1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/mem.h>
58
59 #include <assert.h>
60 #include <errno.h>
61 #include <limits.h>
62 #include <stdarg.h>
63 #include <stdio.h>
64 #include <stdlib.h>
65
66 #include <openssl/err.h>
67
68 #if defined(OPENSSL_WINDOWS)
69 OPENSSL_MSVC_PRAGMA(warning(push, 3))
70 #include <windows.h>
71 OPENSSL_MSVC_PRAGMA(warning(pop))
72 #endif
73
74 #if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
75 #include <errno.h>
76 #include <signal.h>
77 #include <unistd.h>
78 #endif
79
80 #include "internal.h"
81
82
83 #define OPENSSL_MALLOC_PREFIX 8
84 static_assert(OPENSSL_MALLOC_PREFIX >= sizeof(size_t), "size_t too large");
85
86 #if defined(OPENSSL_ASAN)
87 extern "C" {
88 void __asan_poison_memory_region(const volatile void *addr, size_t size);
89 void __asan_unpoison_memory_region(const volatile void *addr, size_t size);
90 }
91 #else
__asan_poison_memory_region(const void * addr,size_t size)92 static void __asan_poison_memory_region(const void *addr, size_t size) {}
__asan_unpoison_memory_region(const void * addr,size_t size)93 static void __asan_unpoison_memory_region(const void *addr, size_t size) {}
94 #endif
95
96 // Windows doesn't really support weak symbols as of May 2019, and Clang on
97 // Windows will emit strong symbols instead. See
98 // https://bugs.llvm.org/show_bug.cgi?id=37598
99 //
100 // EDK2 targets UEFI but builds as ELF and then translates the binary to
101 // COFF(!). Thus it builds with __ELF__ defined but cannot actually cope with
102 // weak symbols.
103 #if !defined(__EDK2_BORINGSSL__) && defined(__ELF__) && defined(__GNUC__)
104 #define WEAK_SYMBOL_FUNC(rettype, name, args) \
105 extern "C" { \
106 rettype name args __attribute__((weak)); \
107 }
108 #else
109 #define WEAK_SYMBOL_FUNC(rettype, name, args) \
110 static rettype(*const name) args = NULL;
111 #endif
112
113 #if defined(BORINGSSL_DETECT_SDALLOCX)
114 // sdallocx is a sized |free| function. By passing the size (which we happen to
115 // always know in BoringSSL), the malloc implementation can save work. We cannot
116 // depend on |sdallocx| being available, however, so it's a weak symbol.
117 //
118 // This mechanism is kept opt-in because it assumes that, when |sdallocx| is
119 // defined, it is part of the same allocator as |malloc|. This is usually true
120 // but may break if |malloc| does not implement |sdallocx|, but some other
121 // allocator with |sdallocx| is imported which does.
122 WEAK_SYMBOL_FUNC(void, sdallocx, (void *ptr, size_t size, int flags))
123 #else
124 static void (*const sdallocx)(void *ptr, size_t size, int flags) = NULL;
125 #endif
126
127 // The following three functions can be defined to override default heap
128 // allocation and freeing. If defined, it is the responsibility of
129 // |OPENSSL_memory_free| to zero out the memory before returning it to the
130 // system. |OPENSSL_memory_free| will not be passed NULL pointers.
131 //
132 // WARNING: These functions are called on every allocation and free in
133 // BoringSSL across the entire process. They may be called by any code in the
134 // process which calls BoringSSL, including in process initializers and thread
135 // destructors. When called, BoringSSL may hold pthreads locks. Any other code
136 // in the process which, directly or indirectly, calls BoringSSL may be on the
137 // call stack and may itself be using arbitrary synchronization primitives.
138 //
139 // As a result, these functions may not have the usual programming environment
140 // available to most C or C++ code. In particular, they may not call into
141 // BoringSSL, or any library which depends on BoringSSL. Any synchronization
142 // primitives used must tolerate every other synchronization primitive linked
143 // into the process, including pthreads locks. Failing to meet these constraints
144 // may result in deadlocks, crashes, or memory corruption.
