• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifdef UNSAFE_BUFFERS_BUILD
6 // TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
7 #pragma allow_unsafe_buffers
8 #endif
9 
10 #include "net/ntlm/ntlm.h"
11 
12 #include <string.h>
13 
14 #include "base/check_op.h"
15 #include "base/containers/span.h"
16 #include "base/notreached.h"
17 #include "base/strings/utf_string_conversions.h"
18 #include "net/base/net_string_util.h"
19 #include "net/ntlm/ntlm_buffer_writer.h"
20 #include "net/ntlm/ntlm_constants.h"
21 #include "third_party/boringssl/src/include/openssl/des.h"
22 #include "third_party/boringssl/src/include/openssl/hmac.h"
23 #include "third_party/boringssl/src/include/openssl/md4.h"
24 #include "third_party/boringssl/src/include/openssl/md5.h"
25 
26 namespace net::ntlm {
27 
28 namespace {
29 
30 // Takes the parsed target info in |av_pairs| and performs the following
31 // actions.
32 //
33 // 1) If a |TargetInfoAvId::kTimestamp| AvPair exists, |server_timestamp|
34 //    is set to the payload.
35 // 2) If |is_mic_enabled| is true, the existing |TargetInfoAvId::kFlags| AvPair
36 //    will have the |TargetInfoAvFlags::kMicPresent| bit set. If an existing
37 //    flags AvPair does not already exist, a new one is added with the value of
38 //    |TargetInfoAvFlags::kMicPresent|.
39 // 3) If |is_epa_enabled| is true, two new AvPair entries will be added to
40 //    |av_pairs|. The first will be of type |TargetInfoAvId::kChannelBindings|
41 //    and contains MD5(|channel_bindings|) as the payload. The second will be
42 //    of type |TargetInfoAvId::kTargetName| and contains |spn| as a little
43 //    endian UTF16 string.
44 // 4) Sets |target_info_len| to the size of |av_pairs| when serialized into
45 //    a payload.
UpdateTargetInfoAvPairs(bool is_mic_enabled,bool is_epa_enabled,const std::string & channel_bindings,const std::string & spn,std::vector<AvPair> * av_pairs,uint64_t * server_timestamp,size_t * target_info_len)46 void UpdateTargetInfoAvPairs(bool is_mic_enabled,
47                              bool is_epa_enabled,
48                              const std::string& channel_bindings,
49                              const std::string& spn,
50                              std::vector<AvPair>* av_pairs,
51                              uint64_t* server_timestamp,
52                              size_t* target_info_len) {
53   // Do a pass to update flags and calculate current length and
54   // pull out the server timestamp if it is there.
55   *server_timestamp = UINT64_MAX;
56   *target_info_len = 0;
57 
58   bool need_flags_added = is_mic_enabled;
59   for (AvPair& pair : *av_pairs) {
60     *target_info_len += pair.avlen + kAvPairHeaderLen;
61     switch (pair.avid) {
62       case TargetInfoAvId::kFlags:
63         // The parsing phase already set the payload to the |flags| field.
64         if (is_mic_enabled) {
65           pair.flags = pair.flags | TargetInfoAvFlags::kMicPresent;
66         }
67 
68         need_flags_added = false;
69         break;
70       case TargetInfoAvId::kTimestamp:
71         // The parsing phase already set the payload to the |timestamp| field.
72         *server_timestamp = pair.timestamp;
73         break;
74       case TargetInfoAvId::kEol:
75       case TargetInfoAvId::kChannelBindings:
76       case TargetInfoAvId::kTargetName:
77         // The terminator, |kEol|, should already have been removed from the
78         // end of the list and would have been rejected if it has been inside
79         // the list. Additionally |kChannelBindings| and |kTargetName| pairs
80         // would have been rejected during the initial parsing. See
81         // |NtlmBufferReader::ReadTargetInfo|.
82         NOTREACHED();
83       default:
84         // Ignore entries we don't care about.
