• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/obj.h>
58 
59 #include <inttypes.h>
60 #include <limits.h>
61 #include <string.h>
62 
63 #include <openssl/asn1.h>
64 #include <openssl/bytestring.h>
65 #include <openssl/err.h>
66 #include <openssl/lhash.h>
67 #include <openssl/mem.h>
68 #include <openssl/thread.h>
69 
70 #include "../asn1/internal.h"
71 #include "../internal.h"
72 #include "../lhash/internal.h"
73 
74 // obj_data.h must be included after the definition of |ASN1_OBJECT|.
75 #include "obj_dat.h"
76 
77 
78 DEFINE_LHASH_OF(ASN1_OBJECT)
79 
80 static CRYPTO_MUTEX global_added_lock = CRYPTO_MUTEX_INIT;
81 // These globals are protected by |global_added_lock|.
82 static LHASH_OF(ASN1_OBJECT) *global_added_by_data = NULL;
83 static LHASH_OF(ASN1_OBJECT) *global_added_by_nid = NULL;
84 static LHASH_OF(ASN1_OBJECT) *global_added_by_short_name = NULL;
85 static LHASH_OF(ASN1_OBJECT) *global_added_by_long_name = NULL;
86 
87 static CRYPTO_MUTEX global_next_nid_lock = CRYPTO_MUTEX_INIT;
88 static unsigned global_next_nid = NUM_NID;
89 
obj_next_nid(void)90 static int obj_next_nid(void) {
91   CRYPTO_MUTEX_lock_write(&global_next_nid_lock);
92   int ret = global_next_nid++;
93   CRYPTO_MUTEX_unlock_write(&global_next_nid_lock);
94   return ret;
95 }
96 
OBJ_dup(const ASN1_OBJECT * o)97 ASN1_OBJECT *OBJ_dup(const ASN1_OBJECT *o) {
98   ASN1_OBJECT *r;
99   unsigned char *data = NULL;
100   char *sn = NULL, *ln = NULL;
101 
102   if (o == NULL) {
103     return NULL;
104   }
105 
106   if (!(o->flags & ASN1_OBJECT_FLAG_DYNAMIC)) {
107     // TODO(fork): this is a little dangerous.
108     return (ASN1_OBJECT *)o;
109   }
110 
111   r = ASN1_OBJECT_new();
112   if (r == NULL) {
113     OPENSSL_PUT_ERROR(OBJ, ERR_R_ASN1_LIB);
114     return NULL;
115   }
116   r->ln = r->sn = NULL;
117 
118   // once data is attached to an object, it remains const
119   r->data = reinterpret_cast<uint8_t *>(OPENSSL_memdup(o->data, o->length));
120   if (o->length != 0 && r->data == NULL) {
121     goto err;
122   }
123 
124   r->length = o->length;
125   r->nid = o->nid;
126 
127   if (o->ln != NULL) {
128     ln = OPENSSL_strdup(o->ln);
129     if (ln == NULL) {
130       goto err;
131     }
132   }
133 
134   if (o->sn != NULL) {
135     sn = OPENSSL_strdup(o->sn);
136     if (sn == NULL) {
137       goto err;
138     }
139   }
140 
141   r->sn = sn;
142   r->ln = ln;
143 
144   r->flags =
145       o->flags | (ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS |
146                   ASN1_OBJECT_FLAG_DYNAMIC_DATA);
147   return r;
148 
149 err:
150   OPENSSL_free(ln);
151   OPENSSL_free(sn);
152   OPENSSL_free(data);
153   OPENSSL_free(r);
154   return NULL;
155 }
156 
OBJ_cmp(const ASN1_OBJECT * a,const ASN1_OBJECT * b)157 int OBJ_cmp(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
158   if (a->length < b->length) {
159     return -1;
160   } else if (a->length > b->length) {
161     return 1;
162   }
163   return OPENSSL_memcmp(a->data, b->data, a->length);
164 }
165 
OBJ_get0_data(const ASN1_OBJECT * obj)166 const uint8_t *OBJ_get0_data(const ASN1_OBJECT *obj) {
167   if (obj == NULL) {
168     return NULL;
169   }
170 
171   return obj->data;
172 }
173 
OBJ_length(const ASN1_OBJECT * obj)174 size_t OBJ_length(const ASN1_OBJECT *obj) {
175   if (obj == NULL || obj->length < 0) {
176     return 0;
177   }
178 
179   return (size_t)obj->length;
180 }
181 
get_builtin_object(int nid)182 static const ASN1_OBJECT *get_builtin_object(int nid) {
183   // |NID_undef| is stored separately, so all the indices are off by one. The
184   // caller of this function must have a valid built-in, non-undef NID.
