1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: node_hash_set.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::node_hash_set<T>` is an unordered associative container designed to
20 // be a more efficient replacement for `std::unordered_set`. Like
21 // `unordered_set`, search, insertion, and deletion of set elements can be done
22 // as an `O(1)` operation. However, `node_hash_set` (and other unordered
23 // associative containers known as the collection of Abseil "Swiss tables")
24 // contain other optimizations that result in both memory and computation
25 // advantages.
26 //
27 // In most cases, your default choice for a hash table should be a map of type
28 // `flat_hash_map` or a set of type `flat_hash_set`. However, if you need
29 // pointer stability, a `node_hash_set` should be your preferred choice. As
30 // well, if you are migrating your code from using `std::unordered_set`, a
31 // `node_hash_set` should be an easy migration. Consider migrating to
32 // `node_hash_set` and perhaps converting to a more efficient `flat_hash_set`
33 // upon further review.
34 //
35 // `node_hash_set` is not exception-safe.
36
37 #ifndef ABSL_CONTAINER_NODE_HASH_SET_H_
38 #define ABSL_CONTAINER_NODE_HASH_SET_H_
39
40 #include <cstddef>
41 #include <memory>
42 #include <type_traits>
43
44 #include "absl/algorithm/container.h"
45 #include "absl/base/attributes.h"
46 #include "absl/container/hash_container_defaults.h"
47 #include "absl/container/internal/container_memory.h"
48 #include "absl/container/internal/node_slot_policy.h"
49 #include "absl/container/internal/raw_hash_set.h" // IWYU pragma: export
50 #include "absl/memory/memory.h"
51 #include "absl/meta/type_traits.h"
52
53 namespace absl {
54 ABSL_NAMESPACE_BEGIN
55 namespace container_internal {
56 template <typename T>
57 struct NodeHashSetPolicy;
58 } // namespace container_internal
59
60 // -----------------------------------------------------------------------------
61 // absl::node_hash_set
62 // -----------------------------------------------------------------------------
63 //
64 // An `absl::node_hash_set<T>` is an unordered associative container which
65 // has been optimized for both speed and memory footprint in most common use
66 // cases. Its interface is similar to that of `std::unordered_set<T>` with the
67 // following notable differences:
68 //
69 // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
70 // `insert()`, provided that the set is provided a compatible heterogeneous
71 // hashing function and equality operator. See below for details.
72 // * Contains a `capacity()` member function indicating the number of element
73 // slots (open, deleted, and empty) within the hash set.
74 // * Returns `void` from the `erase(iterator)` overload.
75 //
76 // By default, `node_hash_set` uses the `absl::Hash` hashing framework.
77 // All fundamental and Abseil types that support the `absl::Hash` framework have
78 // a compatible equality operator for comparing insertions into `node_hash_set`.
79 // If your type is not yet supported by the `absl::Hash` framework, see
80 // absl/hash/hash.h for information on extending Abseil hashing to user-defined
81 // types.
82 //
83 // Using `absl::node_hash_set` at interface boundaries in dynamically loaded
84 // libraries (e.g. .dll, .so) is unsupported due to way `absl::Hash` values may
85 // be randomized across dynamically loaded libraries.
86 //
87 // To achieve heterogeneous lookup for custom types either `Hash` and `Eq` type
88 // parameters can be used or `T` should have public inner types
89 // `absl_container_hash` and (optionally) `absl_container_eq`. In either case,
90 // `typename Hash::is_transparent` and `typename Eq::is_transparent` should be
91 // well-formed. Both types are basically functors:
92 // * `Hash` should support `size_t operator()(U val) const` that returns a hash
93 // for the given `val`.
94 // * `Eq` should support `bool operator()(U lhs, V rhs) const` that returns true
95 // if `lhs` is equal to `rhs`.
96 //
97 // In most cases `T` needs only to provide the `absl_container_hash`. In this
98 // case `std::equal_to<void>` will be used instead of `eq` part.
