• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/stack.h>
58 
59 #include <assert.h>
60 #include <limits.h>
61 
62 #include <openssl/err.h>
63 #include <openssl/mem.h>
64 
65 #include "../internal.h"
66 
67 
68 struct stack_st {
69   // num contains the number of valid pointers in |data|.
70   size_t num;
71   void **data;
72   // sorted is non-zero if the values pointed to by |data| are in ascending
73   // order, based on |comp|.
74   int sorted;
75   // num_alloc contains the number of pointers allocated in the buffer pointed
76   // to by |data|, which may be larger than |num|.
77   size_t num_alloc;
78   // comp is an optional comparison function.
79   OPENSSL_sk_cmp_func comp;
80 };
81 
82 // kMinSize is the number of pointers that will be initially allocated in a new
83 // stack.
84 static const size_t kMinSize = 4;
85 
OPENSSL_sk_new(OPENSSL_sk_cmp_func comp)86 OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_cmp_func comp) {
87   OPENSSL_STACK *ret =
88       reinterpret_cast<OPENSSL_STACK *>(OPENSSL_zalloc(sizeof(OPENSSL_STACK)));
89   if (ret == NULL) {
90     return NULL;
91   }
92 
93   ret->data =
94       reinterpret_cast<void **>(OPENSSL_calloc(kMinSize, sizeof(void *)));
95   if (ret->data == NULL) {
96     goto err;
97   }
98 
99   ret->comp = comp;
100   ret->num_alloc = kMinSize;
101 
102   return ret;
103 
104 err:
105   OPENSSL_free(ret);
106   return NULL;
107 }
108 
OPENSSL_sk_new_null(void)109 OPENSSL_STACK *OPENSSL_sk_new_null(void) { return OPENSSL_sk_new(NULL); }
110 
OPENSSL_sk_num(const OPENSSL_STACK * sk)111 size_t OPENSSL_sk_num(const OPENSSL_STACK *sk) {
112   if (sk == NULL) {
113     return 0;
114   }
115   return sk->num;
116 }
117 
OPENSSL_sk_zero(OPENSSL_STACK * sk)118 void OPENSSL_sk_zero(OPENSSL_STACK *sk) {
119   if (sk == NULL || sk->num == 0) {
120     return;
121   }
122   OPENSSL_memset(sk->data, 0, sizeof(void *) * sk->num);
123   sk->num = 0;
124   sk->sorted = 0;
125 }
126 
OPENSSL_sk_value(const OPENSSL_STACK * sk,size_t i)127 void *OPENSSL_sk_value(const OPENSSL_STACK *sk, size_t i) {
128   if (!sk || i >= sk->num) {
129     return NULL;
130   }
131   return sk->data[i];
132 }
133 
OPENSSL_sk_set(OPENSSL_STACK * sk,size_t i,void * value)134 void *OPENSSL_sk_set(OPENSSL_STACK *sk, size_t i, void *value) {
135   if (!sk || i >= sk->num) {
136     return NULL;
137   }
138   return sk->data[i] = value;
139 }
140 
OPENSSL_sk_free(OPENSSL_STACK * sk)141 void OPENSSL_sk_free(OPENSSL_STACK *sk) {
142   if (sk == NULL) {
143     return;
144   }
145   OPENSSL_free(sk->data);
146   OPENSSL_free(sk);
147 }
148 
OPENSSL_sk_pop_free_ex(OPENSSL_STACK * sk,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)149 void OPENSSL_sk_pop_free_ex(OPENSSL_STACK *sk,
150                             OPENSSL_sk_call_free_func call_free_func,
151                             OPENSSL_sk_free_func free_func) {
152   if (sk == NULL) {
153     return;
154   }
155 
156   for (size_t i = 0; i < sk->num; i++) {
157     if (sk->data[i] != NULL) {
158       call_free_func(free_func, sk->data[i]);
159     }
160   }
161   OPENSSL_sk_free(sk);
162 }
163 
164 // Historically, |sk_pop_free| called the function as |OPENSSL_sk_free_func|
165 // directly. This is undefined in C. Some callers called |sk_pop_free| directly,
166 // so we must maintain a compatibility version for now.
call_free_func_legacy(OPENSSL_sk_free_func func,void * ptr)167 static void call_free_func_legacy(OPENSSL_sk_free_func func, void *ptr) {
168   func(ptr);
169 }
170 
sk_pop_free(OPENSSL_STACK * sk,OPENSSL_sk_free_func free_func)171 void sk_pop_free(OPENSSL_STACK *sk, OPENSSL_sk_free_func free_func) {
172   OPENSSL_sk_pop_free_ex(sk, call_free_func_legacy, free_func);
173 }
174 
OPENSSL_sk_insert(OPENSSL_STACK * sk,void * p,size_t where)175 size_t OPENSSL_sk_insert(OPENSSL_STACK *sk, void *p, size_t where) {
176   if (sk == NULL) {
177     return 0;
178   }
179 
180   if (sk->num >= INT_MAX) {
181     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
182     return 0;
183   }
184 
185   if (sk->num_alloc <= sk->num + 1) {
186     // Attempt to double the size of the array.
