1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/stack.h>
58
59 #include <assert.h>
60 #include <limits.h>
61
62 #include <openssl/err.h>
63 #include <openssl/mem.h>
64
65 #include "../internal.h"
66
67
68 struct stack_st {
69 // num contains the number of valid pointers in |data|.
70 size_t num;
71 void **data;
72 // sorted is non-zero if the values pointed to by |data| are in ascending
73 // order, based on |comp|.
74 int sorted;
75 // num_alloc contains the number of pointers allocated in the buffer pointed
76 // to by |data|, which may be larger than |num|.
77 size_t num_alloc;
78 // comp is an optional comparison function.
79 OPENSSL_sk_cmp_func comp;
80 };
81
82 // kMinSize is the number of pointers that will be initially allocated in a new
83 // stack.
84 static const size_t kMinSize = 4;
85
OPENSSL_sk_new(OPENSSL_sk_cmp_func comp)86 OPENSSL_STACK *OPENSSL_sk_new(OPENSSL_sk_cmp_func comp) {
87 OPENSSL_STACK *ret =
88 reinterpret_cast<OPENSSL_STACK *>(OPENSSL_zalloc(sizeof(OPENSSL_STACK)));
89 if (ret == NULL) {
90 return NULL;
91 }
92
93 ret->data =
94 reinterpret_cast<void **>(OPENSSL_calloc(kMinSize, sizeof(void *)));
95 if (ret->data == NULL) {
96 goto err;
97 }
98
99 ret->comp = comp;
100 ret->num_alloc = kMinSize;
101
102 return ret;
103
104 err:
105 OPENSSL_free(ret);
106 return NULL;
107 }
108
OPENSSL_sk_new_null(void)109 OPENSSL_STACK *OPENSSL_sk_new_null(void) { return OPENSSL_sk_new(NULL); }
110
OPENSSL_sk_num(const OPENSSL_STACK * sk)111 size_t OPENSSL_sk_num(const OPENSSL_STACK *sk) {
112 if (sk == NULL) {
113 return 0;
114 }
115 return sk->num;
116 }
117
OPENSSL_sk_zero(OPENSSL_STACK * sk)118 void OPENSSL_sk_zero(OPENSSL_STACK *sk) {
119 if (sk == NULL || sk->num == 0) {
120 return;
121 }
122 OPENSSL_memset(sk->data, 0, sizeof(void *) * sk->num);
123 sk->num = 0;
124 sk->sorted = 0;
125 }
126
OPENSSL_sk_value(const OPENSSL_STACK * sk,size_t i)127 void *OPENSSL_sk_value(const OPENSSL_STACK *sk, size_t i) {
128 if (!sk || i >= sk->num) {
129 return NULL;
130 }
131 return sk->data[i];
132 }
133
OPENSSL_sk_set(OPENSSL_STACK * sk,size_t i,void * value)134 void *OPENSSL_sk_set(OPENSSL_STACK *sk, size_t i, void *value) {
135 if (!sk || i >= sk->num) {
136 return NULL;
137 }
138 return sk->data[i] = value;
139 }
140
OPENSSL_sk_free(OPENSSL_STACK * sk)141 void OPENSSL_sk_free(OPENSSL_STACK *sk) {
142 if (sk == NULL) {
143 return;
144 }
145 OPENSSL_free(sk->data);
146 OPENSSL_free(sk);
147 }
148
OPENSSL_sk_pop_free_ex(OPENSSL_STACK * sk,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)149 void OPENSSL_sk_pop_free_ex(OPENSSL_STACK *sk,
150 OPENSSL_sk_call_free_func call_free_func,
151 OPENSSL_sk_free_func free_func) {
152 if (sk == NULL) {
153 return;
154 }
155
156 for (size_t i = 0; i < sk->num; i++) {
157 if (sk->data[i] != NULL) {
158 call_free_func(free_func, sk->data[i]);
159 }
160 }
161 OPENSSL_sk_free(sk);
162 }
163
164 // Historically, |sk_pop_free| called the function as |OPENSSL_sk_free_func|
165 // directly. This is undefined in C. Some callers called |sk_pop_free| directly,
166 // so we must maintain a compatibility version for now.