185   BSSL_CHECK(nid > 0 && nid < NUM_NID);
186   return &kObjects[nid - 1];
187 }
188 
189 // obj_cmp is called to search the kNIDsInOIDOrder array. The |key| argument is
190 // an |ASN1_OBJECT|* that we're looking for and |element| is a pointer to an
191 // unsigned int in the array.
obj_cmp(const void * key,const void * element)192 static int obj_cmp(const void *key, const void *element) {
193   uint16_t nid = *((const uint16_t *)element);
194   return OBJ_cmp(reinterpret_cast<const ASN1_OBJECT *>(key),
195                  get_builtin_object(nid));
196 }
197 
OBJ_obj2nid(const ASN1_OBJECT * obj)198 int OBJ_obj2nid(const ASN1_OBJECT *obj) {
199   if (obj == NULL) {
200     return NID_undef;
201   }
202 
203   if (obj->nid != 0) {
204     return obj->nid;
205   }
206 
207   CRYPTO_MUTEX_lock_read(&global_added_lock);
208   if (global_added_by_data != NULL) {
209     ASN1_OBJECT *match;
210 
211     match = lh_ASN1_OBJECT_retrieve(global_added_by_data, obj);
212     if (match != NULL) {
213       CRYPTO_MUTEX_unlock_read(&global_added_lock);
214       return match->nid;
215     }
216   }
217   CRYPTO_MUTEX_unlock_read(&global_added_lock);
218 
219   const uint16_t *nid_ptr = reinterpret_cast<const uint16_t *>(
220       bsearch(obj, kNIDsInOIDOrder, OPENSSL_ARRAY_SIZE(kNIDsInOIDOrder),
221               sizeof(kNIDsInOIDOrder[0]), obj_cmp));
222   if (nid_ptr == NULL) {
223     return NID_undef;
224   }
225 
226   return get_builtin_object(*nid_ptr)->nid;
227 }
228 
OBJ_cbs2nid(const CBS * cbs)229 int OBJ_cbs2nid(const CBS *cbs) {
230   if (CBS_len(cbs) > INT_MAX) {
231     return NID_undef;
232   }
233 
234   ASN1_OBJECT obj;
235   OPENSSL_memset(&obj, 0, sizeof(obj));
236   obj.data = CBS_data(cbs);
237   obj.length = (int)CBS_len(cbs);
238 
239   return OBJ_obj2nid(&obj);
240 }
241 
242 // short_name_cmp is called to search the kNIDsInShortNameOrder array. The
243 // |key| argument is name that we're looking for and |element| is a pointer to
244 // an unsigned int in the array.
short_name_cmp(const void * key,const void * element)245 static int short_name_cmp(const void *key, const void *element) {
246   const char *name = (const char *)key;
247   uint16_t nid = *((const uint16_t *)element);
248 
249   return strcmp(name, get_builtin_object(nid)->sn);
250 }
251 
OBJ_sn2nid(const char * short_name)252 int OBJ_sn2nid(const char *short_name) {
253   CRYPTO_MUTEX_lock_read(&global_added_lock);
254   if (global_added_by_short_name != NULL) {
255     ASN1_OBJECT *match, templ;
256 
257     templ.sn = short_name;
258     match = lh_ASN1_OBJECT_retrieve(global_added_by_short_name, &templ);
259     if (match != NULL) {
260       CRYPTO_MUTEX_unlock_read(&global_added_lock);
261       return match->nid;
262     }
263   }
264   CRYPTO_MUTEX_unlock_read(&global_added_lock);
265 
266   const uint16_t *nid_ptr = reinterpret_cast<const uint16_t *>(
267       bsearch(short_name, kNIDsInShortNameOrder,
268               OPENSSL_ARRAY_SIZE(kNIDsInShortNameOrder),
269               sizeof(kNIDsInShortNameOrder[0]), short_name_cmp));
270   if (nid_ptr == NULL) {
271     return NID_undef;
272   }
273 
274   return get_builtin_object(*nid_ptr)->nid;
275 }
276 
277 // long_name_cmp is called to search the kNIDsInLongNameOrder array. The
278 // |key| argument is name that we're looking for and |element| is a pointer to
279 // an unsigned int in the array.