187     size_t new_alloc = sk->num_alloc << 1;
188     size_t alloc_size = new_alloc * sizeof(void *);
189     void **data;
190 
191     // If the doubling overflowed, try to increment.
192     if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
193       new_alloc = sk->num_alloc + 1;
194       alloc_size = new_alloc * sizeof(void *);
195     }
196 
197     // If the increment also overflowed, fail.
198     if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
199       return 0;
200     }
201 
202     data = reinterpret_cast<void **>(OPENSSL_realloc(sk->data, alloc_size));
203     if (data == NULL) {
204       return 0;
205     }
206 
207     sk->data = data;
208     sk->num_alloc = new_alloc;
209   }
210 
211   if (where >= sk->num) {
212     sk->data[sk->num] = p;
213   } else {
214     OPENSSL_memmove(&sk->data[where + 1], &sk->data[where],
215                     sizeof(void *) * (sk->num - where));
216     sk->data[where] = p;
217   }
218 
219   sk->num++;
220   sk->sorted = 0;
221 
222   return sk->num;
223 }
224 
OPENSSL_sk_delete(OPENSSL_STACK * sk,size_t where)225 void *OPENSSL_sk_delete(OPENSSL_STACK *sk, size_t where) {
226   void *ret;
227 
228   if (!sk || where >= sk->num) {
229     return NULL;
230   }
231 
232   ret = sk->data[where];
233 
234   if (where != sk->num - 1) {
235     OPENSSL_memmove(&sk->data[where], &sk->data[where + 1],
236                     sizeof(void *) * (sk->num - where - 1));
237   }
238 
239   sk->num--;
240   return ret;
241 }
242 
OPENSSL_sk_delete_ptr(OPENSSL_STACK * sk,const void * p)243 void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *sk, const void *p) {
244   if (sk == NULL) {
245     return NULL;
246   }
247 
248   for (size_t i = 0; i < sk->num; i++) {
249     if (sk->data[i] == p) {
250       return OPENSSL_sk_delete(sk, i);
251     }
252   }
253 
254   return NULL;
255 }
256 
OPENSSL_sk_delete_if(OPENSSL_STACK * sk,OPENSSL_sk_call_delete_if_func call_func,OPENSSL_sk_delete_if_func func,void * data)257 void OPENSSL_sk_delete_if(OPENSSL_STACK *sk,
258                           OPENSSL_sk_call_delete_if_func call_func,
259                           OPENSSL_sk_delete_if_func func, void *data) {
260   if (sk == NULL) {
261     return;
262   }
263 
264   size_t new_num = 0;
265   for (size_t i = 0; i < sk->num; i++) {
266     if (!call_func(func, sk->data[i], data)) {
267       sk->data[new_num] = sk->data[i];
268       new_num++;
269     }
270   }
271   sk->num = new_num;
272 }
273 
OPENSSL_sk_find(const OPENSSL_STACK * sk,size_t * out_index,const void * p,OPENSSL_sk_call_cmp_func call_cmp_func)274 int OPENSSL_sk_find(const OPENSSL_STACK *sk, size_t *out_index, const void *p,
275                     OPENSSL_sk_call_cmp_func call_cmp_func) {
276   if (sk == NULL) {
277     return 0;
278   }
279 
280   if (sk->comp == NULL) {
281     // Use pointer equality when no comparison function has been set.
282     for (size_t i = 0; i < sk->num; i++) {
283       if (sk->data[i] == p) {
284         if (out_index) {
285           *out_index = i;
286         }
287         return 1;
288       }
289     }
290     return 0;
291   }
292 
293   if (p == NULL) {
294     return 0;
295   }
296 
297   if (!OPENSSL_sk_is_sorted(sk)) {
298     for (size_t i = 0; i < sk->num; i++) {
299       if (call_cmp_func(sk->comp, p, sk->data[i]) == 0) {
300         if (out_index) {
301           *out_index = i;
302         }
303         return 1;
304       }
305     }
306     return 0;
307   }
308 
309   // The stack is sorted, so binary search to find the element.
310   //
311   // |lo| and |hi| maintain a half-open interval of where the answer may be. All
312   // indices such that |lo <= idx < hi| are candidates.
313   size_t lo = 0, hi = sk->num;
314   while (lo < hi) {
315     // Bias |mid| towards |lo|. See the |r == 0| case below.