85         break;
86     }
87   }
88 
89   if (need_flags_added) {
90     DCHECK(is_mic_enabled);
91     AvPair flags_pair(TargetInfoAvId::kFlags, sizeof(uint32_t));
92     flags_pair.flags = TargetInfoAvFlags::kMicPresent;
93 
94     av_pairs->push_back(flags_pair);
95     *target_info_len += kAvPairHeaderLen + flags_pair.avlen;
96   }
97 
98   if (is_epa_enabled) {
99     std::vector<uint8_t> channel_bindings_hash(kChannelBindingsHashLen, 0);
100 
101     // Hash the channel bindings if they exist otherwise they remain zeros.
102     if (!channel_bindings.empty()) {
103       GenerateChannelBindingHashV2(
104           channel_bindings, *base::span(channel_bindings_hash)
105                                  .to_fixed_extent<kChannelBindingsHashLen>());
106     }
107 
108     av_pairs->emplace_back(TargetInfoAvId::kChannelBindings,
109                            std::move(channel_bindings_hash));
110 
111     // Convert the SPN to little endian unicode.
112     std::u16string spn16 = base::UTF8ToUTF16(spn);
113     NtlmBufferWriter spn_writer(spn16.length() * 2);
114     bool spn_writer_result =
115         spn_writer.WriteUtf16String(spn16) && spn_writer.IsEndOfBuffer();
116     DCHECK(spn_writer_result);
117 
118     av_pairs->emplace_back(TargetInfoAvId::kTargetName, spn_writer.Pass());
119 
120     // Add the length of the two new AV Pairs to the total length.
121     *target_info_len +=
122         (2 * kAvPairHeaderLen) + kChannelBindingsHashLen + (spn16.length() * 2);
123   }
124 
125   // Add extra space for the terminator at the end.
126   *target_info_len += kAvPairHeaderLen;
127 }
128 
WriteUpdatedTargetInfo(const std::vector<AvPair> & av_pairs,size_t updated_target_info_len)129 std::vector<uint8_t> WriteUpdatedTargetInfo(const std::vector<AvPair>& av_pairs,
130                                             size_t updated_target_info_len) {
131   bool result = true;
132   NtlmBufferWriter writer(updated_target_info_len);
133   for (const AvPair& pair : av_pairs) {
134     result = writer.WriteAvPair(pair);
135     DCHECK(result);
136   }
137 
138   result = writer.WriteAvPairTerminator() && writer.IsEndOfBuffer();
139   DCHECK(result);
140   return writer.Pass();
141 }
142 
143 // Reads 7 bytes (56 bits) from |key_56| and writes them into 8 bytes of
144 // |key_64| with 7 bits in every byte. The least significant bits are
145 // undefined and a subsequent operation will set those bits with a parity bit.
146 // |key_56| must contain 7 bytes.
147 // |key_64| must contain 8 bytes.
Splay56To64(base::span<const uint8_t,7> key_56,base::span<uint8_t,8> key_64)148 void Splay56To64(base::span<const uint8_t, 7> key_56,
149                  base::span<uint8_t, 8> key_64) {
150   key_64[0] = key_56[0];
151   key_64[1] = key_56[0] << 7 | key_56[1] >> 1;
152   key_64[2] = key_56[1] << 6 | key_56[2] >> 2;
153   key_64[3] = key_56[2] << 5 | key_56[3] >> 3;
154   key_64[4] = key_56[3] << 4 | key_56[4] >> 4;
155   key_64[5] = key_56[4] << 3 | key_56[5] >> 5;
156   key_64[6] = key_56[5] << 2 | key_56[6] >> 6;
157   key_64[7] = key_56[6] << 1;
158 }
159 
160 }  // namespace
161 
Create3DesKeysFromNtlmHash(base::span<const uint8_t,kNtlmHashLen> ntlm_hash,base::span<uint8_t,24> keys)162 void Create3DesKeysFromNtlmHash(
163     base::span<const uint8_t, kNtlmHashLen> ntlm_hash,
164     base::span<uint8_t, 24> keys) {
165   // Put the first 112 bits from |ntlm_hash| into the first 16 bytes of
166   // |keys|.