145 WEAK_SYMBOL_FUNC(void *, OPENSSL_memory_alloc, (size_t size))
146 WEAK_SYMBOL_FUNC(void, OPENSSL_memory_free, (void *ptr))
147 WEAK_SYMBOL_FUNC(size_t, OPENSSL_memory_get_size, (void *ptr))
148
149 #if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
150 static CRYPTO_MUTEX malloc_failure_lock = CRYPTO_MUTEX_INIT;
151 static uint64_t current_malloc_count = 0;
152 static uint64_t malloc_number_to_fail = 0;
153 static int malloc_failure_enabled = 0, break_on_malloc_fail = 0,
154 any_malloc_failed = 0, disable_malloc_failures = 0;
155
malloc_exit_handler(void)156 static void malloc_exit_handler(void) {
157 CRYPTO_MUTEX_lock_read(&malloc_failure_lock);
158 if (any_malloc_failed) {
159 // Signal to the test driver that some allocation failed, so it knows to
160 // increment the counter and continue.
161 _exit(88);
162 }
163 CRYPTO_MUTEX_unlock_read(&malloc_failure_lock);
164 }
165
init_malloc_failure(void)166 static void init_malloc_failure(void) {
167 const char *env = getenv("MALLOC_NUMBER_TO_FAIL");
168 if (env != NULL && env[0] != 0) {
169 char *endptr;
170 malloc_number_to_fail = strtoull(env, &endptr, 10);
171 if (*endptr == 0) {
172 malloc_failure_enabled = 1;
173 atexit(malloc_exit_handler);
174 }
175 }
176 break_on_malloc_fail = getenv("MALLOC_BREAK_ON_FAIL") != NULL;
177 }
178
179 // should_fail_allocation returns one if the current allocation should fail and
180 // zero otherwise.
should_fail_allocation()181 static int should_fail_allocation() {
182 static CRYPTO_once_t once = CRYPTO_ONCE_INIT;
183 CRYPTO_once(&once, init_malloc_failure);
184 if (!malloc_failure_enabled || disable_malloc_failures) {
185 return 0;
186 }
187
188 // We lock just so multi-threaded tests are still correct, but we won't test
189 // every malloc exhaustively.
190 CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
191 int should_fail = current_malloc_count == malloc_number_to_fail;
192 current_malloc_count++;
193 any_malloc_failed = any_malloc_failed || should_fail;
194 CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
195
196 if (should_fail && break_on_malloc_fail) {
197 raise(SIGTRAP);
198 }
199 if (should_fail) {
200 errno = ENOMEM;
201 }
202 return should_fail;
203 }
204
OPENSSL_reset_malloc_counter_for_testing(void)205 void OPENSSL_reset_malloc_counter_for_testing(void) {
206 CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
207 current_malloc_count = 0;
208 CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
209 }
210
OPENSSL_disable_malloc_failures_for_testing(void)211 void OPENSSL_disable_malloc_failures_for_testing(void) {
212 CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
213 BSSL_CHECK(!disable_malloc_failures);
214 disable_malloc_failures = 1;
215 CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
216 }
217
OPENSSL_enable_malloc_failures_for_testing(void)218 void OPENSSL_enable_malloc_failures_for_testing(void) {
219 CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
220 BSSL_CHECK(disable_malloc_failures);
221 disable_malloc_failures = 0;
222 CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
223 }
224
225 #else
226 static int should_fail_allocation(void) { return 0; }
227 #endif
228
OPENSSL_malloc(size_t size)229 void *OPENSSL_malloc(size_t size) {
230 void *ptr = nullptr;
231 if (should_fail_allocation()) {
232 goto err;
233 }
234
235 if (OPENSSL_memory_alloc != NULL) {
236 assert(OPENSSL_memory_free != NULL);
237 assert(OPENSSL_memory_get_size != NULL);
238 void *ptr2 = OPENSSL_memory_alloc(size);
239 if (ptr2 == NULL && size != 0) {
240 goto err;
241 }
242 return ptr2;
243 }
244
245 if (size + OPENSSL_MALLOC_PREFIX < size) {
246 goto err;
247 }
248
249 ptr = malloc(size + OPENSSL_MALLOC_PREFIX);
250 if (ptr == NULL) {
251 goto err;
252 }
253
254 *(size_t *)ptr = size;
255
256 __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
257 return ((uint8_t *)ptr) + OPENSSL_MALLOC_PREFIX;
258
259 err:
260 // This only works because ERR does not call OPENSSL_malloc.