316     size_t mid = lo + (hi - lo - 1) / 2;
317     assert(lo <= mid && mid < hi);
318     int r = call_cmp_func(sk->comp, p, sk->data[mid]);
319     if (r > 0) {
320       lo = mid + 1;  // |mid| is too low.
321     } else if (r < 0) {
322       hi = mid;  // |mid| is too high.
323     } else {
324       // |mid| matches. However, this function returns the earliest match, so we
325       // can only return if the range has size one.
326       if (hi - lo == 1) {
327         if (out_index != NULL) {
328           *out_index = mid;
329         }
330         return 1;
331       }
332       // The sample is biased towards |lo|. |mid| can only be |hi - 1| if
333       // |hi - lo| was one, so this makes forward progress.
334       assert(mid + 1 < hi);
335       hi = mid + 1;
336     }
337   }
338 
339   assert(lo == hi);
340   return 0;  // Not found.
341 }
342 
OPENSSL_sk_shift(OPENSSL_STACK * sk)343 void *OPENSSL_sk_shift(OPENSSL_STACK *sk) {
344   if (sk == NULL) {
345     return NULL;
346   }
347   if (sk->num == 0) {
348     return NULL;
349   }
350   return OPENSSL_sk_delete(sk, 0);
351 }
352 
OPENSSL_sk_push(OPENSSL_STACK * sk,void * p)353 size_t OPENSSL_sk_push(OPENSSL_STACK *sk, void *p) {
354   return OPENSSL_sk_insert(sk, p, sk->num);
355 }
356 
OPENSSL_sk_pop(OPENSSL_STACK * sk)357 void *OPENSSL_sk_pop(OPENSSL_STACK *sk) {
358   if (sk == NULL) {
359     return NULL;
360   }
361   if (sk->num == 0) {
362     return NULL;
363   }
364   return OPENSSL_sk_delete(sk, sk->num - 1);
365 }
366 
OPENSSL_sk_dup(const OPENSSL_STACK * sk)367 OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) {
368   if (sk == NULL) {
369     return NULL;
370   }
371 
372   OPENSSL_STACK *ret =
373       reinterpret_cast<OPENSSL_STACK *>(OPENSSL_zalloc(sizeof(OPENSSL_STACK)));
374   if (ret == NULL) {
375     return NULL;
376   }
377 
378   ret->data = reinterpret_cast<void **>(
379       OPENSSL_memdup(sk->data, sizeof(void *) * sk->num_alloc));
380   if (ret->data == NULL) {
381     goto err;
382   }
383 
384   ret->num = sk->num;
385   ret->sorted = sk->sorted;
386   ret->num_alloc = sk->num_alloc;
387   ret->comp = sk->comp;
388   return ret;
389 
390 err:
391   OPENSSL_sk_free(ret);
392   return NULL;
393 }
394 
parent_idx(size_t idx)395 static size_t parent_idx(size_t idx) {
396   assert(idx > 0);
397   return (idx - 1) / 2;
398 }
399 
left_idx(size_t idx)400 static size_t left_idx(size_t idx) {
401   // The largest possible index is |PTRDIFF_MAX|, not |SIZE_MAX|. If
402   // |ptrdiff_t|, a signed type, is the same size as |size_t|, this cannot
403   // overflow.
404   assert(idx <= PTRDIFF_MAX);
405   static_assert(PTRDIFF_MAX <= (SIZE_MAX - 1) / 2, "2 * idx + 1 may oveflow");
406   return 2 * idx + 1;
407 }
408 
409 // down_heap fixes the subtree rooted at |i|. |i|'s children must each satisfy
410 // the heap property. Only the first |num| elements of |sk| are considered.
down_heap(OPENSSL_STACK * sk,OPENSSL_sk_call_cmp_func call_cmp_func,size_t i,size_t num)411 static void down_heap(OPENSSL_STACK *sk, OPENSSL_sk_call_cmp_func call_cmp_func,
412                       size_t i, size_t num) {
413   assert(i < num && num <= sk->num);
414   for (;;) {
415     size_t left = left_idx(i);
416     if (left >= num) {
417       break;  // No left child.
418     }
419 
420     // Swap |i| with the largest of its children.
421     size_t next = i;
422     if (call_cmp_func(sk->comp, sk->data[next], sk->data[left]) < 0) {
423       next = left;
424     }
425     size_t right = left + 1;  // Cannot overflow because |left < num|.
426     if (right < num &&
427         call_cmp_func(sk->comp, sk->data[next], sk->data[right]) < 0) {
428       next = right;
429     }
430 
431     if (i == next) {
432       break;  // |i| is already larger than its children.