167   Splay56To64(ntlm_hash.first<7>(), keys.first<8>());
168   Splay56To64(ntlm_hash.subspan<7, 7>(), keys.subspan<8, 8>());
169 
170   // Put the next 2x 7 bits in bytes 16 and 17 of |keys|, then
171   // the last 2 bits in byte 18, then zero pad the rest of the final key.
172   keys[16] = ntlm_hash[14];
173   keys[17] = ntlm_hash[14] << 7 | ntlm_hash[15] >> 1;
174   keys[18] = ntlm_hash[15] << 6;
175   memset(keys.data() + 19, 0, 5);
176 }
177 
GenerateNtlmHashV1(const std::u16string & password,base::span<uint8_t,kNtlmHashLen> hash)178 void GenerateNtlmHashV1(const std::u16string& password,
179                         base::span<uint8_t, kNtlmHashLen> hash) {
180   size_t length = password.length() * 2;
181   NtlmBufferWriter writer(length);
182 
183   // The writer will handle the big endian case if necessary.
184   bool result = writer.WriteUtf16String(password) && writer.IsEndOfBuffer();
185   DCHECK(result);
186 
187   MD4(writer.GetBuffer().data(), writer.GetLength(), hash.data());
188 }
189 
GenerateResponseDesl(base::span<const uint8_t,kNtlmHashLen> hash,base::span<const uint8_t,kChallengeLen> challenge,base::span<uint8_t,kResponseLenV1> response)190 void GenerateResponseDesl(base::span<const uint8_t, kNtlmHashLen> hash,
191                           base::span<const uint8_t, kChallengeLen> challenge,
192                           base::span<uint8_t, kResponseLenV1> response) {
193   constexpr size_t block_count = 3;
194   constexpr size_t block_size = sizeof(DES_cblock);
195   static_assert(kChallengeLen == block_size,
196                 "kChallengeLen must equal block_size");
197   static_assert(kResponseLenV1 == block_count * block_size,
198                 "kResponseLenV1 must equal block_count * block_size");
199 
200   const DES_cblock* challenge_block =
201       reinterpret_cast<const DES_cblock*>(challenge.data());
202   uint8_t keys[block_count * block_size];
203 
204   // Map the NTLM hash to three 8 byte DES keys, with 7 bits of the key in each
205   // byte and the least significant bit set with odd parity. Then encrypt the
206   // 8 byte challenge with each of the three keys. This produces three 8 byte
207   // encrypted blocks into |response|.
208   Create3DesKeysFromNtlmHash(hash, keys);
209   for (size_t ix = 0; ix < block_count * block_size; ix += block_size) {
210     DES_cblock* key_block = reinterpret_cast<DES_cblock*>(keys + ix);
211     DES_cblock* response_block =
212         reinterpret_cast<DES_cblock*>(response.data() + ix);
213 
214     DES_key_schedule key_schedule;
215     DES_set_odd_parity(key_block);
216     DES_set_key(key_block, &key_schedule);
217     DES_ecb_encrypt(challenge_block, response_block, &key_schedule,
218                     DES_ENCRYPT);
219   }
220 }
221 
GenerateNtlmResponseV1(const std::u16string & password,base::span<const uint8_t,kChallengeLen> server_challenge,base::span<uint8_t,kResponseLenV1> ntlm_response)222 void GenerateNtlmResponseV1(
223     const std::u16string& password,
224     base::span<const uint8_t, kChallengeLen> server_challenge,
225     base::span<uint8_t, kResponseLenV1> ntlm_response) {
226   uint8_t ntlm_hash[kNtlmHashLen];
227   GenerateNtlmHashV1(password, ntlm_hash);
228   GenerateResponseDesl(ntlm_hash, server_challenge, ntlm_response);
229 }
230 
GenerateResponsesV1(const std::u16string & password,base::span<const uint8_t,kChallengeLen> server_challenge,base::span<uint8_t,kResponseLenV1> lm_response,base::span<uint8_t,kResponseLenV1> ntlm_response)231 void GenerateResponsesV1(
232     const std::u16string& password,
233     base::span<const uint8_t, kChallengeLen> server_challenge,
234     base::span<uint8_t, kResponseLenV1> lm_response,
235     base::span<uint8_t, kResponseLenV1> ntlm_response) {
236   GenerateNtlmResponseV1(password, server_challenge, ntlm_response);
237 
238   // In NTLM v1 (with LMv1 disabled), the lm_response and ntlm_response are the
239   // same. So just copy the ntlm_response into the lm_response.
