• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: flat_hash_map.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::flat_hash_map<K, V>` is an unordered associative container of
20 // unique keys and associated values designed to be a more efficient replacement
21 // for `std::unordered_map`. Like `unordered_map`, search, insertion, and
22 // deletion of map elements can be done as an `O(1)` operation. However,
23 // `flat_hash_map` (and other unordered associative containers known as the
24 // collection of Abseil "Swiss tables") contain other optimizations that result
25 // in both memory and computation advantages.
26 //
27 // In most cases, your default choice for a hash map should be a map of type
28 // `flat_hash_map`.
29 //
30 // `flat_hash_map` is not exception-safe.
31 
32 #ifndef ABSL_CONTAINER_FLAT_HASH_MAP_H_
33 #define ABSL_CONTAINER_FLAT_HASH_MAP_H_
34 
35 #include <cstddef>
36 #include <memory>
37 #include <type_traits>
38 #include <utility>
39 
40 #include "absl/algorithm/container.h"
41 #include "absl/base/attributes.h"
42 #include "absl/base/macros.h"
43 #include "absl/container/hash_container_defaults.h"
44 #include "absl/container/internal/container_memory.h"
45 #include "absl/container/internal/raw_hash_map.h"  // IWYU pragma: export
46 #include "absl/meta/type_traits.h"
47 
48 namespace absl {
49 ABSL_NAMESPACE_BEGIN
50 namespace container_internal {
51 template <class K, class V>
52 struct FlatHashMapPolicy;
53 }  // namespace container_internal
54 
55 // -----------------------------------------------------------------------------
56 // absl::flat_hash_map
57 // -----------------------------------------------------------------------------
58 //
59 // An `absl::flat_hash_map<K, V>` is an unordered associative container which
60 // has been optimized for both speed and memory footprint in most common use
61 // cases. Its interface is similar to that of `std::unordered_map<K, V>` with
62 // the following notable differences:
63 //
64 // * Requires keys that are CopyConstructible
65 // * Requires values that are MoveConstructible
66 // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
67 //   `insert()`, provided that the map is provided a compatible heterogeneous
68 //   hashing function and equality operator. See below for details.
69 // * Invalidates any references and pointers to elements within the table after
70 //   `rehash()` and when the table is moved.
71 // * Contains a `capacity()` member function indicating the number of element
72 //   slots (open, deleted, and empty) within the hash map.
73 // * Returns `void` from the `erase(iterator)` overload.
74 //
75 // By default, `flat_hash_map` uses the `absl::Hash` hashing framework.
76 // All fundamental and Abseil types that support the `absl::Hash` framework have
77 // a compatible equality operator for comparing insertions into `flat_hash_map`.
78 // If your type is not yet supported by the `absl::Hash` framework, see
79 // absl/hash/hash.h for information on extending Abseil hashing to user-defined
80 // types.
81 //
82 // Using `absl::flat_hash_map` at interface boundaries in dynamically loaded
83 // libraries (e.g. .dll, .so) is unsupported due to way `absl::Hash` values may
84 // be randomized across dynamically loaded libraries.
85 //
86 // To achieve heterogeneous lookup for custom types either `Hash` and `Eq` type
87 // parameters can be used or `T` should have public inner types
88 // `absl_container_hash` and (optionally) `absl_container_eq`. In either case,
89 // `typename Hash::is_transparent` and `typename Eq::is_transparent` should be
90 // well-formed. Both types are basically functors:
91 // * `Hash` should support `size_t operator()(U val) const` that returns a hash
92 // for the given `val`.
93 // * `Eq` should support `bool operator()(U lhs, V rhs) const` that returns true
94 // if `lhs` is equal to `rhs`.
95 //
96 // In most cases `T` needs only to provide the `absl_container_hash`. In this
97 // case `std::equal_to<void>` will be used instead of `eq` part.