call_free_func_legacy(OPENSSL_sk_free_func func,void * ptr)167 static void call_free_func_legacy(OPENSSL_sk_free_func func, void *ptr) {
168 func(ptr);
169 }
170
sk_pop_free(OPENSSL_STACK * sk,OPENSSL_sk_free_func free_func)171 void sk_pop_free(OPENSSL_STACK *sk, OPENSSL_sk_free_func free_func) {
172 OPENSSL_sk_pop_free_ex(sk, call_free_func_legacy, free_func);
173 }
174
OPENSSL_sk_insert(OPENSSL_STACK * sk,void * p,size_t where)175 size_t OPENSSL_sk_insert(OPENSSL_STACK *sk, void *p, size_t where) {
176 if (sk == NULL) {
177 return 0;
178 }
179
180 if (sk->num >= INT_MAX) {
181 OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW);
182 return 0;
183 }
184
185 if (sk->num_alloc <= sk->num + 1) {
186 // Attempt to double the size of the array.
187 size_t new_alloc = sk->num_alloc << 1;
188 size_t alloc_size = new_alloc * sizeof(void *);
189 void **data;
190
191 // If the doubling overflowed, try to increment.
192 if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
193 new_alloc = sk->num_alloc + 1;
194 alloc_size = new_alloc * sizeof(void *);
195 }
196
197 // If the increment also overflowed, fail.
198 if (new_alloc < sk->num_alloc || alloc_size / sizeof(void *) != new_alloc) {
199 return 0;
200 }
201
202 data = reinterpret_cast<void **>(OPENSSL_realloc(sk->data, alloc_size));
203 if (data == NULL) {
204 return 0;
205 }
206
207 sk->data = data;
208 sk->num_alloc = new_alloc;
209 }
210
211 if (where >= sk->num) {
212 sk->data[sk->num] = p;
213 } else {
214 OPENSSL_memmove(&sk->data[where + 1], &sk->data[where],
215 sizeof(void *) * (sk->num - where));
216 sk->data[where] = p;
217 }
218
219 sk->num++;
220 sk->sorted = 0;
221
222 return sk->num;
223 }
224
OPENSSL_sk_delete(OPENSSL_STACK * sk,size_t where)225 void *OPENSSL_sk_delete(OPENSSL_STACK *sk, size_t where) {
226 void *ret;
227
228 if (!sk || where >= sk->num) {
229 return NULL;
230 }
231
232 ret = sk->data[where];
233
234 if (where != sk->num - 1) {
235 OPENSSL_memmove(&sk->data[where], &sk->data[where + 1],
236 sizeof(void *) * (sk->num - where - 1));
237 }
238
239 sk->num--;
240 return ret;
241 }
242
OPENSSL_sk_delete_ptr(OPENSSL_STACK * sk,const void * p)243 void *OPENSSL_sk_delete_ptr(OPENSSL_STACK *sk, const void *p) {
244 if (sk == NULL) {
245 return NULL;
246 }
247
248 for (size_t i = 0; i < sk->num; i++) {
249 if (sk->data[i] == p) {
250 return OPENSSL_sk_delete(sk, i);
251 }
252 }
253
254 return NULL;
255 }
256
OPENSSL_sk_delete_if(OPENSSL_STACK * sk,OPENSSL_sk_call_delete_if_func call_func,OPENSSL_sk_delete_if_func func,void * data)257 void OPENSSL_sk_delete_if(OPENSSL_STACK *sk,
258 OPENSSL_sk_call_delete_if_func call_func,
259 OPENSSL_sk_delete_if_func func, void *data) {
260 if (sk == NULL) {
261 return;
262 }
263
264 size_t new_num = 0;
265 for (size_t i = 0; i < sk->num; i++) {
266 if (!call_func(func, sk->data[i], data)) {
267 sk->data[new_num] = sk->data[i];
268 new_num++;
269 }
270 }
271 sk->num = new_num;
272 }
273
OPENSSL_sk_find(const OPENSSL_STACK * sk,size_t * out_index,const void * p,OPENSSL_sk_call_cmp_func call_cmp_func)274 int OPENSSL_sk_find(const OPENSSL_STACK *sk, size_t *out_index, const void *p,
275 OPENSSL_sk_call_cmp_func call_cmp_func) {
276 if (sk == NULL) {
277 return 0;
278 }
279
280 if (sk->comp == NULL) {
281 // Use pointer equality when no comparison function has been set.