99 //
100 // Example:
101 //
102 // // Create a node hash set of three strings
103 // absl::node_hash_set<std::string> ducks =
104 // {"huey", "dewey", "louie"};
105 //
106 // // Insert a new element into the node hash set
107 // ducks.insert("donald");
108 //
109 // // Force a rehash of the node hash set
110 // ducks.rehash(0);
111 //
112 // // See if "dewey" is present
113 // if (ducks.contains("dewey")) {
114 // std::cout << "We found dewey!" << std::endl;
115 // }
116 template <class T, class Hash = DefaultHashContainerHash<T>,
117 class Eq = DefaultHashContainerEq<T>, class Alloc = std::allocator<T>>
118 class ABSL_ATTRIBUTE_OWNER node_hash_set
119 : public absl::container_internal::raw_hash_set<
120 absl::container_internal::NodeHashSetPolicy<T>, Hash, Eq, Alloc> {
121 using Base = typename node_hash_set::raw_hash_set;
122
123 public:
124 // Constructors and Assignment Operators
125 //
126 // A node_hash_set supports the same overload set as `std::unordered_set`
127 // for construction and assignment:
128 //
129 // * Default constructor
130 //
131 // // No allocation for the table's elements is made.
132 // absl::node_hash_set<std::string> set1;
133 //
134 // * Initializer List constructor
135 //
136 // absl::node_hash_set<std::string> set2 =
137 // {{"huey"}, {"dewey"}, {"louie"}};
138 //
139 // * Copy constructor
140 //
141 // absl::node_hash_set<std::string> set3(set2);
142 //
143 // * Copy assignment operator
144 //
145 // // Hash functor and Comparator are copied as well
146 // absl::node_hash_set<std::string> set4;
147 // set4 = set3;
148 //
149 // * Move constructor
150 //
151 // // Move is guaranteed efficient
152 // absl::node_hash_set<std::string> set5(std::move(set4));
153 //
154 // * Move assignment operator
155 //
156 // // May be efficient if allocators are compatible
157 // absl::node_hash_set<std::string> set6;
158 // set6 = std::move(set5);
159 //
160 // * Range constructor
161 //
162 // std::vector<std::string> v = {"a", "b"};
163 // absl::node_hash_set<std::string> set7(v.begin(), v.end());
node_hash_set()164 node_hash_set() {}
165 using Base::Base;
166
167 // node_hash_set::begin()
168 //
169 // Returns an iterator to the beginning of the `node_hash_set`.
170 using Base::begin;
171
172 // node_hash_set::cbegin()
173 //
174 // Returns a const iterator to the beginning of the `node_hash_set`.
175 using Base::cbegin;
176
177 // node_hash_set::cend()
178 //
179 // Returns a const iterator to the end of the `node_hash_set`.
180 using Base::cend;
181
182 // node_hash_set::end()
183 //
184 // Returns an iterator to the end of the `node_hash_set`.
185 using Base::end;
186
187 // node_hash_set::capacity()
188 //
189 // Returns the number of element slots (assigned, deleted, and empty)
190 // available within the `node_hash_set`.
191 //
192 // NOTE: this member function is particular to `absl::node_hash_set` and is
193 // not provided in the `std::unordered_set` API.
194 using Base::capacity;
195
196 // node_hash_set::empty()
197 //
198 // Returns whether or not the `node_hash_set` is empty.
199 using Base::empty;
200
201 // node_hash_set::max_size()
202 //
203 // Returns the largest theoretical possible number of elements within a
204 // `node_hash_set` under current memory constraints. This value can be thought
205 // of the largest value of `std::distance(begin(), end())` for a
206 // `node_hash_set<T>`.
207 using Base::max_size;
208
209 // node_hash_set::size()
210 //
211 // Returns the number of elements currently within the `node_hash_set`.
212 using Base::size;
213
214 // node_hash_set::clear()
215 //
216 // Removes all elements from the `node_hash_set`. Invalidates any references,
217 // pointers, or iterators referring to contained elements.
218 //
219 // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
220 // the underlying buffer call `erase(begin(), end())`.
221 using Base::clear;
222
223 // node_hash_set::erase()
224 //
225 // Erases elements within the `node_hash_set`. Erasing does not trigger a
226 // rehash. Overloads are listed below.
227 //
228 // void erase(const_iterator pos):
229 //
230 // Erases the element at `position` of the `node_hash_set`, returning
231 // `void`.
232 //
233 // NOTE: Returning `void` in this case is different than that of STL
234 // containers in general and `std::unordered_map` in particular (which
235 // return an iterator to the element following the erased element). If that
236 // iterator is needed, simply post increment the iterator:
237 //
238 // map.erase(it++);
239 //
240 //
241 // iterator erase(const_iterator first, const_iterator last):
242 //
243 // Erases the elements in the open interval [`first`, `last`), returning an
244 // iterator pointing to `last`. The special case of calling
245 // `erase(begin(), end())` resets the reserved growth such that if
246 // `reserve(N)` has previously been called and there has been no intervening
247 // call to `clear()`, then after calling `erase(begin(), end())`, it is safe
248 // to assume that inserting N elements will not cause a rehash.