98 //
99 // NOTE: A `flat_hash_map` stores its value types directly inside its
100 // implementation array to avoid memory indirection. Because a `flat_hash_map`
101 // is designed to move data when rehashed, map values will not retain pointer
102 // stability. If you require pointer stability, or if your values are large,
103 // consider using `absl::flat_hash_map<Key, std::unique_ptr<Value>>` instead.
104 // If your types are not moveable or you require pointer stability for keys,
105 // consider `absl::node_hash_map`.
106 //
107 // Example:
108 //
109 //   // Create a flat hash map of three strings (that map to strings)
110 //   absl::flat_hash_map<std::string, std::string> ducks =
111 //     {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
112 //
113 //  // Insert a new element into the flat hash map
114 //  ducks.insert({"d", "donald"});
115 //
116 //  // Force a rehash of the flat hash map
117 //  ducks.rehash(0);
118 //
119 //  // Find the element with the key "b"
120 //  std::string search_key = "b";
121 //  auto result = ducks.find(search_key);
122 //  if (result != ducks.end()) {
123 //    std::cout << "Result: " << result->second << std::endl;
124 //  }
125 template <class K, class V, class Hash = DefaultHashContainerHash<K>,
126           class Eq = DefaultHashContainerEq<K>,
127           class Allocator = std::allocator<std::pair<const K, V>>>
128 class ABSL_ATTRIBUTE_OWNER flat_hash_map
129     : public absl::container_internal::raw_hash_map<
130           absl::container_internal::FlatHashMapPolicy<K, V>, Hash, Eq,
131           Allocator> {
132   using Base = typename flat_hash_map::raw_hash_map;
133 
134  public:
135   // Constructors and Assignment Operators
136   //
137   // A flat_hash_map supports the same overload set as `std::unordered_map`
138   // for construction and assignment:
139   //
140   // *  Default constructor
141   //
142   //    // No allocation for the table's elements is made.
143   //    absl::flat_hash_map<int, std::string> map1;
144   //
145   // * Initializer List constructor
146   //
147   //   absl::flat_hash_map<int, std::string> map2 =
148   //       {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
149   //
150   // * Copy constructor
151   //
152   //   absl::flat_hash_map<int, std::string> map3(map2);
153   //
154   // * Copy assignment operator
155   //
156   //  // Hash functor and Comparator are copied as well
157   //  absl::flat_hash_map<int, std::string> map4;
158   //  map4 = map3;
159   //
160   // * Move constructor
161   //
162   //   // Move is guaranteed efficient
163   //   absl::flat_hash_map<int, std::string> map5(std::move(map4));
164   //
165   // * Move assignment operator
166   //
167   //   // May be efficient if allocators are compatible
168   //   absl::flat_hash_map<int, std::string> map6;
169   //   map6 = std::move(map5);
170   //
171   // * Range constructor
172   //
173   //   std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
174   //   absl::flat_hash_map<int, std::string> map7(v.begin(), v.end());
flat_hash_map()175   flat_hash_map() {}
176   using Base::Base;
177 
178   // flat_hash_map::begin()
179   //
180   // Returns an iterator to the beginning of the `flat_hash_map`.
181   using Base::begin;
182 
183   // flat_hash_map::cbegin()
184   //
185   // Returns a const iterator to the beginning of the `flat_hash_map`.
186   using Base::cbegin;
187 
188   // flat_hash_map::cend()
189   //
190   // Returns a const iterator to the end of the `flat_hash_map`.
191   using Base::cend;
192 
193   // flat_hash_map::end()
194   //
195   // Returns an iterator to the end of the `flat_hash_map`.
196   using Base::end;
197 
198   // flat_hash_map::capacity()
199   //
200   // Returns the number of element slots (assigned, deleted, and empty)
201   // available within the `flat_hash_map`.
202   //
203   // NOTE: this member function is particular to `absl::flat_hash_map` and is
204   // not provided in the `std::unordered_map` API.
205   using Base::capacity;
206 
207   // flat_hash_map::empty()
208   //
209   // Returns whether or not the `flat_hash_map` is empty.