261 OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
262 return NULL;
263 }
264
OPENSSL_zalloc(size_t size)265 void *OPENSSL_zalloc(size_t size) {
266 void *ret = OPENSSL_malloc(size);
267 if (ret != NULL) {
268 OPENSSL_memset(ret, 0, size);
269 }
270 return ret;
271 }
272
OPENSSL_calloc(size_t num,size_t size)273 void *OPENSSL_calloc(size_t num, size_t size) {
274 if (size != 0 && num > SIZE_MAX / size) {
275 OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
276 return NULL;
277 }
278
279 return OPENSSL_zalloc(num * size);
280 }
281
OPENSSL_free(void * orig_ptr)282 void OPENSSL_free(void *orig_ptr) {
283 if (orig_ptr == NULL) {
284 return;
285 }
286
287 if (OPENSSL_memory_free != NULL) {
288 OPENSSL_memory_free(orig_ptr);
289 return;
290 }
291
292 void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
293 __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
294
295 size_t size = *(size_t *)ptr;
296 OPENSSL_cleanse(ptr, size + OPENSSL_MALLOC_PREFIX);
297
298 // ASan knows to intercept malloc and free, but not sdallocx.
299 #if defined(OPENSSL_ASAN)
300 (void)sdallocx;
301 free(ptr);
302 #else
303 if (sdallocx) {
304 sdallocx(ptr, size + OPENSSL_MALLOC_PREFIX, 0 /* flags */);
305 } else {
306 free(ptr);
307 }
308 #endif
309 }
310
OPENSSL_realloc(void * orig_ptr,size_t new_size)311 void *OPENSSL_realloc(void *orig_ptr, size_t new_size) {
312 if (orig_ptr == NULL) {
313 return OPENSSL_malloc(new_size);
314 }
315
316 size_t old_size;
317 if (OPENSSL_memory_get_size != NULL) {
318 old_size = OPENSSL_memory_get_size(orig_ptr);
319 } else {
320 void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
321 __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
322 old_size = *(size_t *)ptr;
323 __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
324 }
325
326 void *ret = OPENSSL_malloc(new_size);
327 if (ret == NULL) {
328 return NULL;
329 }
330
331 size_t to_copy = new_size;
332 if (old_size < to_copy) {
333 to_copy = old_size;
334 }
335
336 memcpy(ret, orig_ptr, to_copy);
337 OPENSSL_free(orig_ptr);
338
339 return ret;
340 }
341
OPENSSL_cleanse(void * ptr,size_t len)342 void OPENSSL_cleanse(void *ptr, size_t len) {
343 #if defined(OPENSSL_WINDOWS)
344 SecureZeroMemory(ptr, len);
345 #else
346 OPENSSL_memset(ptr, 0, len);
347
348 #if !defined(OPENSSL_NO_ASM)
349 /* As best as we can tell, this is sufficient to break any optimisations that
350 might try to eliminate "superfluous" memsets. If there's an easy way to
351 detect memset_s, it would be better to use that. */
352 __asm__ __volatile__("" : : "r"(ptr) : "memory");
353 #endif
354 #endif // !OPENSSL_NO_ASM
355 }
356
OPENSSL_clear_free(void * ptr,size_t unused)357 void OPENSSL_clear_free(void *ptr, size_t unused) { OPENSSL_free(ptr); }
358
CRYPTO_secure_malloc_init(size_t size,size_t min_size)359 int CRYPTO_secure_malloc_init(size_t size, size_t min_size) { return 0; }
360
CRYPTO_secure_malloc_initialized(void)361 int CRYPTO_secure_malloc_initialized(void) { return 0; }
362
CRYPTO_secure_used(void)363 size_t CRYPTO_secure_used(void) { return 0; }
364
OPENSSL_secure_malloc(size_t size)365 void *OPENSSL_secure_malloc(size_t size) { return OPENSSL_malloc(size); }
366
OPENSSL_secure_clear_free(void * ptr,size_t len)367 void OPENSSL_secure_clear_free(void *ptr, size_t len) {
368 OPENSSL_clear_free(ptr, len);
369 }
370
CRYPTO_memcmp(const void * in_a,const void * in_b,size_t len)371 int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) {
372 const uint8_t *a = reinterpret_cast<const uint8_t *>(in_a);
373 const uint8_t *b = reinterpret_cast<const uint8_t *>(in_b);
374 uint8_t x = 0;
375
376 for (size_t i = 0; i < len; i++) {
377 x |= a[i] ^ b[i];
378 }
379
380 return x;
381 }
382
OPENSSL_hash32(const void * ptr,size_t len)383 uint32_t OPENSSL_hash32(const void *ptr, size_t len) {
384 // These are the FNV-1a parameters for 32 bits.