249 //
250 // size_type erase(const key_type& key):
251 //
252 // Erases the element with the matching key, if it exists, returning the
253 // number of elements erased (0 or 1).
254 using Base::erase;
255
256 // node_hash_set::insert()
257 //
258 // Inserts an element of the specified value into the `node_hash_set`,
259 // returning an iterator pointing to the newly inserted element, provided that
260 // an element with the given key does not already exist. If rehashing occurs
261 // due to the insertion, all iterators are invalidated. Overloads are listed
262 // below.
263 //
264 // std::pair<iterator,bool> insert(const T& value):
265 //
266 // Inserts a value into the `node_hash_set`. Returns a pair consisting of an
267 // iterator to the inserted element (or to the element that prevented the
268 // insertion) and a bool denoting whether the insertion took place.
269 //
270 // std::pair<iterator,bool> insert(T&& value):
271 //
272 // Inserts a moveable value into the `node_hash_set`. Returns a pair
273 // consisting of an iterator to the inserted element (or to the element that
274 // prevented the insertion) and a bool denoting whether the insertion took
275 // place.
276 //
277 // iterator insert(const_iterator hint, const T& value):
278 // iterator insert(const_iterator hint, T&& value):
279 //
280 // Inserts a value, using the position of `hint` as a non-binding suggestion
281 // for where to begin the insertion search. Returns an iterator to the
282 // inserted element, or to the existing element that prevented the
283 // insertion.
284 //
285 // void insert(InputIterator first, InputIterator last):
286 //
287 // Inserts a range of values [`first`, `last`).
288 //
289 // NOTE: Although the STL does not specify which element may be inserted if
290 // multiple keys compare equivalently, for `node_hash_set` we guarantee the
291 // first match is inserted.
292 //
293 // void insert(std::initializer_list<T> ilist):
294 //
295 // Inserts the elements within the initializer list `ilist`.
296 //
297 // NOTE: Although the STL does not specify which element may be inserted if
298 // multiple keys compare equivalently within the initializer list, for
299 // `node_hash_set` we guarantee the first match is inserted.
300 using Base::insert;
301
302 // node_hash_set::emplace()
303 //
304 // Inserts an element of the specified value by constructing it in-place
305 // within the `node_hash_set`, provided that no element with the given key
306 // already exists.
307 //
308 // The element may be constructed even if there already is an element with the
309 // key in the container, in which case the newly constructed element will be
310 // destroyed immediately.
311 //
312 // If rehashing occurs due to the insertion, all iterators are invalidated.
313 using Base::emplace;
314
315 // node_hash_set::emplace_hint()
316 //
317 // Inserts an element of the specified value by constructing it in-place
318 // within the `node_hash_set`, using the position of `hint` as a non-binding
319 // suggestion for where to begin the insertion search, and only inserts
320 // provided that no element with the given key already exists.
321 //
322 // The element may be constructed even if there already is an element with the
323 // key in the container, in which case the newly constructed element will be
324 // destroyed immediately.
325 //
326 // If rehashing occurs due to the insertion, all iterators are invalidated.
327 using Base::emplace_hint;
328
329 // node_hash_set::extract()
330 //
331 // Extracts the indicated element, erasing it in the process, and returns it
332 // as a C++17-compatible node handle. Overloads are listed below.
333 //
334 // node_type extract(const_iterator position):
335 //
336 // Extracts the element at the indicated position and returns a node handle
337 // owning that extracted data.
338 //
339 // node_type extract(const key_type& x):
340 //
341 // Extracts the element with the key matching the passed key value and
342 // returns a node handle owning that extracted data. If the `node_hash_set`
343 // does not contain an element with a matching key, this function returns an
344 // empty node handle.
345 using Base::extract;
346
347 // node_hash_set::merge()
348 //
349 // Extracts elements from a given `source` node hash set into this
350 // `node_hash_set`. If the destination `node_hash_set` already contains an
351 // element with an equivalent key, that element is not extracted.
352 using Base::merge;
353
354 // node_hash_set::swap(node_hash_set& other)
355 //
356 // Exchanges the contents of this `node_hash_set` with those of the `other`
357 // node hash set.
358 //
359 // All iterators and references on the `node_hash_set` remain valid, excepting
360 // for the past-the-end iterator, which is invalidated.