long_name_cmp(const void * key,const void * element)280 static int long_name_cmp(const void *key, const void *element) {
281   const char *name = (const char *)key;
282   uint16_t nid = *((const uint16_t *)element);
283 
284   return strcmp(name, get_builtin_object(nid)->ln);
285 }
286 
OBJ_ln2nid(const char * long_name)287 int OBJ_ln2nid(const char *long_name) {
288   CRYPTO_MUTEX_lock_read(&global_added_lock);
289   if (global_added_by_long_name != NULL) {
290     ASN1_OBJECT *match, templ;
291 
292     templ.ln = long_name;
293     match = lh_ASN1_OBJECT_retrieve(global_added_by_long_name, &templ);
294     if (match != NULL) {
295       CRYPTO_MUTEX_unlock_read(&global_added_lock);
296       return match->nid;
297     }
298   }
299   CRYPTO_MUTEX_unlock_read(&global_added_lock);
300 
301   const uint16_t *nid_ptr = reinterpret_cast<const uint16_t *>(bsearch(
302       long_name, kNIDsInLongNameOrder, OPENSSL_ARRAY_SIZE(kNIDsInLongNameOrder),
303       sizeof(kNIDsInLongNameOrder[0]), long_name_cmp));
304   if (nid_ptr == NULL) {
305     return NID_undef;
306   }
307 
308   return get_builtin_object(*nid_ptr)->nid;
309 }
310 
OBJ_txt2nid(const char * s)311 int OBJ_txt2nid(const char *s) {
312   ASN1_OBJECT *obj;
313   int nid;
314 
315   obj = OBJ_txt2obj(s, 0 /* search names */);
316   nid = OBJ_obj2nid(obj);
317   ASN1_OBJECT_free(obj);
318   return nid;
319 }
320 
OBJ_nid2cbb(CBB * out,int nid)321 OPENSSL_EXPORT int OBJ_nid2cbb(CBB *out, int nid) {
322   const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
323   CBB oid;
324 
325   if (obj == NULL || !CBB_add_asn1(out, &oid, CBS_ASN1_OBJECT) ||
326       !CBB_add_bytes(&oid, obj->data, obj->length) || !CBB_flush(out)) {
327     return 0;
328   }
329 
330   return 1;
331 }
332 
OBJ_get_undef(void)333 const ASN1_OBJECT *OBJ_get_undef(void) {
334   static const ASN1_OBJECT kUndef = {
335       /*sn=*/SN_undef,
336       /*ln=*/LN_undef,
337       /*nid=*/NID_undef,
338       /*length=*/0,
339       /*data=*/NULL,
340       /*flags=*/0,
341   };
342   return &kUndef;
343 }
344 
OBJ_nid2obj(int nid)345 ASN1_OBJECT *OBJ_nid2obj(int nid) {
346   if (nid == NID_undef) {
347     return (ASN1_OBJECT *)OBJ_get_undef();
348   }
349 
350   if (nid > 0 && nid < NUM_NID) {
351     const ASN1_OBJECT *obj = get_builtin_object(nid);
352     if (nid != NID_undef && obj->nid == NID_undef) {
353       goto err;
354     }
355     return (ASN1_OBJECT *)obj;
356   }
357 
358   CRYPTO_MUTEX_lock_read(&global_added_lock);
359   if (global_added_by_nid != NULL) {
360     ASN1_OBJECT *match, templ;
361 
362     templ.nid = nid;
363     match = lh_ASN1_OBJECT_retrieve(global_added_by_nid, &templ);