385 static const uint32_t kPrime = 16777619u;
386 static const uint32_t kOffsetBasis = 2166136261u;
387
388 const uint8_t *in = reinterpret_cast<const uint8_t *>(ptr);
389 uint32_t h = kOffsetBasis;
390
391 for (size_t i = 0; i < len; i++) {
392 h ^= in[i];
393 h *= kPrime;
394 }
395
396 return h;
397 }
398
OPENSSL_strhash(const char * s)399 uint32_t OPENSSL_strhash(const char *s) { return OPENSSL_hash32(s, strlen(s)); }
400
OPENSSL_strnlen(const char * s,size_t len)401 size_t OPENSSL_strnlen(const char *s, size_t len) {
402 for (size_t i = 0; i < len; i++) {
403 if (s[i] == 0) {
404 return i;
405 }
406 }
407
408 return len;
409 }
410
OPENSSL_strdup(const char * s)411 char *OPENSSL_strdup(const char *s) {
412 if (s == NULL) {
413 return NULL;
414 }
415 // Copy the NUL terminator.
416 return reinterpret_cast<char *>(OPENSSL_memdup(s, strlen(s) + 1));
417 }
418
OPENSSL_isalpha(int c)419 int OPENSSL_isalpha(int c) {
420 return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
421 }
422
OPENSSL_isdigit(int c)423 int OPENSSL_isdigit(int c) { return c >= '0' && c <= '9'; }
424
OPENSSL_isxdigit(int c)425 int OPENSSL_isxdigit(int c) {
426 return OPENSSL_isdigit(c) || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F');
427 }
428
OPENSSL_fromxdigit(uint8_t * out,int c)429 int OPENSSL_fromxdigit(uint8_t *out, int c) {
430 if (OPENSSL_isdigit(c)) {
431 *out = c - '0';
432 return 1;
433 }
434 if ('a' <= c && c <= 'f') {
435 *out = c - 'a' + 10;
436 return 1;
437 }
438 if ('A' <= c && c <= 'F') {
439 *out = c - 'A' + 10;
440 return 1;
441 }
442 return 0;
443 }
444
OPENSSL_isalnum(int c)445 int OPENSSL_isalnum(int c) { return OPENSSL_isalpha(c) || OPENSSL_isdigit(c); }
446
OPENSSL_tolower(int c)447 int OPENSSL_tolower(int c) {
448 if (c >= 'A' && c <= 'Z') {
449 return c + ('a' - 'A');
450 }
451 return c;
452 }
453
OPENSSL_isspace(int c)454 int OPENSSL_isspace(int c) {
455 return c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r' ||
456 c == ' ';
457 }
458
OPENSSL_strcasecmp(const char * a,const char * b)459 int OPENSSL_strcasecmp(const char *a, const char *b) {
460 for (size_t i = 0;; i++) {
461 const int aa = OPENSSL_tolower(a[i]);
462 const int bb = OPENSSL_tolower(b[i]);
463
464 if (aa < bb) {
465 return -1;
466 } else if (aa > bb) {
467 return 1;
468 } else if (aa == 0) {
469 return 0;
470 }
471 }
472 }
473
OPENSSL_strncasecmp(const char * a,const char * b,size_t n)474 int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) {
475 for (size_t i = 0; i < n; i++) {
476 const int aa = OPENSSL_tolower(a[i]);
477 const int bb = OPENSSL_tolower(b[i]);
478
479 if (aa < bb) {
480 return -1;
481 } else if (aa > bb) {
482 return 1;
483 } else if (aa == 0) {
484 return 0;
485 }
486 }
487
488 return 0;
489 }
490
BIO_snprintf(char * buf,size_t n,const char * format,...)491 int BIO_snprintf(char *buf, size_t n, const char *format, ...) {
492 va_list args;
493 va_start(args, format);
494 int ret = BIO_vsnprintf(buf, n, format, args);
495 va_end(args);
496 return ret;
497 }
498
BIO_vsnprintf(char * buf,size_t n,const char * format,va_list args)499 int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) {
500 return vsnprintf(buf, n, format, args);
501 }
502
OPENSSL_vasprintf_internal(char ** str,const char * format,va_list args,int system_malloc)503 int OPENSSL_vasprintf_internal(char **str, const char *format, va_list args,
504 int system_malloc) {
505 void *(*allocate)(size_t) = system_malloc ? malloc : OPENSSL_malloc;
506 void (*deallocate)(void *) = system_malloc ? free : OPENSSL_free;
507 void *(*reallocate)(void *, size_t) =
508 system_malloc ? realloc : OPENSSL_realloc;
509 char *candidate = NULL;
510 size_t candidate_len = 64; // TODO(bbe) what's the best initial size?