282 for (size_t i = 0; i < sk->num; i++) {
283 if (sk->data[i] == p) {
284 if (out_index) {
285 *out_index = i;
286 }
287 return 1;
288 }
289 }
290 return 0;
291 }
292
293 if (p == NULL) {
294 return 0;
295 }
296
297 if (!OPENSSL_sk_is_sorted(sk)) {
298 for (size_t i = 0; i < sk->num; i++) {
299 if (call_cmp_func(sk->comp, p, sk->data[i]) == 0) {
300 if (out_index) {
301 *out_index = i;
302 }
303 return 1;
304 }
305 }
306 return 0;
307 }
308
309 // The stack is sorted, so binary search to find the element.
310 //
311 // |lo| and |hi| maintain a half-open interval of where the answer may be. All
312 // indices such that |lo <= idx < hi| are candidates.
313 size_t lo = 0, hi = sk->num;
314 while (lo < hi) {
315 // Bias |mid| towards |lo|. See the |r == 0| case below.
316 size_t mid = lo + (hi - lo - 1) / 2;
317 assert(lo <= mid && mid < hi);
318 int r = call_cmp_func(sk->comp, p, sk->data[mid]);
319 if (r > 0) {
320 lo = mid + 1; // |mid| is too low.
321 } else if (r < 0) {
322 hi = mid; // |mid| is too high.
323 } else {
324 // |mid| matches. However, this function returns the earliest match, so we
325 // can only return if the range has size one.
326 if (hi - lo == 1) {
327 if (out_index != NULL) {
328 *out_index = mid;
329 }
330 return 1;
331 }
332 // The sample is biased towards |lo|. |mid| can only be |hi - 1| if
333 // |hi - lo| was one, so this makes forward progress.
334 assert(mid + 1 < hi);
335 hi = mid + 1;
336 }
337 }
338
339 assert(lo == hi);
340 return 0; // Not found.
341 }
342
OPENSSL_sk_shift(OPENSSL_STACK * sk)343 void *OPENSSL_sk_shift(OPENSSL_STACK *sk) {
344 if (sk == NULL) {
345 return NULL;
346 }
347 if (sk->num == 0) {
348 return NULL;
349 }
350 return OPENSSL_sk_delete(sk, 0);
351 }
352
OPENSSL_sk_push(OPENSSL_STACK * sk,void * p)353 size_t OPENSSL_sk_push(OPENSSL_STACK *sk, void *p) {
354 return OPENSSL_sk_insert(sk, p, sk->num);
355 }
356
OPENSSL_sk_pop(OPENSSL_STACK * sk)357 void *OPENSSL_sk_pop(OPENSSL_STACK *sk) {
358 if (sk == NULL) {
359 return NULL;
360 }
361 if (sk->num == 0) {
362 return NULL;
363 }
364 return OPENSSL_sk_delete(sk, sk->num - 1);
365 }
366
OPENSSL_sk_dup(const OPENSSL_STACK * sk)367 OPENSSL_STACK *OPENSSL_sk_dup(const OPENSSL_STACK *sk) {
368 if (sk == NULL) {
369 return NULL;
370 }
371
372 OPENSSL_STACK *ret =
373 reinterpret_cast<OPENSSL_STACK *>(OPENSSL_zalloc(sizeof(OPENSSL_STACK)));
374 if (ret == NULL) {
375 return NULL;
376 }
377
378 ret->data = reinterpret_cast<void **>(
379 OPENSSL_memdup(sk->data, sizeof(void *) * sk->num_alloc));
380 if (ret->data == NULL) {
381 goto err;
382 }
383
384 ret->num = sk->num;
385 ret->sorted = sk->sorted;
386 ret->num_alloc = sk->num_alloc;