210   using Base::empty;
211 
212   // flat_hash_map::max_size()
213   //
214   // Returns the largest theoretical possible number of elements within a
215   // `flat_hash_map` under current memory constraints. This value can be thought
216   // of the largest value of `std::distance(begin(), end())` for a
217   // `flat_hash_map<K, V>`.
218   using Base::max_size;
219 
220   // flat_hash_map::size()
221   //
222   // Returns the number of elements currently within the `flat_hash_map`.
223   using Base::size;
224 
225   // flat_hash_map::clear()
226   //
227   // Removes all elements from the `flat_hash_map`. Invalidates any references,
228   // pointers, or iterators referring to contained elements.
229   //
230   // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
231   // the underlying buffer call `erase(begin(), end())`.
232   using Base::clear;
233 
234   // flat_hash_map::erase()
235   //
236   // Erases elements within the `flat_hash_map`. Erasing does not trigger a
237   // rehash. Overloads are listed below.
238   //
239   // void erase(const_iterator pos):
240   //
241   //   Erases the element at `position` of the `flat_hash_map`, returning
242   //   `void`.
243   //
244   //   NOTE: returning `void` in this case is different than that of STL
245   //   containers in general and `std::unordered_map` in particular (which
246   //   return an iterator to the element following the erased element). If that
247   //   iterator is needed, simply post increment the iterator:
248   //
249   //     map.erase(it++);
250   //
251   // iterator erase(const_iterator first, const_iterator last):
252   //
253   //   Erases the elements in the open interval [`first`, `last`), returning an
254   //   iterator pointing to `last`. The special case of calling
255   //   `erase(begin(), end())` resets the reserved growth such that if
256   //   `reserve(N)` has previously been called and there has been no intervening
257   //   call to `clear()`, then after calling `erase(begin(), end())`, it is safe
258   //   to assume that inserting N elements will not cause a rehash.
259   //
260   // size_type erase(const key_type& key):
261   //
262   //   Erases the element with the matching key, if it exists, returning the
263   //   number of elements erased (0 or 1).
264   using Base::erase;
265 
266   // flat_hash_map::insert()
267   //
268   // Inserts an element of the specified value into the `flat_hash_map`,
269   // returning an iterator pointing to the newly inserted element, provided that
270   // an element with the given key does not already exist. If rehashing occurs
271   // due to the insertion, all iterators are invalidated. Overloads are listed
272   // below.
273   //
274   // std::pair<iterator,bool> insert(const init_type& value):
275   //
276   //   Inserts a value into the `flat_hash_map`. Returns a pair consisting of an
277   //   iterator to the inserted element (or to the element that prevented the
278   //   insertion) and a bool denoting whether the insertion took place.
279   //
280   // std::pair<iterator,bool> insert(T&& value):
281   // std::pair<iterator,bool> insert(init_type&& value):
282   //
283   //   Inserts a moveable value into the `flat_hash_map`. Returns a pair
284   //   consisting of an iterator to the inserted element (or to the element that
285   //   prevented the insertion) and a bool denoting whether the insertion took
286   //   place.
287   //
288   // iterator insert(const_iterator hint, const init_type& value):
289   // iterator insert(const_iterator hint, T&& value):
290   // iterator insert(const_iterator hint, init_type&& value);
291   //
292   //   Inserts a value, using the position of `hint` as a non-binding suggestion
293   //   for where to begin the insertion search. Returns an iterator to the
294   //   inserted element, or to the existing element that prevented the
295   //   insertion.
296   //
297   // void insert(InputIterator first, InputIterator last):
298   //
299   //   Inserts a range of values [`first`, `last`).
300   //
301   //   NOTE: Although the STL does not specify which element may be inserted if
302   //   multiple keys compare equivalently, for `flat_hash_map` we guarantee the
303   //   first match is inserted.