433     }
434 
435     void *tmp = sk->data[i];
436     sk->data[i] = sk->data[next];
437     sk->data[next] = tmp;
438     i = next;
439   }
440 }
441 
OPENSSL_sk_sort(OPENSSL_STACK * sk,OPENSSL_sk_call_cmp_func call_cmp_func)442 void OPENSSL_sk_sort(OPENSSL_STACK *sk,
443                      OPENSSL_sk_call_cmp_func call_cmp_func) {
444   if (sk == NULL || sk->comp == NULL || sk->sorted) {
445     return;
446   }
447 
448   if (sk->num >= 2) {
449     // |qsort| lacks a context parameter in the comparison function for us to
450     // pass in |call_cmp_func| and |sk->comp|. While we could cast |sk->comp| to
451     // the expected type, it is undefined behavior in C can trip sanitizers.
452     // |qsort_r| and |qsort_s| avoid this, but using them is impractical. See
453     // https://stackoverflow.com/a/39561369
454     //
455     // Use our own heap sort instead. This is not performance-sensitive, so we
456     // optimize for simplicity and size. First, build a max-heap in place.
457     for (size_t i = parent_idx(sk->num - 1); i < sk->num; i--) {
458       down_heap(sk, call_cmp_func, i, sk->num);
459     }
460 
461     // Iteratively remove the maximum element to populate the result in reverse.
462     for (size_t i = sk->num - 1; i > 0; i--) {
463       void *tmp = sk->data[0];
464       sk->data[0] = sk->data[i];
465       sk->data[i] = tmp;
466       down_heap(sk, call_cmp_func, 0, i);
467     }
468   }
469   sk->sorted = 1;
470 }
471 
OPENSSL_sk_is_sorted(const OPENSSL_STACK * sk)472 int OPENSSL_sk_is_sorted(const OPENSSL_STACK *sk) {
473   if (!sk) {
474     return 1;
475   }
476   // Zero- and one-element lists are always sorted.
477   return sk->sorted || (sk->comp != NULL && sk->num < 2);
478 }
479 
OPENSSL_sk_set_cmp_func(OPENSSL_STACK * sk,OPENSSL_sk_cmp_func comp)480 OPENSSL_sk_cmp_func OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk,
481                                             OPENSSL_sk_cmp_func comp) {
482   OPENSSL_sk_cmp_func old = sk->comp;
483 
484   if (sk->comp != comp) {
485     sk->sorted = 0;
486   }
487   sk->comp = comp;
488 
489   return old;
490 }
491 
OPENSSL_sk_deep_copy(const OPENSSL_STACK * sk,OPENSSL_sk_call_copy_func call_copy_func,OPENSSL_sk_copy_func copy_func,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)492 OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
493                                     OPENSSL_sk_call_copy_func call_copy_func,
494                                     OPENSSL_sk_copy_func copy_func,
495                                     OPENSSL_sk_call_free_func call_free_func,
496                                     OPENSSL_sk_free_func free_func) {
497   OPENSSL_STACK *ret = OPENSSL_sk_dup(sk);
498   if (ret == NULL) {
499     return NULL;
500   }
501 
502   for (size_t i = 0; i < ret->num; i++) {
503     if (ret->data[i] == NULL) {
504       continue;
505     }
506     ret->data[i] = call_copy_func(copy_func, ret->data[i]);
507     if (ret->data[i] == NULL) {
508       for (size_t j = 0; j < i; j++) {
509         if (ret->data[j] != NULL) {
510           call_free_func(free_func, ret->data[j]);
511         }
512       }
513       OPENSSL_sk_free(ret);
514       return NULL;
515     }
516   }
517 
518   return ret;
519 }
520 
sk_new_null(void)521 OPENSSL_STACK *sk_new_null(void) { return OPENSSL_sk_new_null(); }
522 
sk_num(const OPENSSL_STACK * sk)523 size_t sk_num(const OPENSSL_STACK *sk) { return OPENSSL_sk_num(sk); }
524 
sk_value(const OPENSSL_STACK * sk,size_t i)525 void *sk_value(const OPENSSL_STACK *sk, size_t i) {
526   return OPENSSL_sk_value(sk, i);
527 }
528 
sk_free(OPENSSL_STACK * sk)529 void sk_free(OPENSSL_STACK *sk) { OPENSSL_sk_free(sk); }
530 
sk_push(OPENSSL_STACK * sk,void * p)531 size_t sk_push(OPENSSL_STACK *sk, void *p) { return OPENSSL_sk_push(sk, p); }
532 
sk_pop(OPENSSL_STACK * sk)533 void *sk_pop(OPENSSL_STACK *sk) { return OPENSSL_sk_pop(sk); }
534 
sk_pop_free_ex(OPENSSL_STACK * sk,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)535 void sk_pop_free_ex(OPENSSL_STACK *sk, OPENSSL_sk_call_free_func call_free_func,
536                     OPENSSL_sk_free_func free_func) {
537   OPENSSL_sk_pop_free_ex(sk, call_free_func, free_func);
538 }
539