361 //
362 // `swap()` requires that the node hash set's hashing and key equivalence
363 // functions be Swappable, and are exchanged using unqualified calls to
364 // non-member `swap()`. If the set's allocator has
365 // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
366 // set to `true`, the allocators are also exchanged using an unqualified call
367 // to non-member `swap()`; otherwise, the allocators are not swapped.
368 using Base::swap;
369
370 // node_hash_set::rehash(count)
371 //
372 // Rehashes the `node_hash_set`, setting the number of slots to be at least
373 // the passed value. If the new number of slots increases the load factor more
374 // than the current maximum load factor
375 // (`count` < `size()` / `max_load_factor()`), then the new number of slots
376 // will be at least `size()` / `max_load_factor()`.
377 //
378 // To force a rehash, pass rehash(0).
379 //
380 // NOTE: unlike behavior in `std::unordered_set`, references are also
381 // invalidated upon a `rehash()`.
382 using Base::rehash;
383
384 // node_hash_set::reserve(count)
385 //
386 // Sets the number of slots in the `node_hash_set` to the number needed to
387 // accommodate at least `count` total elements without exceeding the current
388 // maximum load factor, and may rehash the container if needed.
389 using Base::reserve;
390
391 // node_hash_set::contains()
392 //
393 // Determines whether an element comparing equal to the given `key` exists
394 // within the `node_hash_set`, returning `true` if so or `false` otherwise.
395 using Base::contains;
396
397 // node_hash_set::count(const Key& key) const
398 //
399 // Returns the number of elements comparing equal to the given `key` within
400 // the `node_hash_set`. note that this function will return either `1` or `0`
401 // since duplicate elements are not allowed within a `node_hash_set`.
402 using Base::count;
403
404 // node_hash_set::equal_range()
405 //
406 // Returns a closed range [first, last], defined by a `std::pair` of two
407 // iterators, containing all elements with the passed key in the
408 // `node_hash_set`.
409 using Base::equal_range;
410
411 // node_hash_set::find()
412 //
413 // Finds an element with the passed `key` within the `node_hash_set`.
414 using Base::find;
415
416 // node_hash_set::bucket_count()
417 //
418 // Returns the number of "buckets" within the `node_hash_set`. Note that
419 // because a node hash set contains all elements within its internal storage,
420 // this value simply equals the current capacity of the `node_hash_set`.
421 using Base::bucket_count;
422
423 // node_hash_set::load_factor()
424 //
425 // Returns the current load factor of the `node_hash_set` (the average number
426 // of slots occupied with a value within the hash set).
427 using Base::load_factor;
428
429 // node_hash_set::max_load_factor()
430 //
431 // Manages the maximum load factor of the `node_hash_set`. Overloads are
432 // listed below.
433 //
434 // float node_hash_set::max_load_factor()
435 //
436 // Returns the current maximum load factor of the `node_hash_set`.
437 //
438 // void node_hash_set::max_load_factor(float ml)
439 //
440 // Sets the maximum load factor of the `node_hash_set` to the passed value.
441 //
442 // NOTE: This overload is provided only for API compatibility with the STL;
443 // `node_hash_set` will ignore any set load factor and manage its rehashing
444 // internally as an implementation detail.
445 using Base::max_load_factor;
446
447 // node_hash_set::get_allocator()
448 //
449 // Returns the allocator function associated with this `node_hash_set`.
450 using Base::get_allocator;
451
452 // node_hash_set::hash_function()
453 //
454 // Returns the hashing function used to hash the keys within this
455 // `node_hash_set`.
456 using Base::hash_function;
457
458 // node_hash_set::key_eq()
459 //
460 // Returns the function used for comparing keys equality.
461 using Base::key_eq;
462 };
463
464 // erase_if(node_hash_set<>, Pred)
465 //
466 // Erases all elements that satisfy the predicate `pred` from the container `c`.
467 // Returns the number of erased elements.
468 template <typename T, typename H, typename E, typename A, typename Predicate>
erase_if(node_hash_set<T,H,E,A> & c,Predicate pred)469 typename node_hash_set<T, H, E, A>::size_type erase_if(
470 node_hash_set<T, H, E, A>& c, Predicate pred) {
471 return container_internal::EraseIf(pred, &c);
472 }
473
474 // swap(node_hash_set<>, node_hash_set<>)
475 //
476 // Swaps the contents of two `node_hash_set` containers.