304   //
305   // void insert(std::initializer_list<init_type> ilist):
306   //
307   //   Inserts the elements within the initializer list `ilist`.
308   //
309   //   NOTE: Although the STL does not specify which element may be inserted if
310   //   multiple keys compare equivalently within the initializer list, for
311   //   `flat_hash_map` we guarantee the first match is inserted.
312   using Base::insert;
313 
314   // flat_hash_map::insert_or_assign()
315   //
316   // Inserts an element of the specified value into the `flat_hash_map` provided
317   // that a value with the given key does not already exist, or replaces it with
318   // the element value if a key for that value already exists, returning an
319   // iterator pointing to the newly inserted element.  If rehashing occurs due
320   // to the insertion, all existing iterators are invalidated. Overloads are
321   // listed below.
322   //
323   // pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
324   // pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
325   //
326   //   Inserts/Assigns (or moves) the element of the specified key into the
327   //   `flat_hash_map`.
328   //
329   // iterator insert_or_assign(const_iterator hint,
330   //                           const init_type& k, T&& obj):
331   // iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
332   //
333   //   Inserts/Assigns (or moves) the element of the specified key into the
334   //   `flat_hash_map` using the position of `hint` as a non-binding suggestion
335   //   for where to begin the insertion search.
336   using Base::insert_or_assign;
337 
338   // flat_hash_map::emplace()
339   //
340   // Inserts an element of the specified value by constructing it in-place
341   // within the `flat_hash_map`, provided that no element with the given key
342   // already exists.
343   //
344   // The element may be constructed even if there already is an element with the
345   // key in the container, in which case the newly constructed element will be
346   // destroyed immediately. Prefer `try_emplace()` unless your key is not
347   // copyable or moveable.
348   //
349   // If rehashing occurs due to the insertion, all iterators are invalidated.
350   using Base::emplace;
351 
352   // flat_hash_map::emplace_hint()
353   //
354   // Inserts an element of the specified value by constructing it in-place
355   // within the `flat_hash_map`, using the position of `hint` as a non-binding
356   // suggestion for where to begin the insertion search, and only inserts
357   // provided that no element with the given key already exists.
358   //
359   // The element may be constructed even if there already is an element with the
360   // key in the container, in which case the newly constructed element will be
361   // destroyed immediately. Prefer `try_emplace()` unless your key is not
362   // copyable or moveable.
363   //
364   // If rehashing occurs due to the insertion, all iterators are invalidated.
365   using Base::emplace_hint;
366 
367   // flat_hash_map::try_emplace()
368   //
369   // Inserts an element of the specified value by constructing it in-place
370   // within the `flat_hash_map`, provided that no element with the given key
371   // already exists. Unlike `emplace()`, if an element with the given key
372   // already exists, we guarantee that no element is constructed.
373   //
374   // If rehashing occurs due to the insertion, all iterators are invalidated.
375   // Overloads are listed below.
376   //
377   //   pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
378   //   pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
379   //
380   // Inserts (via copy or move) the element of the specified key into the
381   // `flat_hash_map`.
382   //
383   //   iterator try_emplace(const_iterator hint,
384   //                        const key_type& k, Args&&... args):
385   //   iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args):
386   //
387   // Inserts (via copy or move) the element of the specified key into the
388   // `flat_hash_map` using the position of `hint` as a non-binding suggestion
389   // for where to begin the insertion search.
390   //
391   // All `try_emplace()` overloads make the same guarantees regarding rvalue
392   // arguments as `std::unordered_map::try_emplace()`, namely that these
393   // functions will not move from rvalue arguments if insertions do not happen.
394   using Base::try_emplace;
395 
396   // flat_hash_map::extract()
397   //
398   // Extracts the indicated element, erasing it in the process, and returns it
399   // as a C++17-compatible node handle. Overloads are listed below.
400   //
401   // node_type extract(const_iterator position):
402   //
403   //   Extracts the key,value pair of the element at the indicated position and
404   //   returns a node handle owning that extracted data.