511 int ret;
512
513 if ((candidate = reinterpret_cast<char *>(allocate(candidate_len))) == NULL) {
514 goto err;
515 }
516 va_list args_copy;
517 va_copy(args_copy, args);
518 ret = vsnprintf(candidate, candidate_len, format, args_copy);
519 va_end(args_copy);
520 if (ret < 0) {
521 goto err;
522 }
523 if ((size_t)ret >= candidate_len) {
524 // Too big to fit in allocation.
525 char *tmp;
526
527 candidate_len = (size_t)ret + 1;
528 if ((tmp = reinterpret_cast<char *>(
529 reallocate(candidate, candidate_len))) == NULL) {
530 goto err;
531 }
532 candidate = tmp;
533 ret = vsnprintf(candidate, candidate_len, format, args);
534 }
535 // At this point this should not happen unless vsnprintf is insane.
536 if (ret < 0 || (size_t)ret >= candidate_len) {
537 goto err;
538 }
539 *str = candidate;
540 return ret;
541
542 err:
543 deallocate(candidate);
544 *str = NULL;
545 errno = ENOMEM;
546 return -1;
547 }
548
OPENSSL_vasprintf(char ** str,const char * format,va_list args)549 int OPENSSL_vasprintf(char **str, const char *format, va_list args) {
550 return OPENSSL_vasprintf_internal(str, format, args, /*system_malloc=*/0);
551 }
552
OPENSSL_asprintf(char ** str,const char * format,...)553 int OPENSSL_asprintf(char **str, const char *format, ...) {
554 va_list args;
555 va_start(args, format);
556 int ret = OPENSSL_vasprintf(str, format, args);
557 va_end(args);
558 return ret;
559 }
560
OPENSSL_strndup(const char * str,size_t size)561 char *OPENSSL_strndup(const char *str, size_t size) {
562 size = OPENSSL_strnlen(str, size);
563
564 size_t alloc_size = size + 1;
565 if (alloc_size < size) {
566 // overflow
567 OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
568 return NULL;
569 }
570 char *ret = reinterpret_cast<char *>(OPENSSL_malloc(alloc_size));
571 if (ret == NULL) {
572 return NULL;
573 }
574
575 OPENSSL_memcpy(ret, str, size);
576 ret[size] = '\0';
577 return ret;
578 }
579
OPENSSL_strlcpy(char * dst,const char * src,size_t dst_size)580 size_t OPENSSL_strlcpy(char *dst, const char *src, size_t dst_size) {
581 size_t l = 0;
582
583 for (; dst_size > 1 && *src; dst_size--) {
584 *dst++ = *src++;
585 l++;
586 }
587
588 if (dst_size) {
589 *dst = 0;
590 }
591
592 return l + strlen(src);
593 }
594
OPENSSL_strlcat(char * dst,const char * src,size_t dst_size)595 size_t OPENSSL_strlcat(char *dst, const char *src, size_t dst_size) {
596 size_t l = 0;
597 for (; dst_size > 0 && *dst; dst_size--, dst++) {
598 l++;
599 }
600 return l + OPENSSL_strlcpy(dst, src, dst_size);
601 }
602
OPENSSL_memdup(const void * data,size_t size)603 void *OPENSSL_memdup(const void *data, size_t size) {
604 if (size == 0) {
605 return NULL;
606 }
607
608 void *ret = OPENSSL_malloc(size);
609 if (ret == NULL) {
610 return NULL;
611 }
612
613 OPENSSL_memcpy(ret, data, size);
614 return ret;
615 }
616
CRYPTO_malloc(size_t size,const char * file,int line)617 void *CRYPTO_malloc(size_t size, const char *file, int line) {
618 return OPENSSL_malloc(size);
619 }
620
CRYPTO_realloc(void * ptr,size_t new_size,const char * file,int line)621 void *CRYPTO_realloc(void *ptr, size_t new_size, const char *file, int line) {
622 return OPENSSL_realloc(ptr, new_size);
623 }
624
CRYPTO_free(void * ptr,const char * file,int line)625 void CRYPTO_free(void *ptr, const char *file, int line) { OPENSSL_free(ptr); }
626