387 ret->comp = sk->comp;
388 return ret;
389
390 err:
391 OPENSSL_sk_free(ret);
392 return NULL;
393 }
394
parent_idx(size_t idx)395 static size_t parent_idx(size_t idx) {
396 assert(idx > 0);
397 return (idx - 1) / 2;
398 }
399
left_idx(size_t idx)400 static size_t left_idx(size_t idx) {
401 // The largest possible index is |PTRDIFF_MAX|, not |SIZE_MAX|. If
402 // |ptrdiff_t|, a signed type, is the same size as |size_t|, this cannot
403 // overflow.
404 assert(idx <= PTRDIFF_MAX);
405 static_assert(PTRDIFF_MAX <= (SIZE_MAX - 1) / 2, "2 * idx + 1 may oveflow");
406 return 2 * idx + 1;
407 }
408
409 // down_heap fixes the subtree rooted at |i|. |i|'s children must each satisfy
410 // the heap property. Only the first |num| elements of |sk| are considered.
down_heap(OPENSSL_STACK * sk,OPENSSL_sk_call_cmp_func call_cmp_func,size_t i,size_t num)411 static void down_heap(OPENSSL_STACK *sk, OPENSSL_sk_call_cmp_func call_cmp_func,
412 size_t i, size_t num) {
413 assert(i < num && num <= sk->num);
414 for (;;) {
415 size_t left = left_idx(i);
416 if (left >= num) {
417 break; // No left child.
418 }
419
420 // Swap |i| with the largest of its children.
421 size_t next = i;
422 if (call_cmp_func(sk->comp, sk->data[next], sk->data[left]) < 0) {
423 next = left;
424 }
425 size_t right = left + 1; // Cannot overflow because |left < num|.
426 if (right < num &&
427 call_cmp_func(sk->comp, sk->data[next], sk->data[right]) < 0) {
428 next = right;
429 }
430
431 if (i == next) {
432 break; // |i| is already larger than its children.
433 }
434
435 void *tmp = sk->data[i];
436 sk->data[i] = sk->data[next];
437 sk->data[next] = tmp;
438 i = next;
439 }
440 }
441
OPENSSL_sk_sort(OPENSSL_STACK * sk,OPENSSL_sk_call_cmp_func call_cmp_func)442 void OPENSSL_sk_sort(OPENSSL_STACK *sk,
443 OPENSSL_sk_call_cmp_func call_cmp_func) {
444 if (sk == NULL || sk->comp == NULL || sk->sorted) {
445 return;
446 }
447
448 if (sk->num >= 2) {
449 // |qsort| lacks a context parameter in the comparison function for us to
450 // pass in |call_cmp_func| and |sk->comp|. While we could cast |sk->comp| to
451 // the expected type, it is undefined behavior in C can trip sanitizers.
452 // |qsort_r| and |qsort_s| avoid this, but using them is impractical. See
453 // https://stackoverflow.com/a/39561369
454 //
455 // Use our own heap sort instead. This is not performance-sensitive, so we
456 // optimize for simplicity and size. First, build a max-heap in place.
457 for (size_t i = parent_idx(sk->num - 1); i < sk->num; i--) {
458 down_heap(sk, call_cmp_func, i, sk->num);
459 }
460
461 // Iteratively remove the maximum element to populate the result in reverse.