405   //
406   // node_type extract(const key_type& x):
407   //
408   //   Extracts the key,value pair of the element with a key matching the passed
409   //   key value and returns a node handle owning that extracted data. If the
410   //   `flat_hash_map` does not contain an element with a matching key, this
411   //   function returns an empty node handle.
412   //
413   // NOTE: when compiled in an earlier version of C++ than C++17,
414   // `node_type::key()` returns a const reference to the key instead of a
415   // mutable reference. We cannot safely return a mutable reference without
416   // std::launder (which is not available before C++17).
417   using Base::extract;
418 
419   // flat_hash_map::merge()
420   //
421   // Extracts elements from a given `source` flat hash map into this
422   // `flat_hash_map`. If the destination `flat_hash_map` already contains an
423   // element with an equivalent key, that element is not extracted.
424   using Base::merge;
425 
426   // flat_hash_map::swap(flat_hash_map& other)
427   //
428   // Exchanges the contents of this `flat_hash_map` with those of the `other`
429   // flat hash map.
430   //
431   // All iterators and references on the `flat_hash_map` remain valid, excepting
432   // for the past-the-end iterator, which is invalidated.
433   //
434   // `swap()` requires that the flat hash map's hashing and key equivalence
435   // functions be Swappable, and are exchanged using unqualified calls to
436   // non-member `swap()`. If the map's allocator has
437   // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
438   // set to `true`, the allocators are also exchanged using an unqualified call
439   // to non-member `swap()`; otherwise, the allocators are not swapped.
440   using Base::swap;
441 
442   // flat_hash_map::rehash(count)
443   //
444   // Rehashes the `flat_hash_map`, setting the number of slots to be at least
445   // the passed value. If the new number of slots increases the load factor more
446   // than the current maximum load factor
447   // (`count` < `size()` / `max_load_factor()`), then the new number of slots
448   // will be at least `size()` / `max_load_factor()`.
449   //
450   // To force a rehash, pass rehash(0).
451   //
452   // NOTE: unlike behavior in `std::unordered_map`, references are also
453   // invalidated upon a `rehash()`.
454   using Base::rehash;
455 
456   // flat_hash_map::reserve(count)
457   //
458   // Sets the number of slots in the `flat_hash_map` to the number needed to
459   // accommodate at least `count` total elements without exceeding the current
460   // maximum load factor, and may rehash the container if needed.
461   using Base::reserve;
462 
463   // flat_hash_map::at()
464   //
465   // Returns a reference to the mapped value of the element with key equivalent
466   // to the passed key.
467   using Base::at;
468 
469   // flat_hash_map::contains()
470   //
471   // Determines whether an element with a key comparing equal to the given `key`
472   // exists within the `flat_hash_map`, returning `true` if so or `false`
473   // otherwise.
474   using Base::contains;
475 
476   // flat_hash_map::count(const Key& key) const
477   //
478   // Returns the number of elements with a key comparing equal to the given
479   // `key` within the `flat_hash_map`. note that this function will return
480   // either `1` or `0` since duplicate keys are not allowed within a
481   // `flat_hash_map`.
482   using Base::count;
483 
484   // flat_hash_map::equal_range()
485   //
486   // Returns a closed range [first, last], defined by a `std::pair` of two
487   // iterators, containing all elements with the passed key in the
488   // `flat_hash_map`.
489   using Base::equal_range;
490 
491   // flat_hash_map::find()
492   //
493   // Finds an element with the passed `key` within the `flat_hash_map`.
494   using Base::find;
495 
496   // flat_hash_map::operator[]()
497   //
498   // Returns a reference to the value mapped to the passed key within the
499   // `flat_hash_map`, performing an `insert()` if the key does not already
500   // exist.
501   //
502   // If an insertion occurs and results in a rehashing of the container, all
503   // iterators are invalidated. Otherwise iterators are not affected and
504   // references are not invalidated. Overloads are listed below.