364     if (match != NULL) {
365       CRYPTO_MUTEX_unlock_read(&global_added_lock);
366       return match;
367     }
368   }
369   CRYPTO_MUTEX_unlock_read(&global_added_lock);
370 
371 err:
372   OPENSSL_PUT_ERROR(OBJ, OBJ_R_UNKNOWN_NID);
373   return NULL;
374 }
375 
OBJ_nid2sn(int nid)376 const char *OBJ_nid2sn(int nid) {
377   const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
378   if (obj == NULL) {
379     return NULL;
380   }
381 
382   return obj->sn;
383 }
384 
OBJ_nid2ln(int nid)385 const char *OBJ_nid2ln(int nid) {
386   const ASN1_OBJECT *obj = OBJ_nid2obj(nid);
387   if (obj == NULL) {
388     return NULL;
389   }
390 
391   return obj->ln;
392 }
393 
create_object_with_text_oid(int (* get_nid)(void),const char * oid,const char * short_name,const char * long_name)394 static ASN1_OBJECT *create_object_with_text_oid(int (*get_nid)(void),
395                                                 const char *oid,
396                                                 const char *short_name,
397                                                 const char *long_name) {
398   uint8_t *buf;
399   size_t len;
400   CBB cbb;
401   if (!CBB_init(&cbb, 32) ||
402       !CBB_add_asn1_oid_from_text(&cbb, oid, strlen(oid)) ||
403       !CBB_finish(&cbb, &buf, &len)) {
404     OPENSSL_PUT_ERROR(OBJ, OBJ_R_INVALID_OID_STRING);
405     CBB_cleanup(&cbb);
406     return NULL;
407   }
408 
409   ASN1_OBJECT *ret = ASN1_OBJECT_create(get_nid ? get_nid() : NID_undef, buf,
410                                         len, short_name, long_name);
411   OPENSSL_free(buf);
412   return ret;
413 }
414 
OBJ_txt2obj(const char * s,int dont_search_names)415 ASN1_OBJECT *OBJ_txt2obj(const char *s, int dont_search_names) {
416   if (!dont_search_names) {
417     int nid = OBJ_sn2nid(s);
418     if (nid == NID_undef) {
419       nid = OBJ_ln2nid(s);
420     }
421 
422     if (nid != NID_undef) {
423       return OBJ_nid2obj(nid);
424     }
425   }
426 
427   return create_object_with_text_oid(NULL, s, NULL, NULL);
428 }
429 
strlcpy_int(char * dst,const char * src,int dst_size)430 static int strlcpy_int(char *dst, const char *src, int dst_size) {
431   size_t ret = OPENSSL_strlcpy(dst, src, dst_size < 0 ? 0 : (size_t)dst_size);
432   if (ret > INT_MAX) {
433     OPENSSL_PUT_ERROR(OBJ, ERR_R_OVERFLOW);
434     return -1;
435   }
436   return (int)ret;
437 }
438 
OBJ_obj2txt(char * out,int out_len,const ASN1_OBJECT * obj,int always_return_oid)439 int OBJ_obj2txt(char *out, int out_len, const ASN1_OBJECT *obj,
440                 int always_return_oid) {
441   // Python depends on the empty OID successfully encoding as the empty
442   // string.