240   memcpy(lm_response.data(), ntlm_response.data(), kResponseLenV1);
241 }
242 
GenerateLMResponseV1WithSessionSecurity(base::span<const uint8_t,kChallengeLen> client_challenge,base::span<uint8_t,kResponseLenV1> lm_response)243 void GenerateLMResponseV1WithSessionSecurity(
244     base::span<const uint8_t, kChallengeLen> client_challenge,
245     base::span<uint8_t, kResponseLenV1> lm_response) {
246   // In NTLM v1 with Session Security (aka NTLM2) the lm_response is 8 bytes of
247   // client challenge and 16 bytes of zeros. (See 3.3.1)
248   memcpy(lm_response.data(), client_challenge.data(), kChallengeLen);
249   memset(lm_response.data() + kChallengeLen, 0, kResponseLenV1 - kChallengeLen);
250 }
251 
GenerateSessionHashV1WithSessionSecurity(base::span<const uint8_t,kChallengeLen> server_challenge,base::span<const uint8_t,kChallengeLen> client_challenge,base::span<uint8_t,kNtlmHashLen> session_hash)252 void GenerateSessionHashV1WithSessionSecurity(
253     base::span<const uint8_t, kChallengeLen> server_challenge,
254     base::span<const uint8_t, kChallengeLen> client_challenge,
255     base::span<uint8_t, kNtlmHashLen> session_hash) {
256   MD5_CTX ctx;
257   MD5_Init(&ctx);
258   MD5_Update(&ctx, server_challenge.data(), kChallengeLen);
259   MD5_Update(&ctx, client_challenge.data(), kChallengeLen);
260   MD5_Final(session_hash.data(), &ctx);
261 }
262 
GenerateNtlmResponseV1WithSessionSecurity(const std::u16string & password,base::span<const uint8_t,kChallengeLen> server_challenge,base::span<const uint8_t,kChallengeLen> client_challenge,base::span<uint8_t,kResponseLenV1> ntlm_response)263 void GenerateNtlmResponseV1WithSessionSecurity(
264     const std::u16string& password,
265     base::span<const uint8_t, kChallengeLen> server_challenge,
266     base::span<const uint8_t, kChallengeLen> client_challenge,
267     base::span<uint8_t, kResponseLenV1> ntlm_response) {
268   // Generate the NTLMv1 Hash.
269   uint8_t ntlm_hash[kNtlmHashLen];
270   GenerateNtlmHashV1(password, ntlm_hash);
271 
272   // Generate the NTLMv1 Session Hash.
273   uint8_t session_hash[kNtlmHashLen];
274   GenerateSessionHashV1WithSessionSecurity(server_challenge, client_challenge,
275                                            session_hash);
276 
277   GenerateResponseDesl(ntlm_hash,
278                        base::span(session_hash).first<kChallengeLen>(),
279                        ntlm_response);
280 }
281 
GenerateResponsesV1WithSessionSecurity(const std::u16string & password,base::span<const uint8_t,kChallengeLen> server_challenge,base::span<const uint8_t,kChallengeLen> client_challenge,base::span<uint8_t,kResponseLenV1> lm_response,base::span<uint8_t,kResponseLenV1> ntlm_response)282 void GenerateResponsesV1WithSessionSecurity(
283     const std::u16string& password,
284     base::span<const uint8_t, kChallengeLen> server_challenge,
285     base::span<const uint8_t, kChallengeLen> client_challenge,
286     base::span<uint8_t, kResponseLenV1> lm_response,
287     base::span<uint8_t, kResponseLenV1> ntlm_response) {
288   GenerateLMResponseV1WithSessionSecurity(client_challenge, lm_response);
289   GenerateNtlmResponseV1WithSessionSecurity(password, server_challenge,
290                                             client_challenge, ntlm_response);
291 }
292 
GenerateNtlmHashV2(const std::u16string & domain,const std::u16string & username,const std::u16string & password,base::span<uint8_t,kNtlmHashLen> v2_hash)293 void GenerateNtlmHashV2(const std::u16string& domain,
294                         const std::u16string& username,
295                         const std::u16string& password,
296                         base::span<uint8_t, kNtlmHashLen> v2_hash) {
297   // NOTE: According to [MS-NLMP] Section 3.3.2 only the username and not the
298   // domain is uppercased.
