }
592 
WriteSparseData()593 void SparseControl::WriteSparseData() {
594   auto buf = base::MakeRefCounted<net::WrappedIOBuffer>(
595       base::as_chars(children_map_.GetSpan()));
596 
597   int rv = entry_->WriteData(kSparseIndex, sizeof(sparse_header_), buf.get(),
598                              buf->size(), CompletionOnceCallback(), false);
599   if (rv != buf->size()) {
600     DLOG(ERROR) << "Unable to save sparse map";
601   }
602 }
603 
VerifyRange()604 bool SparseControl::VerifyRange() {
605   DCHECK_GE(result_, 0);
606 
607   child_offset_ = static_cast<int>(offset_) & (kMaxEntrySize - 1);
608   child_len_ = std::min(buf_len_, kMaxEntrySize - child_offset_);
609 
610   // We can write to (or get info from) anywhere in this child.
611   if (operation_ != kReadOperation)
612     return true;
613 
614   // Check that there are no holes in this range.
615   int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
616   int start = child_offset_ >> 10;
617   if (child_map_.FindNextBit(&start, last_bit, false)) {
618     // Something is not here.
619     DCHECK_GE(child_data_.header.last_block_len, 0);
620     DCHECK_LT(child_data_.header.last_block_len, kBlockSize);
621     int partial_block_len = PartialBlockLength(start);
622     if (start == child_offset_ >> 10) {
623       // It looks like we don't have anything.
624       if (partial_block_len <= (child_offset_ & (kBlockSize - 1)))
625         return false;
626     }
627 
628     // We have the first part.
629     child_len_ = (start << 10) - child_offset_;
630     if (partial_block_len) {
631       // We may have a few extra bytes.
632       child_len_ = std::min(child_len_ + partial_block_len, buf_len_);
633     }
634     // There is no need to read more after this one.
635     buf_len_ = child_len_;
636   }
637   return true;
638 }
639 
UpdateRange(int result)640 void SparseControl::UpdateRange(int result) {
641   if (result <= 0 || operation_ != kWriteOperation)
642     return;
643 
644   DCHECK_GE(child_data_.header.last_block_len, 0);
645   DCHECK_LT(child_data_.header.last_block_len, kBlockSize);
646 
647   // Write the bitmap.
648   int first_bit = child_offset_ >> 10;
649   int block_offset = child_offset_ & (kBlockSize - 1);
650   if (block_offset && (child_data_.header.last_block != first_bit ||
651                        child_data_.header.last_block_len < block_offset)) {
652     // The first block is not completely filled; ignore it.
653     first_bit++;
654   }
655 
656   int last_bit = (child_offset_ + result) >> 10;
657   block_offset = (child_offset_ + result) & (kBlockSize - 1);
658 
659   // This condition will hit with the following criteria:
660   // 1. The first byte doesn't follow the last write.
661   // 2. The first byte is in the middle of a block.
662   // 3. The first byte and the last byte are in the same block.
663   if (first_bit > last_bit)
664     return;
665 
666   if (block_offset && !child_map_.Get(last_bit)) {
667     // The last block is not completely filled; save it for later.
668     child_data_.header.last_block = last_bit;
669     child_data_.header.last_block_len = block_offset;
670   } else {
671     child_data_.header.last_block = -1;
672   }
673 
674   child_map_.SetRange(first_bit, last_bit, true);
675 }
676 
PartialBlockLength(int block_index) const677 int SparseControl::PartialBlockLength(int block_index) const {
678   if (block_index == child_data_.header.last_block)
679     return child_data_.header.last_block_len;
680 
681   // This is really empty.
682   return 0;
683 }
684 
InitChildData()685 void SparseControl::InitChildData() {
686   child_->SetEntryFlags(CHILD_ENTRY);
687 
688   memset(&child_data_, 0, sizeof(child_data_));
689   child_data_.header = sparse_header_;
690 
691   auto buf = base::MakeRefCounted<net::WrappedIOBuffer>(
692       base::as_chars(base::span_from_ref(child_data_)));
693 
694   int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
695                              CompletionOnceCallback(), false);
696   if (rv != sizeof(child_data_))
697     DLOG(ERROR) << "Failed to save child data";
698   SetChildBit(true);
699 }
700 
DoChildrenIO()701 void SparseControl::DoChildrenIO() {
702   while (DoChildIO()) continue;
703 
704   // Range operations are finished synchronously, often without setting
705   // |finished_| to true.