477 //
478 // NOTE: we need to define this function template in order for
479 // `flat_hash_set::swap` to be called instead of `std::swap`. Even though we
480 // have `swap(raw_hash_set&, raw_hash_set&)` defined, that function requires a
481 // derived-to-base conversion, whereas `std::swap` is a function template so
482 // `std::swap` will be preferred by compiler.
483 template <typename T, typename H, typename E, typename A>
swap(node_hash_set<T,H,E,A> & x,node_hash_set<T,H,E,A> & y)484 void swap(node_hash_set<T, H, E, A>& x,
485 node_hash_set<T, H, E, A>& y) noexcept(noexcept(x.swap(y))) {
486 return x.swap(y);
487 }
488
489 namespace container_internal {
490
491 // c_for_each_fast(node_hash_set<>, Function)
492 //
493 // Container-based version of the <algorithm> `std::for_each()` function to
494 // apply a function to a container's elements.
495 // There is no guarantees on the order of the function calls.
496 // Erasure and/or insertion of elements in the function is not allowed.
497 template <typename T, typename H, typename E, typename A, typename Function>
c_for_each_fast(const node_hash_set<T,H,E,A> & c,Function && f)498 decay_t<Function> c_for_each_fast(const node_hash_set<T, H, E, A>& c,
499 Function&& f) {
500 container_internal::ForEach(f, &c);
501 return f;
502 }
503 template <typename T, typename H, typename E, typename A, typename Function>
c_for_each_fast(node_hash_set<T,H,E,A> & c,Function && f)504 decay_t<Function> c_for_each_fast(node_hash_set<T, H, E, A>& c, Function&& f) {
505 container_internal::ForEach(f, &c);
506 return f;
507 }
508 template <typename T, typename H, typename E, typename A, typename Function>
c_for_each_fast(node_hash_set<T,H,E,A> && c,Function && f)509 decay_t<Function> c_for_each_fast(node_hash_set<T, H, E, A>&& c, Function&& f) {
510 container_internal::ForEach(f, &c);
511 return f;
512 }
513
514 } // namespace container_internal
515
516 namespace container_internal {
517
518 template <class T>
519 struct NodeHashSetPolicy
520 : absl::container_internal::node_slot_policy<T&, NodeHashSetPolicy<T>> {
521 using key_type = T;
522 using init_type = T;
523 using constant_iterators = std::true_type;
524
525 template <class Allocator, class... Args>
new_elementNodeHashSetPolicy526 static T* new_element(Allocator* alloc, Args&&... args) {
527 using ValueAlloc =
528 typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
529 ValueAlloc value_alloc(*alloc);
530 T* res = absl::allocator_traits<ValueAlloc>::allocate(value_alloc, 1);
531 absl::allocator_traits<ValueAlloc>::construct(value_alloc, res,
532 std::forward<Args>(args)...);
533 return res;
534 }
535
536 template <class Allocator>
delete_elementNodeHashSetPolicy537 static void delete_element(Allocator* alloc, T* elem) {
538 using ValueAlloc =
539 typename absl::allocator_traits<Allocator>::template rebind_alloc<T>;
540 ValueAlloc value_alloc(*alloc);
541 absl::allocator_traits<ValueAlloc>::destroy(value_alloc, elem);
542 absl::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1);
543 }
544
545 template <class F, class... Args>
decltypeNodeHashSetPolicy546 static decltype(absl::container_internal::DecomposeValue(
547 std::declval<F>(), std::declval<Args>()...))
548 apply(F&& f, Args&&... args) {
549 return absl::container_internal::DecomposeValue(
550 std::forward<F>(f), std::forward<Args>(args)...);
551 }
552
element_space_usedNodeHashSetPolicy553 static size_t element_space_used(const T*) { return sizeof(T); }
554
555 template <class Hash>
get_hash_slot_fnNodeHashSetPolicy556 static constexpr HashSlotFn get_hash_slot_fn() {
557 return &TypeErasedDerefAndApplyToSlotFn<Hash, T>;
558 }
559 };
560 } // namespace container_internal
561
562 namespace container_algorithm_internal {
563
564 // Specialization of trait in absl/algorithm/container.h
565 template <class Key, class Hash, class KeyEqual, class Allocator>
566 struct IsUnorderedContainer<absl::node_hash_set<Key, Hash, KeyEqual, Allocator>>
567 : std::true_type {};
568
569 } // namespace container_algorithm_internal
570 ABSL_NAMESPACE_END
571 } // namespace absl
572
573 #endif // ABSL_CONTAINER_NODE_HASH_SET_H_
574