505   //
506   // T& operator[](const Key& key):
507   //
508   //   Inserts an init_type object constructed in-place if the element with the
509   //   given key does not exist.
510   //
511   // T& operator[](Key&& key):
512   //
513   //   Inserts an init_type object constructed in-place provided that an element
514   //   with the given key does not exist.
515   using Base::operator[];
516 
517   // flat_hash_map::bucket_count()
518   //
519   // Returns the number of "buckets" within the `flat_hash_map`. Note that
520   // because a flat hash map contains all elements within its internal storage,
521   // this value simply equals the current capacity of the `flat_hash_map`.
522   using Base::bucket_count;
523 
524   // flat_hash_map::load_factor()
525   //
526   // Returns the current load factor of the `flat_hash_map` (the average number
527   // of slots occupied with a value within the hash map).
528   using Base::load_factor;
529 
530   // flat_hash_map::max_load_factor()
531   //
532   // Manages the maximum load factor of the `flat_hash_map`. Overloads are
533   // listed below.
534   //
535   // float flat_hash_map::max_load_factor()
536   //
537   //   Returns the current maximum load factor of the `flat_hash_map`.
538   //
539   // void flat_hash_map::max_load_factor(float ml)
540   //
541   //   Sets the maximum load factor of the `flat_hash_map` to the passed value.
542   //
543   //   NOTE: This overload is provided only for API compatibility with the STL;
544   //   `flat_hash_map` will ignore any set load factor and manage its rehashing
545   //   internally as an implementation detail.
546   using Base::max_load_factor;
547 
548   // flat_hash_map::get_allocator()
549   //
550   // Returns the allocator function associated with this `flat_hash_map`.
551   using Base::get_allocator;
552 
553   // flat_hash_map::hash_function()
554   //
555   // Returns the hashing function used to hash the keys within this
556   // `flat_hash_map`.
557   using Base::hash_function;
558 
559   // flat_hash_map::key_eq()
560   //
561   // Returns the function used for comparing keys equality.
562   using Base::key_eq;
563 };
564 
565 // erase_if(flat_hash_map<>, Pred)
566 //
567 // Erases all elements that satisfy the predicate `pred` from the container `c`.
568 // Returns the number of erased elements.
569 template <typename K, typename V, typename H, typename E, typename A,
570           typename Predicate>
erase_if(flat_hash_map<K,V,H,E,A> & c,Predicate pred)571 typename flat_hash_map<K, V, H, E, A>::size_type erase_if(
572     flat_hash_map<K, V, H, E, A>& c, Predicate pred) {
573   return container_internal::EraseIf(pred, &c);
574 }
575 
576 // swap(flat_hash_map<>, flat_hash_map<>)
577 //
578 // Swaps the contents of two `flat_hash_map` containers.
579 //
580 // NOTE: we need to define this function template in order for
581 // `flat_hash_set::swap` to be called instead of `std::swap`. Even though we
582 // have `swap(raw_hash_set&, raw_hash_set&)` defined, that function requires a
583 // derived-to-base conversion, whereas `std::swap` is a function template so
584 // `std::swap` will be preferred by compiler.
585 template <typename K, typename V, typename H, typename E, typename A>
swap(flat_hash_map<K,V,H,E,A> & x,flat_hash_map<K,V,H,E,A> & y)586 void swap(flat_hash_map<K, V, H, E, A>& x,
587           flat_hash_map<K, V, H, E, A>& y) noexcept(noexcept(x.swap(y))) {
588   x.swap(y);
589 }
590 
591 namespace container_internal {
592 
593 // c_for_each_fast(flat_hash_map<>, Function)
594 //
595 // Container-based version of the <algorithm> `std::for_each()` function to
596 // apply a function to a container's elements.
597 // There is no guarantees on the order of the function calls.
598 // Erasure and/or insertion of elements in the function is not allowed.