462 for (size_t i = sk->num - 1; i > 0; i--) {
463 void *tmp = sk->data[0];
464 sk->data[0] = sk->data[i];
465 sk->data[i] = tmp;
466 down_heap(sk, call_cmp_func, 0, i);
467 }
468 }
469 sk->sorted = 1;
470 }
471
OPENSSL_sk_is_sorted(const OPENSSL_STACK * sk)472 int OPENSSL_sk_is_sorted(const OPENSSL_STACK *sk) {
473 if (!sk) {
474 return 1;
475 }
476 // Zero- and one-element lists are always sorted.
477 return sk->sorted || (sk->comp != NULL && sk->num < 2);
478 }
479
OPENSSL_sk_set_cmp_func(OPENSSL_STACK * sk,OPENSSL_sk_cmp_func comp)480 OPENSSL_sk_cmp_func OPENSSL_sk_set_cmp_func(OPENSSL_STACK *sk,
481 OPENSSL_sk_cmp_func comp) {
482 OPENSSL_sk_cmp_func old = sk->comp;
483
484 if (sk->comp != comp) {
485 sk->sorted = 0;
486 }
487 sk->comp = comp;
488
489 return old;
490 }
491
OPENSSL_sk_deep_copy(const OPENSSL_STACK * sk,OPENSSL_sk_call_copy_func call_copy_func,OPENSSL_sk_copy_func copy_func,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)492 OPENSSL_STACK *OPENSSL_sk_deep_copy(const OPENSSL_STACK *sk,
493 OPENSSL_sk_call_copy_func call_copy_func,
494 OPENSSL_sk_copy_func copy_func,
495 OPENSSL_sk_call_free_func call_free_func,
496 OPENSSL_sk_free_func free_func) {
497 OPENSSL_STACK *ret = OPENSSL_sk_dup(sk);
498 if (ret == NULL) {
499 return NULL;
500 }
501
502 for (size_t i = 0; i < ret->num; i++) {
503 if (ret->data[i] == NULL) {
504 continue;
505 }
506 ret->data[i] = call_copy_func(copy_func, ret->data[i]);
507 if (ret->data[i] == NULL) {
508 for (size_t j = 0; j < i; j++) {
509 if (ret->data[j] != NULL) {
510 call_free_func(free_func, ret->data[j]);
511 }
512 }
513 OPENSSL_sk_free(ret);
514 return NULL;
515 }
516 }
517
518 return ret;
519 }
520
sk_new_null(void)521 OPENSSL_STACK *sk_new_null(void) { return OPENSSL_sk_new_null(); }
522
sk_num(const OPENSSL_STACK * sk)523 size_t sk_num(const OPENSSL_STACK *sk) { return OPENSSL_sk_num(sk); }
524
sk_value(const OPENSSL_STACK * sk,size_t i)525 void *sk_value(const OPENSSL_STACK *sk, size_t i) {
526 return OPENSSL_sk_value(sk, i);
527 }
528
sk_free(OPENSSL_STACK * sk)529 void sk_free(OPENSSL_STACK *sk) { OPENSSL_sk_free(sk); }
530
sk_push(OPENSSL_STACK * sk,void * p)531 size_t sk_push(OPENSSL_STACK *sk, void *p) { return OPENSSL_sk_push(sk, p); }
532
sk_pop(OPENSSL_STACK * sk)533 void *sk_pop(OPENSSL_STACK *sk) { return OPENSSL_sk_pop(sk); }
534
sk_pop_free_ex(OPENSSL_STACK * sk,OPENSSL_sk_call_free_func call_free_func,OPENSSL_sk_free_func free_func)535 void sk_pop_free_ex(OPENSSL_STACK *sk, OPENSSL_sk_call_free_func call_free_func,
536 OPENSSL_sk_free_func free_func) {
537 OPENSSL_sk_pop_free_ex(sk, call_free_func, free_func);
538 }
539