299 
300   // TODO(crbug.com/40674019): Using a locale-sensitive upper casing
301   // algorithm is problematic. A more predictable approach would be to only
302   // uppercase ASCII characters, so the hash does not change depending on the
303   // user's locale.
304   std::u16string upper_username;
305   bool result = ToUpperUsingLocale(username, &upper_username);
306   DCHECK(result);
307 
308   uint8_t v1_hash[kNtlmHashLen];
309   GenerateNtlmHashV1(password, v1_hash);
310   NtlmBufferWriter input_writer((upper_username.length() + domain.length()) *
311                                 2);
312   bool writer_result = input_writer.WriteUtf16String(upper_username) &&
313                        input_writer.WriteUtf16String(domain) &&
314                        input_writer.IsEndOfBuffer();
315   DCHECK(writer_result);
316 
317   unsigned int outlen = kNtlmHashLen;
318   uint8_t* out_hash =
319       HMAC(EVP_md5(), v1_hash, sizeof(v1_hash), input_writer.GetBuffer().data(),
320            input_writer.GetLength(), v2_hash.data(), &outlen);
321   DCHECK_EQ(v2_hash.data(), out_hash);
322   DCHECK_EQ(sizeof(v1_hash), outlen);
323 }
324 
GenerateProofInputV2(uint64_t timestamp,base::span<const uint8_t,kChallengeLen> client_challenge)325 std::vector<uint8_t> GenerateProofInputV2(
326     uint64_t timestamp,
327     base::span<const uint8_t, kChallengeLen> client_challenge) {
328   NtlmBufferWriter writer(kProofInputLenV2);
329   bool result = writer.WriteUInt16(kProofInputVersionV2) &&
330                 writer.WriteZeros(6) && writer.WriteUInt64(timestamp) &&
331                 writer.WriteBytes(client_challenge) && writer.WriteZeros(4) &&
332                 writer.IsEndOfBuffer();
333 
334   DCHECK(result);
335   return writer.Pass();
336 }
337 
GenerateNtlmProofV2(base::span<const uint8_t,kNtlmHashLen> v2_hash,base::span<const uint8_t,kChallengeLen> server_challenge,base::span<const uint8_t,kProofInputLenV2> v2_input,base::span<const uint8_t> target_info,base::span<uint8_t,kNtlmProofLenV2> v2_proof)338 void GenerateNtlmProofV2(
339     base::span<const uint8_t, kNtlmHashLen> v2_hash,
340     base::span<const uint8_t, kChallengeLen> server_challenge,
341     base::span<const uint8_t, kProofInputLenV2> v2_input,
342     base::span<const uint8_t> target_info,
343     base::span<uint8_t, kNtlmProofLenV2> v2_proof) {
344   bssl::ScopedHMAC_CTX ctx;
345   HMAC_Init_ex(ctx.get(), v2_hash.data(), kNtlmHashLen, EVP_md5(), nullptr);
346   DCHECK_EQ(kNtlmProofLenV2, HMAC_size(ctx.get()));
347   HMAC_Update(ctx.get(), server_challenge.data(), kChallengeLen);
348   HMAC_Update(ctx.get(), v2_input.data(), kProofInputLenV2);
349   HMAC_Update(ctx.get(), target_info.data(), target_info.size());
350   const uint32_t zero = 0;
351   HMAC_Update(ctx.get(), reinterpret_cast<const uint8_t*>(&zero),
352               sizeof(uint32_t));
353   HMAC_Final(ctx.get(), v2_proof.data(), nullptr);
354 }
355 
GenerateSessionBaseKeyV2(base::span<const uint8_t,kNtlmHashLen> v2_hash,base::span<const uint8_t,kNtlmProofLenV2> v2_proof,base::span<uint8_t,kSessionKeyLenV2> session_key)356 void GenerateSessionBaseKeyV2(
357     base::span<const uint8_t, kNtlmHashLen> v2_hash,