599 template <typename K, typename V, typename H, typename E, typename A,
600           typename Function>
c_for_each_fast(const flat_hash_map<K,V,H,E,A> & c,Function && f)601 decay_t<Function> c_for_each_fast(const flat_hash_map<K, V, H, E, A>& c,
602                                   Function&& f) {
603   container_internal::ForEach(f, &c);
604   return f;
605 }
606 template <typename K, typename V, typename H, typename E, typename A,
607           typename Function>
c_for_each_fast(flat_hash_map<K,V,H,E,A> & c,Function && f)608 decay_t<Function> c_for_each_fast(flat_hash_map<K, V, H, E, A>& c,
609                                   Function&& f) {
610   container_internal::ForEach(f, &c);
611   return f;
612 }
613 template <typename K, typename V, typename H, typename E, typename A,
614           typename Function>
c_for_each_fast(flat_hash_map<K,V,H,E,A> && c,Function && f)615 decay_t<Function> c_for_each_fast(flat_hash_map<K, V, H, E, A>&& c,
616                                   Function&& f) {
617   container_internal::ForEach(f, &c);
618   return f;
619 }
620 
621 }  // namespace container_internal
622 
623 namespace container_internal {
624 
625 template <class K, class V>
626 struct FlatHashMapPolicy {
627   using slot_policy = container_internal::map_slot_policy<K, V>;
628   using slot_type = typename slot_policy::slot_type;
629   using key_type = K;
630   using mapped_type = V;
631   using init_type = std::pair</*non const*/ key_type, mapped_type>;
632 
633   template <class Allocator, class... Args>
constructFlatHashMapPolicy634   static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
635     slot_policy::construct(alloc, slot, std::forward<Args>(args)...);
636   }
637 
638   // Returns std::true_type in case destroy is trivial.
639   template <class Allocator>
destroyFlatHashMapPolicy640   static auto destroy(Allocator* alloc, slot_type* slot) {
641     return slot_policy::destroy(alloc, slot);
642   }
643 
644   template <class Allocator>
transferFlatHashMapPolicy645   static auto transfer(Allocator* alloc, slot_type* new_slot,
646                        slot_type* old_slot) {
647     return slot_policy::transfer(alloc, new_slot, old_slot);
648   }
649 
650   template <class F, class... Args>
decltypeFlatHashMapPolicy651   static decltype(absl::container_internal::DecomposePair(
652       std::declval<F>(), std::declval<Args>()...))
653   apply(F&& f, Args&&... args) {
654     return absl::container_internal::DecomposePair(std::forward<F>(f),
655                                                    std::forward<Args>(args)...);
656   }
657 
658   template <class Hash>
get_hash_slot_fnFlatHashMapPolicy659   static constexpr HashSlotFn get_hash_slot_fn() {
660     return memory_internal::IsLayoutCompatible<K, V>::value
661                ? &TypeErasedApplyToSlotFn<Hash, K>
662                : nullptr;
663   }
664 
space_usedFlatHashMapPolicy665   static size_t space_used(const slot_type*) { return 0; }
666 
elementFlatHashMapPolicy667   static std::pair<const K, V>& element(slot_type* slot) { return slot->value; }
668 
valueFlatHashMapPolicy669   static V& value(std::pair<const K, V>* kv) { return kv->second; }
valueFlatHashMapPolicy670   static const V& value(const std::pair<const K, V>* kv) { return kv->second; }
671 };
672 
673 }  // namespace container_internal
674 
675 namespace container_algorithm_internal {
676 
677 // Specialization of trait in absl/algorithm/container.h
678 template <class Key, class T, class Hash, class KeyEqual, class Allocator>
679 struct IsUnorderedContainer<
680     absl::flat_hash_map<Key, T, Hash, KeyEqual, Allocator>> : std::true_type {};
681 
682 }  // namespace container_algorithm_internal
683 
684 ABSL_NAMESPACE_END
685 }  // namespace absl
686 
687 #endif  // ABSL_CONTAINER_FLAT_HASH_MAP_H_
688