706   if (kGetRangeOperation == operation_ && entry_->net_log().IsCapturing()) {
707     entry_->net_log().EndEvent(net::NetLogEventType::SPARSE_GET_RANGE, [&] {
708       return CreateNetLogGetAvailableRangeResultParams(
709           RangeResult(offset_, result_));
710     });
711   }
712   if (finished_) {
713     if (kGetRangeOperation != operation_ && entry_->net_log().IsCapturing()) {
714       entry_->net_log().EndEvent(GetSparseEventType(operation_));
715     }
716     if (pending_)
717       DoUserCallback();  // Don't touch this object after this point.
718   }
719 }
720 
DoChildIO()721 bool SparseControl::DoChildIO() {
722   finished_ = true;
723   if (!buf_len_ || result_ < 0)
724     return false;
725 
726   if (!OpenChild())
727     return false;
728 
729   if (!VerifyRange())
730     return false;
731 
732   // We have more work to do. Let's not trigger a callback to the caller.
733   finished_ = false;
734   CompletionOnceCallback callback;
735   if (!user_callback_.is_null()) {
736     callback = base::BindOnce(&SparseControl::OnChildIOCompleted,
737                               base::Unretained(this));
738   }
739 
740   int rv = 0;
741   switch (operation_) {
742     case kReadOperation:
743       if (entry_->net_log().IsCapturing()) {
744         NetLogSparseReadWrite(entry_->net_log(),
745                               net::NetLogEventType::SPARSE_READ_CHILD_DATA,
746                               net::NetLogEventPhase::BEGIN,
747                               child_->net_log().source(), child_len_);
748       }
749       rv = child_->ReadDataImpl(kSparseData, child_offset_, user_buf_.get(),
750                                 child_len_, std::move(callback));
751       break;
752     case kWriteOperation:
753       if (entry_->net_log().IsCapturing()) {
754         NetLogSparseReadWrite(entry_->net_log(),
755                               net::NetLogEventType::SPARSE_WRITE_CHILD_DATA,
756                               net::NetLogEventPhase::BEGIN,
757                               child_->net_log().source(), child_len_);
758       }
759       rv = child_->WriteDataImpl(kSparseData, child_offset_, user_buf_.get(),
760                                  child_len_, std::move(callback), false);
761       break;
762     case kGetRangeOperation:
763       rv = DoGetAvailableRange();
764       break;
765     default:
766       NOTREACHED();
767   }
768 
769   if (rv == net::ERR_IO_PENDING) {
770     if (!pending_) {
771       pending_ = true;
772       // The child will protect himself against closing the entry while IO is in
773       // progress. However, this entry can still be closed, and that would not
774       // be a good thing for us, so we increase the refcount until we're
775       // finished doing sparse stuff.
776       entry_->AddRef();  // Balanced in DoUserCallback.
777     }
778     return false;
779   }
780   if (!rv)
781     return false;
782 
783   DoChildIOCompleted(rv);
784   return true;
785 }
786 
DoGetAvailableRange()787 int SparseControl::DoGetAvailableRange() {
788   if (!child_)
789     return child_len_;  // Move on to the next child.
790 
791   // Blockfile splits sparse files into multiple child entries, each responsible
792   // for managing 1MiB of address space. This method is responsible for
793   // implementing GetAvailableRange within a single child.
794   //
795   // Input:
796   //   |child_offset_|, |child_len_|:
797   //     describe range in current child's address space the client requested.
798   //   |offset_| is equivalent to |child_offset_| but in global address space.
799   //
800   //   For example if this were child [2] and the original call was for
801   //   [0x200005, 0x200007) then |offset_| would be 0x200005, |child_offset_|
802   //   would be 5, and |child_len| would be 2.
803   //
804   // Output:
805   //   If nothing found:
806   //     return |child_len_|
807   //
808   //   If something found:
809   //     |result_| gets the length of the available range.
810   //     |offset_| gets the global address of beginning of the available range.
811   //     |range_found_| get true to signal SparseControl::GetAvailableRange().
812   //     return 0 to exit loop.
813   net::Interval<int> to_find(child_offset_, child_offset_ + child_len_);
814 
815   // Within each child, valid portions are mostly tracked via the |child_map_|
816   // bitmap which marks which 1KiB 'blocks' have valid data. Scan the bitmap
817   // for the first contiguous range of set bits that's relevant to the range
818   // [child_offset_, child_offset_ + len)
819   int first_bit = child_offset_ >> 10;
820   int last_bit = (child_offset_ + child_len_ + kBlockSize - 1) >> 10;
821   int found = first_bit;
822   int bits_found = child_map_.FindBits(&found, last_bit, true);
823   net::Interval<int> bitmap_range(found * kBlockSize,
824                                   found * kBlockSize + bits_found * kBlockSize);
825 
826   // Bits on the bitmap should only be set when the corresponding block was
827   // fully written (it's really being used). If a block is partially used, it
828   // has to start with valid data, the length of the valid data is saved in
829   // |header.last_block_len| and the block number saved in |header.last_block|.