443   if (obj == NULL || obj->length == 0) {
444     return strlcpy_int(out, "", out_len);
445   }
446 
447   if (!always_return_oid) {
448     int nid = OBJ_obj2nid(obj);
449     if (nid != NID_undef) {
450       const char *name = OBJ_nid2ln(nid);
451       if (name == NULL) {
452         name = OBJ_nid2sn(nid);
453       }
454       if (name != NULL) {
455         return strlcpy_int(out, name, out_len);
456       }
457     }
458   }
459 
460   CBS cbs;
461   CBS_init(&cbs, obj->data, obj->length);
462   char *txt = CBS_asn1_oid_to_text(&cbs);
463   if (txt == NULL) {
464     if (out_len > 0) {
465       out[0] = '\0';
466     }
467     return -1;
468   }
469 
470   int ret = strlcpy_int(out, txt, out_len);
471   OPENSSL_free(txt);
472   return ret;
473 }
474 
hash_nid(const ASN1_OBJECT * obj)475 static uint32_t hash_nid(const ASN1_OBJECT *obj) { return obj->nid; }
476 
cmp_nid(const ASN1_OBJECT * a,const ASN1_OBJECT * b)477 static int cmp_nid(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
478   return a->nid - b->nid;
479 }
480 
hash_data(const ASN1_OBJECT * obj)481 static uint32_t hash_data(const ASN1_OBJECT *obj) {
482   return OPENSSL_hash32(obj->data, obj->length);
483 }
484 
hash_short_name(const ASN1_OBJECT * obj)485 static uint32_t hash_short_name(const ASN1_OBJECT *obj) {
486   return OPENSSL_strhash(obj->sn);
487 }
488 
cmp_short_name(const ASN1_OBJECT * a,const ASN1_OBJECT * b)489 static int cmp_short_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
490   return strcmp(a->sn, b->sn);
491 }
492 
hash_long_name(const ASN1_OBJECT * obj)493 static uint32_t hash_long_name(const ASN1_OBJECT *obj) {
494   return OPENSSL_strhash(obj->ln);
495 }
496 
cmp_long_name(const ASN1_OBJECT * a,const ASN1_OBJECT * b)497 static int cmp_long_name(const ASN1_OBJECT *a, const ASN1_OBJECT *b) {
498   return strcmp(a->ln, b->ln);
499 }
500 
501 // obj_add_object inserts |obj| into the various global hashes for run-time
502 // added objects. It returns one on success or zero otherwise.
obj_add_object(ASN1_OBJECT * obj)503 static int obj_add_object(ASN1_OBJECT *obj) {
504   obj->flags &= ~(ASN1_OBJECT_FLAG_DYNAMIC | ASN1_OBJECT_FLAG_DYNAMIC_STRINGS |
505                   ASN1_OBJECT_FLAG_DYNAMIC_DATA);
506 
507   CRYPTO_MUTEX_lock_write(&global_added_lock);
508   if (global_added_by_nid == NULL) {
509     global_added_by_nid = lh_ASN1_OBJECT_new(hash_nid, cmp_nid);
510   }
511   if (global_added_by_data == NULL) {
512     global_added_by_data = lh_ASN1_OBJECT_new(hash_data, OBJ_cmp);
513   }
514   if (global_added_by_short_name == NULL) {
515     global_added_by_short_name =
516         lh_ASN1_OBJECT_new(hash_short_name, cmp_short_name);
517   }
518   if (global_added_by_long_name == NULL) {
519     global_added_by_long_name =
520         lh_ASN1_OBJECT_new(hash_long_name, cmp_long_name);
521   }
522 
523   int ok = 0;
524   if (global_added_by_nid == NULL ||         //
525       global_added_by_data == NULL ||        //
526       global_added_by_short_name == NULL ||  //
527       global_added_by_long_name == NULL) {
528     goto err;
529   }
530 
531   // We don't pay attention to |old_object| (which contains any previous object
532   // that was evicted from the hashes) because we don't have a reference count
533   // on ASN1_OBJECT values. Also, we should never have duplicates nids and so
534   // should always have objects in |global_added_by_nid|.
535   ASN1_OBJECT *old_object;
536   ok = lh_ASN1_OBJECT_insert(global_added_by_nid, &old_object, obj);
537   if (obj->length != 0 && obj->data != NULL) {
538     ok &= lh_ASN1_OBJECT_insert(global_added_by_data, &old_object, obj);
539   }
540   if (obj->sn != NULL) {
541     ok &= lh_ASN1_OBJECT_insert(global_added_by_short_name, &old_object, obj);
542   }
543   if (obj->ln != NULL) {
544     ok &= lh_ASN1_OBJECT_insert(global_added_by_long_name, &old_object, obj);
545   }
546 
547 err:
548   CRYPTO_MUTEX_unlock_write(&global_added_lock);
549   return ok;
550 }
551 
OBJ_create(const char * oid,const char * short_name,const char * long_name)552 int OBJ_create(const char *oid, const char *short_name, const char *long_name) {
553   ASN1_OBJECT *op =
554       create_object_with_text_oid(obj_next_nid, oid, short_name, long_name);
555   if (op == NULL || !obj_add_object(op)) {
556     return NID_undef;
557   }
558   return op->nid;
559 }
560 
OBJ_cleanup(void)561 void OBJ_cleanup(void) {}
562