358     base::span<const uint8_t, kNtlmProofLenV2> v2_proof,
359     base::span<uint8_t, kSessionKeyLenV2> session_key) {
360   unsigned int outlen = kSessionKeyLenV2;
361   uint8_t* result =
362       HMAC(EVP_md5(), v2_hash.data(), kNtlmHashLen, v2_proof.data(),
363            kNtlmProofLenV2, session_key.data(), &outlen);
364   DCHECK_EQ(session_key.data(), result);
365   DCHECK_EQ(kSessionKeyLenV2, outlen);
366 }
367 
GenerateChannelBindingHashV2(const std::string & channel_bindings,base::span<uint8_t,kNtlmHashLen> channel_bindings_hash)368 void GenerateChannelBindingHashV2(
369     const std::string& channel_bindings,
370     base::span<uint8_t, kNtlmHashLen> channel_bindings_hash) {
371   NtlmBufferWriter writer(kEpaUnhashedStructHeaderLen);
372   bool result = writer.WriteZeros(16) &&
373                 writer.WriteUInt32(channel_bindings.length()) &&
374                 writer.IsEndOfBuffer();
375   DCHECK(result);
376 
377   MD5_CTX ctx;
378   MD5_Init(&ctx);
379   MD5_Update(&ctx, writer.GetBuffer().data(), writer.GetBuffer().size());
380   MD5_Update(&ctx, channel_bindings.data(), channel_bindings.size());
381   MD5_Final(channel_bindings_hash.data(), &ctx);
382 }
383 
GenerateMicV2(base::span<const uint8_t,kSessionKeyLenV2> session_key,base::span<const uint8_t> negotiate_msg,base::span<const uint8_t> challenge_msg,base::span<const uint8_t> authenticate_msg,base::span<uint8_t,kMicLenV2> mic)384 void GenerateMicV2(base::span<const uint8_t, kSessionKeyLenV2> session_key,
385                    base::span<const uint8_t> negotiate_msg,
386                    base::span<const uint8_t> challenge_msg,
387                    base::span<const uint8_t> authenticate_msg,
388                    base::span<uint8_t, kMicLenV2> mic) {
389   bssl::ScopedHMAC_CTX ctx;
390   HMAC_Init_ex(ctx.get(), session_key.data(), kSessionKeyLenV2, EVP_md5(),
391                nullptr);
392   DCHECK_EQ(kMicLenV2, HMAC_size(ctx.get()));
393   HMAC_Update(ctx.get(), negotiate_msg.data(), negotiate_msg.size());
394   HMAC_Update(ctx.get(), challenge_msg.data(), challenge_msg.size());
395   HMAC_Update(ctx.get(), authenticate_msg.data(), authenticate_msg.size());
396   HMAC_Final(ctx.get(), mic.data(), nullptr);
397 }
398 
GenerateUpdatedTargetInfo(bool is_mic_enabled,bool is_epa_enabled,const std::string & channel_bindings,const std::string & spn,const std::vector<AvPair> & av_pairs,uint64_t * server_timestamp)399 NET_EXPORT_PRIVATE std::vector<uint8_t> GenerateUpdatedTargetInfo(
400     bool is_mic_enabled,
401     bool is_epa_enabled,
402     const std::string& channel_bindings,
403     const std::string& spn,
404     const std::vector<AvPair>& av_pairs,
405     uint64_t* server_timestamp) {
406   size_t updated_target_info_len = 0;
407   std::vector<AvPair> updated_av_pairs(av_pairs);
408   UpdateTargetInfoAvPairs(is_mic_enabled, is_epa_enabled, channel_bindings, spn,
409                           &updated_av_pairs, server_timestamp,
410                           &updated_target_info_len);
411   return WriteUpdatedTargetInfo(updated_av_pairs, updated_target_info_len);
412 }
413 
414 }  // namespace net::ntlm
415