830   // This is updated after every write; with |header.last_block| set to -1
831   // if no sub-KiB range is being tracked.
832   net::Interval<int> last_write_range;
833   if (child_data_.header.last_block >= 0) {
834     last_write_range =
835         net::Interval<int>(child_data_.header.last_block * kBlockSize,
836                            child_data_.header.last_block * kBlockSize +
837                                child_data_.header.last_block_len);
838   }
839 
840   // Often |last_write_range| is contiguously after |bitmap_range|, but not
841   // always. See if they can be combined.
842   if (!last_write_range.Empty() && !bitmap_range.Empty() &&
843       bitmap_range.max() == last_write_range.min()) {
844     bitmap_range.SetMax(last_write_range.max());
845     last_write_range.Clear();
846   }
847 
848   // Do any of them have anything relevant?
849   bitmap_range.IntersectWith(to_find);
850   last_write_range.IntersectWith(to_find);
851 
852   // Now return the earliest non-empty interval, if any.
853   net::Interval<int> result_range = bitmap_range;
854   if (bitmap_range.Empty() || (!last_write_range.Empty() &&
855                                last_write_range.min() < bitmap_range.min()))
856     result_range = last_write_range;
857 
858   if (result_range.Empty()) {
859     // Nothing found, so we just skip over this child.
860     return child_len_;
861   }
862 
863   // Package up our results.
864   range_found_ = true;
865   offset_ += result_range.min() - child_offset_;
866   result_ = result_range.max() - result_range.min();
867   return 0;
868 }
869 
DoChildIOCompleted(int result)870 void SparseControl::DoChildIOCompleted(int result) {
871   LogChildOperationEnd(entry_->net_log(), operation_, result);
872   if (result < 0) {
873     // We fail the whole operation if we encounter an error.
874     result_ = result;
875     return;
876   }
877 
878   UpdateRange(result);
879 
880   result_ += result;
881   offset_ += result;
882   buf_len_ -= result;
883 
884   // We'll be reusing the user provided buffer for the next chunk.
885   if (buf_len_ && user_buf_.get())
886     user_buf_->DidConsume(result);
887 }
888 
OnChildIOCompleted(int result)889 void SparseControl::OnChildIOCompleted(int result) {
890   DCHECK_NE(net::ERR_IO_PENDING, result);
891   DoChildIOCompleted(result);
892 
893   if (abort_) {
894     // We'll return the current result of the operation, which may be less than
895     // the bytes to read or write, but the user cancelled the operation.
896     abort_ = false;
897     if (entry_->net_log().IsCapturing()) {
898       entry_->net_log().AddEvent(net::NetLogEventType::CANCELLED);
899       entry_->net_log().EndEvent(GetSparseEventType(operation_));
900     }
901     // We have an indirect reference to this object for every callback so if
902     // there is only one callback, we may delete this object before reaching
903     // DoAbortCallbacks.
904     bool has_abort_callbacks = !abort_callbacks_.empty();
905     DoUserCallback();
906     if (has_abort_callbacks)
907       DoAbortCallbacks();
908     return;
909   }
910 
911   // We are running a callback from the message loop. It's time to restart what
912   // we were doing before.
913   DoChildrenIO();
914 }
915 
DoUserCallback()916 void SparseControl::DoUserCallback() {
917   DCHECK(!user_callback_.is_null());
918   CompletionOnceCallback cb = std::move(user_callback_);
919   user_buf_ = nullptr;
920   pending_ = false;
921   operation_ = kNoOperation;
922   int rv = result_;
923   entry_->Release();  // Don't touch object after this line.
924   std::move(cb).Run(rv);
925 }
926 
DoAbortCallbacks()927 void SparseControl::DoAbortCallbacks() {
928   std::vector<CompletionOnceCallback> abort_callbacks;
929   abort_callbacks.swap(abort_callbacks_);
930 
931   for (CompletionOnceCallback& callback : abort_callbacks) {
932     // Releasing all references to entry_ may result in the destruction of this
933     // object so we should not be touching it after the last Release().
934     entry_->Release();
935     std::move(callback).Run(net::OK);
936   }
937 }
938 
939 }  // namespace disk_cache
940